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A OVERVIEW OF SUPPLEMENTARY MATERIALS

We cover the following topics in our supplementary materials:

• All notations used in the paper are summarized in Appendix B.

• The proposed conditional U-Net architecture is detailed in Appendix C.

• The details of the training process for the proposed framework are illustrated in Appendix D.

• The datasets’ details and the data prepossessing pipeline are presented in Appendix E.

• The details of evaluation metrics are presented in Appendix F.

• Additional experimental ablation studies are reported in Appendix G.

• And finally, a qualitative analysis of the model’s performance can be found in Appendix I.

Table 1: The glossary of all notations used in the paper.

Type Description Notation

Scalar Parameters Total number of mixtures in dataset P
Number of sampled mixtures in a batch N

Number of single source components in a mixture K
Temperature parameter in contrastive loss τ

Unsupervised reconstruction loss LURL

Contrastive loss LCNT

Consistency reconstruction loss LCRL

Total weak-supervision loss LTWL

Total semi-supervised learning loss LSSL

Weak supervision loss weights α, β, γ
Semi-supervised learning loss weights λs, λu

Vectors/Matrices Complete dataset D
Batch of mixtures B

Batch of synthetic mixture-of-mixturess B′
ith Sound mixture Mi

Mixture of mixture M′

Language prompt of ith mixture Ti
The kth single source component in the ith mixture Ski

Language prompts of single source sound T k
i

Models Frozen CLAP language encoder εL(·)
Frozen CLAP audio encoder εA(·)

Conditional U-Net audio source separation model fθ(·)
Conditional U-Net mask model gθ(·)

Operators/Functions Magnitude function | · |
Phase function ϕ(·)

Short Term Fourier Transform S(·)
Softmax function with temperature parameter τ ζτ (·)

Audio-language Cosine Similarity cikjt
L1 loss ∥ · ∥ℓ1

Hadamard product ⊙
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B THE NOTATION GLOSSARY

Table 1 presents the glossary of all notations used in the paper. We have divided the notations into
four groups: scalars, vectors/matrices, models, and operators/functions.

C THE PROPOSED ARCHITECTURE

C.1 THE LANGUAGE-CONDITIONAL U-NET

To extract rich features for faithful reconstruction of the audio sources conditioned on the input
prompt, we propose an enhanced conditional U-Net architecture. Our U-Net model operates on the
magnitude spectrum of input mixtures, and estimates the segmentation mask for the corresponding
source(s) based on conditional feature embedding. Prior works on conditional sound separation,
mostly used unconditional U-Net with post conditioning on final generated features from the U-
Net (Dong et al., 2022; Zhao et al., 2018). Some works (Gao & Grauman, 2019) used simple
conditional feature concatenation at the innermost layer of the U-Net. Since most of these methods
are primarily built for supervised separation, which is a much simpler problem, the vanilla U-Net
architecture is often sufficient. However, since post-conditioning methods cannot leverage the con-
ditional language features through the network, their performance can degrade significantly in the
unsupervised setting. To overcome this, we redesign the conditional U-Net architecture by intro-
ducing multi-scale cross attention conditioning on the intermediate feature maps of the U-Net. The
architecture is shown in Figure 2.

We incorporate three main building blocks into the proposed conditional U-Net: residual block
(ResBlock), self-attention (SA), and cross-attention (CA) modules. The residual block is used for
enhancing model capacity following He et al. (2016) at every scale of feature processing. For the
input x, the operation can be represented by,

x = x+ ConvBlock(x) (1)

where ConvBlock represents two successive convolutional layers. The self-attention and cross-
attention modules are designed using the multi-head attention (MHA) operations introduced
by (Vaswani et al., 2017). Self-attention re-calibrates the feature space before applying the con-
ditioning modulation. The self-attention operation for input x is given by,

x = x+ MHA(Q = x,K = x, V = x) (2)

where Q, K, V represent query, key, and values used in the MHA operation, respectively. In contrast,
cross-attention selectively filters the relevant features based on conditional features. For condition
embedding y with input x, the cross-attention mechanism is given by,

x = x+ MHA(Q = x,K = y, V = y) (3)

We divide the conditional U-Net model into two sub-networks: the Head network and the Modula-
tor network. The Head network operates on the fine-grain features of the higher signal resolutions
to generate coarse-grain features to be conditioned later by the language modality. Only ResBlocks
with traditional skip connections are used at each scale of the Head network. In contrast, the Mod-
ulator network applies the feature modulation based on the conditional language embedding. We
incorporate the self-attention and cross-attention operations in the skip connections of every Modu-
lator network layer. In total, the U-Net contains 7 layers of encoder and decoder. The Head network
contains top four layers of encoding and decoding, and the Modulator network contains the remain-
ing three layers. Table 2 shows the architectural details of each block in our enhanced conditional
U-Net.

C.2 THE INFERENCE PIPELINE

For the inference, we use the similar pipeline as baseline methods. As shown in Figure 1, the condi-
tional U-Net takes the input mixture and the language prompt (querying for the target source), and
generates the (soft) magnitude mask. The mask is applied on the mixture’s magnitude spectrogram,
while the phase is directly copied from the input.
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Table 2: Architectural details of proposed building blocks in the conditional U-Net model.

Block Type Parameters Values

Cross Attention Block
(CA)

No. of attention heads 8
No. of channels 512
Head dimension 64

Condition dimension 77x768
No. of linear layers in attention 4

Attention type Softmax
Normalization Layer LayerNorm

No. of linear layers in MLP 2
MLP intermediate channels 1024
MLP intermediate activation GeLU

Self Attention Block
(SA)

Num of attention heads 8
Channel dimension 512

Head dimension 64
No. of linear layers 4

Attention type Softmax
Normalization layer LayerNorm

No. of linear layers in MLP 2
MLP intermediate channels 1024
MLP intermediate activation GeLU

Residual Block
(ResBlock)

Conv kernel size (3, 3)
No. of convolutions 1
Normalization layer BatchNorm

Activation Leaky ReLU (th=0.2)
Channel expansion ratio 1

Encoder Downsampler
Module

Operator Strided Convolution
Kernel size 4x4

Strides 2x2
Channel expansion ratio 2

Decoder Upsampler
Module

Spatial upsampler Bilinear upsampling
Scale 2.0

Channel compressor Convolution
Channel compression ratio 2.0
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Figure 1: Inference pipeline for the proposed language conditional sound separation framework.

Figure 2: Proposed conditional U-Net architecture. We incorporate three building blocks: residual
block (ResBlock), self-attention (SA), and cross-attention (CA) blocks. The model is divided into
two modules: the head and the modulator. The head network operates on fine-grained features
and generates latent embedding. The modulator network modulates latent features based on cross-
attention conditioning.

D THE TRAINING DETAILS

All the models are trained for 50 epochs with initial learning rate of 0.001. The learning rate drops
by the factor of 0.1 after every 15 epochs. Adam optimizer (Kingma & Ba, 2014) is used with
β1 = 0.9, β2 = 0.999 and ϵ = 10−8 for backpropagation. All the training was carried out with 8
RTX-A6000 GPUs with 48GB memory. We validate the model after every training epoch. We use
the batch size of 32 for the MUSIC dataset, and batch size of 64 for the VGGSound and AudioCaps
datasets. We reproduce all baselines under the same settings. PyTorch library (Paszke et al., 2019)
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Algorithm 1 The Proposed Weakly Supervised Training for Audio Source Separation

Input: Dataset D = {Mi, Ti}Pi=1, Single source text prompts {T k
i }Kk=1, K: # of sources per

mixture, masking U-Net gθ, Pre-trained joined embedding encoders (εL, εA).
Require: Initialize weights of gθ, keep pre-trained joint embedding encoders (εL, εA) frozen.

1: for t ∈ [1, T ] do ▷ T: Training iteration
2: Sample N Mixture with text prompts {Mn, Tn}Nn=1 ∈ D ▷ Batch size← N
3: for n ∈ [1, N ] do
4: Sample another mixture {Mm, Tm} ▷ No single sound source overlaps inMn ,Mm

5: Prepare MoMM′ ←Mn +Mm

6: Predict M̂n ← fθ(M′, Tn)
7: Predict M̂m ← fθ(M′, Tm)

8: Compute LURL(M; θ) with (Mn,M̂n;Mm,M̂n) using equation 2
9: for k ∈ [1,K] do

10: Compute single source sound Ŝkn ← fθ(Mn, T k
n )

11: Compute single source sound Ŝkm ← fθ(Mm, T k
m)

12: end for
13: Compute LCNT (M′, θ) with {Ŝkn, T k

n ; Ŝkm, T k
m}Kk=1 using equation 3 and equation 4

14: Reconstruct mixture M̃n ←
∑K

k=1 Ŝkn and M̃m ←
∑K

k=1 Ŝkm
15: Compute LCRL(M′, θ) with (Mn, M̃n;Mm,M̃m) using equation 5
16: end for
17: Compute total loss LTWL using LURL, LCRL, and LCNT for all N mixtures
18: Back-propagate ∇LTWL and update weights of gθ
19: end for

is used to implement all the models. The complete training algorithm of the proposed framework is
illustrated in Algorithm 1.

Furthermore, in Figure 3, we have visualized the detailed loss curves over the training course of
the proposed weakly supervised training (Fig. 3a) and its semi-supervised flavor (Fig. 3b). We have
combined both unsupervised reconstruction loss LURL and consistency reconstruction loss (LCRL)
in the reconstruction loss plot. For further analysis of the loss components as well as their weight
hyper-parameter tuning details, please refer to Appendix G.2.

E DATASET PREPARATION

E.1 DATASETS DESCRIPTION

MUSIC Dataset Following prior works, we experiment with MUSIC dataset (Zhao et al., 2018)
for musical instrument separation task. Instead of using the original 11 instrument datasets, we use
its extended version of MUSIC-21 containing around 1, 200 videos from 21 musical instruments.
Since some videos are not available, our aggregated version contains 1, 086 videos in total. The
video duration ranges 1 ∼ 5 minutes. We extract audios and class labels annotations from each
video. We use 80% videos of each classes for training and the remaining for testing. For training,
we randomly sample around 6s duration segments from each audio, while for testing, we prepare
non-overlapping samples from the whole length audio. The dataset only contains sounds of single-
source musical instruments. To use this datset for unsupervised training, we create synthetic training
mixtures by sampling different combinations of K single source sounds. Text prompts are then
generated using the class labels of the single source sounds. We use the common template for
representing the single and multi-source language condition prompts, as presented in Table 4.

VGGSound Dataset VGGSound (Chen et al., 2020) is a large-scale environmental sound datasets
containing more than 190, 000 videos from 309 classes. Since many corresponding videos are not
available in YouTube, our aggregated subset contains 175, 599 videos. We use the official train
and test split of VGGSound that contains 162, 199 training videos and 13, 398 test videos. Every
video contains an audio, mostly with a single source. Each video duration is 10s that contains single
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(a) Weakly supervised training

(b) Semi-supervised training

Figure 3: Visualization of loss curves over training epochs in proposed (a) weakly supervised train-
ing, and (b) semi-supervised training.
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source audio collected from different environments corrupted by natural noise. The sounding event
duration varies from 1 ∼ 10s. Because of that, we use the full-length audio samples in VGGSound
for our experiments. In order to use VGGSound for the unsupervised learning scenario, we mix
K random single source samples for each training mixture. The corresponding text prompts are
generated using the class labels of the the sounding sources in the mixture, similar to Table 4.

AudioCaps Dataset AudioCaps (Kim et al., 2019) contains around 50, 000 natural sound mix-
tures of 10s duration each. It also includes the complete captions of the prominent sources in each
mixture. We use the official train and test splits that contain 45, 182 and 4, 110 mixtures, respec-
tively. In general, each mixture contains 1 ∼ 6 single source components. To cover all sounding
events included in the text caption, we use full-length audios of 10s. We use Constituent-Tree li-
brary (Halvani, 2023) to extract fine-grain phrases representing each sounding source from the full
caption. We initially extract several sentence and noun phrases, then perform simple post-processing
on them to eliminate the overlapping phrases. Some examples of extracted phrases from the full cap-
tions are given in Table 3. To handle different number of mixture components, we sample a fixed
number of phrases from each caption. In case there are not enough sounding phrases in the text
prompt, we re-sample some of the phrases, and introduce weighted reconstruction to ensure proper
reconstruction of the mixture.

AudioCaps is primarily used to measure training performance on natural mixtures containing diverse
sounding events, as opposed to synthetic mixtures. However, to evaluate the performance of the
model, we prepare synthetic mixture-of-mixtures by combining two mixtures from the AudioCaps
test set. At the test time, the model is queried with one full-length caption representing one of the
mixtures in synthetic MoM, and evaluated using the corresponding mixture.

E.2 DATA PREPROCESSING PIPELINE

We use the sampling rate of 11kHz for audio samples in all datasets. Only mono-channel audio
is used. The audio clip length is chosen to be 65, 535 for MUSIC dataset, and 110, 000 for the
AudioCaps and VGGSound datasets. Since AudioCaps and VGGSound datasets are noisy, and
usually contain sounding regions on small portion of 10s duration, we use full length audio samples
for these two datasets. For the MUSIC dataset, we extract consecutive 65, 535 segments from the
complete duration of the samples representing 6s audio. We compute the spectrogram for each
sample using short-term Fourier transform (STFT) with a window size of 1024, a filter length of
1024, and a hop size of 256.

The CLAP model is pre-trained with 10s duration audios of 48KHz sampling rate and has different
pre-processing pipeline than ours. To integrate the pretrained CLAP model in our training pipeline,
we initially reconstruct the sound waveform from the predicted spectrogram. For audio samples
extracted from MUSIC dataset that contains 6s duration segments, we repeat the waveform to extract
equivalent 10s duration of audios. Then, the audio waveform is resampled with 48KHz sampling
rate. We use Torchaudio package (Yang et al., 2022) to process predicted audio samples in the
training loop. To estimate the contrastive loss (LCNT ) with the CLAP model, we follow the same
pipeline of CLAP with the pretrained temperature value for τ . We note that the CLAP model is
kept frozen throughout the entire training, as it is only used to generate weak supervision. For
text conditioning signals, instead of the projected mean-pooled token representation of language
prompts, we use the complete language embedding of dimension (77×768) representing 77 tokens,
generated by the CLAP language encoder.

F EVALUATION METRICS

We use three evaluation metrics in our experiments: SDR, SIR, and SAR. Here, we provide the
detailed equations as well as the explanation of each metric. We note that a predicted sound Spred
can be represented as a combination of the true sound Strue, the interference of other sources in
the mixture Einterf , and the artifacts generated during reconstruction Eartifact; that is, Spred =
Strue + Einterf + Enoise + Eartifact. According to Vincent et al. (2006), these evaluation metrics
are described as follows:
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Table 3: Examples of some extracted phrases from full-length AudioCaps (Kim et al., 2019) cap-
tions.

Complete Audio Captions Extracted Phrases
A young female speaks, followed by spraying

and a female screaming
A young female speaks. Spraying

and a female screaming

Motor noise is followed by a horn honking
and a siren wailing

Motor noise. A horn honking.
A siren wailing.

Rustling occurs, ducks quack and water splashes,
followed by an adult female and adult male

speaking and duck calls being blown

Rustling occurs. Ducks quack and water
splashes. An adult female and adult male

speaking. Duck calls being blown.

An audience gives applause as a man yells
and a group sings

An audience gives applause.
A man yells. A group sings.

A man speaks over intermittent
keyboard taps

A man speaks.
Intermittent keyboard taps.

An airplane engine runs An airplane engine.

Signal-to-Distortion Ratio (SDR): SDR is the primary metric used for evaluating sound sep-
aration performance in most prior work. It represents the overall measure of the sound quality
considering all kinds of distortions. It is given by

SDR = 10 log10
∥Strue∥2

∥Einterf + Enoise + Eartifact∥2
(4)

Signal-to-Interference Ratio (SIR): SIR is also widely used evaluation metric in sound sepa-
ration. It represents the ”leakage” or ”bleed” from other sounding sources in the mixture to the
predicted sound. SIR measures the quality of the predicted sound considering the amount of cross-
interference from other sources. It is given by

SIR = 10 log10
∥Strue∥2

∥Einterf∥2
(5)

Signal-to-Artifact Ratio (SAR): SAR is mostly used to measure how realistic the predicted sound
is. It measures the amount of synthetic artifacts present in the predicted audio. Without any separa-
tion applied, the original mixture usually have very high SAR, as it does not contain that many of
artifacts. However, as the model learns to separate single source components from the mixture, it is
expected to introduce more artifacts.

SAR = 10 log10
∥Strue + Einterf + Enoise∥2

∥Eartifact∥2
(6)

In order to calculate these metrics, we have used the Python package torch-mir-eval (Montesinos,
2021) which is the Pytorch implementation of mir-eval (Raffel et al., 2014).

Table 4: Text query templates with examples for single and synthetic multi-source sounds

Source Query Template Example
Single Source The sound of {source} The sound of guitar.
Multi-Source

(2-Source)
The sound mixture of

{source-1} and {source-2}
The sound mixture of guitar

and piano.
Multi-Source

(3-Source)
The sound mixture of

{source-1}, {source-2}, and {source-3}
The sound mixture of guitar,

piano, and violin.
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Figure 4: Test metric plots during training with two-source mixtures on MUSIC dataset. We use
CLIPSep as the mix-and-separate baseline method. Our proposed method achieves significant im-
provement in terms of SDR and SIR by largely reducing noise and cross-interference in predictions,
respectively. As the model tries to learn to separate single-source sounds, some artifacts are intro-
duced, which in turn result in low SAR value in the early stages of training. However, most of these
artifacts get removed over the course of training which in turn causes SAR to increase to the same
level as the baseline method by the end of training. In other words, by the end of training, both our
method and the baseline produce audio samples with reasonable quality regardless of their separa-
tion performance.

Table 5: Ablation on three building blocks of proposed conditional U-Net architecture: ResBlock,
self-attention (SA), and cross-attention(CA). The vanilla U-Net contains single convolutional layer
instead of ResBlock, and simple skip connections instead of attention modules. Test SDR on 2-
source mixture is reported for various single and multi-source training scenarios on MUSIC dataset.
For the single source training, simple mix-and-separate based on CLAPSep is used. For the multi-
source training, proposed weakly supervised training is used. All three blocks contribute to consid-
erable performance gain mostly in challenging multi-source scenarios. Bold and blue represents the
best and second best performance in each group, respectively.

ResBlock SA CA Total Params (M) Single Source 2-Source 3-Source 4-Source
30.7M 7.4 6.7 5.8 4.9
37.4M 7.7 7.1 6.3 5.5
44.7M 7.8 7.3 6.5 5.7
36.6M 7.6 6.9 6.1 5.3
42.9M 7.5 6.8 5.9 5.1
74.3M 7.6 6.9 6.1 5.2

118.8M 7.1 6.4 5.6 5.0
43.7M 7.9 7.4 6.7 5.8
57.7M 7.9 7.2 6.6 5.9
81.4M 8.1 7.9 7.1 6.2

G ADDITIONAL EXPERIMENTAL STUDIES

In this section, we present additional experimental ablation studies for a deeper analysis of the
proposed framework compared to the state-of-the-art baseline methods as well as some of our design
choices.

G.1 ABLATION STUDY ON CONDITIONAL U-NET ARCHITECTURE

We have studied the contribution of all three building blocks in the proposed conditional U-Net
architecture. We have experimented with both supervised and unsupervised training settings on
the MUSIC dataset. The test set contains 2-source mixtures as before. The baseline vanilla U-Net
contains single convolutional layer instead of ResBlock, and direct skip connections instead of self-
attention and cross-attention modules. The results are given in Table 5. Utilizing all three building
blocks results in +0.7, +1.2, +1.3, and +1.3 SDR improvements on single source, 2-source, 3-
source, and 4-source training settings, respectively. We note that the performance improvements are
comparatively higher in the challenging unsupervised setting compared to the supervised setting.
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Table 6: Ablation on loss components of proposed weakly supervised training method with multi-
source training mixtures from the MUSIC dataset. Test SDR on 2-source mixtures is reported for all
cases. Unsupervised reconstruction loss (LURL) underperforms in higher mixtures due to the lack
of fine-grain supervision. Contrastive loss (LCNT ), on the other hand, produces weak supervision
that performs the best combined with proposed consistency reconstruction loss (LCRL). Combining
all three loss components achieves significant performance improvements. Bold and blue represents
the best and second best performance in each group, respectively.

LURL LCNT LCRL 2-Source 3-Source 4-Source

5.5 4.3 3.5
4.9 2.8 1.7
2.4 1.3 0.6
6.8 5.9 5.3
7.9 7.1 6.2

Table 7: Ablation study on loss weights with proposed weakly supervised and semi-supervised
learning. For the weakly supervised training, 2-source mixtures from the (a) MUSIC dataset, (b)
VGGSound dataset, and (c) natural mixtures from the AudioCaps dataset are used. (d) For the semi-
supervised training, 5% single-source and 95% 2-source mixtures are used. Test SDR on 2-source
mixture separation is reported. Bold and blue represents the best and second best performance in
each group, respectively.

(a) Weakly supervised training on MUSIC

α(LCNT) β(LCRL) γ(LURL) SDR
0.1 5 5 7.7
0.1 5 10 7.9
0.1 5 15 7.7
0.2 5 10 7.8
0.1 10 10 7.6

(b) Weakly supervised training on VGGSound

α(LCNT) β(LCRL) γ(LURL) SDR
0.2 0.5 10 2.0
0.2 1 10 2.1
0.2 2 10 2.2
0.1 5 15 1.9
0.3 5 5 1.7

(c) Weakly supervised training on AudioCaps

α(LCNT) β(LCRL) γ(LURL) SDR
0.2 0.5 10 2.8
0.2 1 10 2.9
0.2 2 10 2.7
0.1 5 15 2.5
0.3 5 5 2.4

(d) Semi-supervised training on MUSIC

λs(LURL) λu(LTWL) SDR
5 0.5 8.5
5 1 8.8
5 2 8.6

2.5 1 8.7
0.5 1 8.2

Since unsupervised training is mostly guided by weak supervision generated by the bi-modal CLAP
model, we hypothesize that the multi-scale feature modulation based on conditional embedding
becomes more critical in such cases.

Note that the increased number of parameters by the way of adding new blocks can be seen as
the major contributor to the performance gain. To control for this effect, in some of the ablation
scenarios, we have inserted the target block(s) twice in a row merely to increase the capacity of
the model (shown by in Table 5). As the results show, while increasing the number of model’s
parameters contributes to the performance gain, it is not the major driver. In fact, some of our
smaller candidates beat the larger ones by simply incorporating a new block type. This shows that
our proposed blocks encode important inductive bias for our problem which can boost the model
performance without overfitting.

Furthermore, for a fair comparison with the baseline methods, we have reproduced most of the prior
work with our improved U-Net architecture, as shown in Table 1 and 10. We observe consistent
improvements of performance by leveraging our modified U-Net. Nonetheless, the improved U-Net
architecture increases computational burden in general, but the proposed weakly supervised training
can still be applied in resource constrained scenarios by simply using the vanilla U-Net architecture.
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G.2 EFFECTS OF DIFFERENT LOSS COMPONENTS

We have also studied the effects of different loss components in the proposed framework under the
challenging unsupervised settings, as shown in Table 6. By only using the unsupervised reconstruc-
tion loss (LURL), we get sub-optimal performance due to the training and test distribution shift. On
the other hand, the contrastive loss by itself (LCNT ) results in performance drops with significant
spectral loss due to the lack of fine-grain supervision to reconstruct the target signal. Similarly, the
consistency reconstruction loss(LCRL) by itself suffers from convergence issues due to the lack of
any supervision to encourage the model for conditional single source separation. In other words,
since the final reconstruction administered by the consistency reconstruction loss (LCRL) greatly
depends on the quality of single-source predictions, a significant performance drop is inevitable
without using any single-source supervision. However, by combining LCNT and LCRL, we achieve
+1.3, +1.6, and +1.8 SDR improvements over the LURL-only scenario for 2-source, 3-source, and
4-source training settings, respectively. Furthermore, by combining all three losses, we achieve sig-
nificant performance improvements of +2.4, +2.8, +2.7 SDR over the LURL-only approach for
2-source, 3-source, and 4-source training settings, respectively.

In addition to the elimination study of different loss terms, we have performed an ablation study on
2-component mixtures from the MUSIC and VGGSound datasets, as well as on natural mixtures
of AudioCaps dataset, to find the optimal relative weights of these components (i.e. α, β, and γ in
equation 6). Table 7(a), 7(b), and 7(c) shows these results. It is interesting to observe that, in the
optimal setting, LCNT is weighed two orders of magnitude less than LURL, which suggests that the
weak-supervision mechanism in our framework acts as an effective regularizer while the backprop-
agated supervision signal is mostly dominated by the reconstruction error. And yet this relatively
small regularization effect makes a significant improvement to the final performance of the model
during inference. Moreover, VGGSound, and AudioCaps dataset contain significant amount of envi-
ronmental noises that result in noisy training particularly with the consistency reconstruction losses.
As a result, the corresponding weight γ of the consistency reconstruction loss LCRL is relatively
reduced in VGGSound and AudioCaps dataset, while LCNT coefficient α is slightly increased for
the best performance. Similar study has been performed to find the optimal relative weights of the
supervised and weakly-supervised components for the semi-supervised loss (LSSL) (i.e. λs and λu

in equation 7). The results are summarized in Table 7(b).

G.3 ANALYSIS OF EVALUATION METRICS FOR UNSUPERVISED TRAINING

The metric plots in Figure 4 demonstrate comparative analysis of the evaluation metric curves during
the unsupervised (2-source) training. To represent the baseline mix-and-separate framework, we
have used the CLIPSep (Dong et al., 2022) method. The mix-and-separate baseline attempts to
extract the single-source components from the mixture without having any supervision on single-
source predictions during training; this results in large noise and cross-interference. In contrast,
our proposed weakly-supervised method significantly reduces noise and cross-interference during
unsupervised training by leveraging weak supervision through the language modality, and results
in a much higher SDR (Figure 4(a) and SIR(Figure 4(b), respectively. However, separating single-
source components is susceptible to producing artifacts that cause lower SAR in the early stages of
training, as shown in Figure 4(c). Nevertheless, as the training continues, such artifacts are largely
eliminated which subsequently improves SAR. In general, SAR represents an style metric measuring
the amounts of artifacts presents in audio. Also note that SAR can be quite high even for an audio
mixture that doesn’t contain any artifact. Initial drops of SAR followed by subsequent improvements
demonstrate that our proposed method attempts to learn to extract single-source components from
the very early stages of training.

G.4 PERFORMANCE COMPARISON ON ADDITIONAL DATASETS

We have also conducted additional comparisons between the proposed method and other baselines
on VGGSound (Chen et al., 2020), and AudioCaps (Kim et al., 2019) datasets. Both datasets contain
a large variety of sounding source categories as well as significant environmental noise types that
make the single-source separation task particularly challenging. For a fair comparison, we have
reproduced all the baselines under the same setting. Moreover, we have replaced the vanilla U-Net
with our improved U-Net in most baselines.
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Table 8: Performance comparison on VGGSound Dataset under supervised and unsupervised train-
ing scenarios. Same test set of 2-Source separation is used for all cases. All methods are reproduced
under the same setting. * denotes implementation with our improved U-Net model. Our proposed
method largely closes the performance gap between supervised and unsupervised settings. Bold and
blue represents the best and second best performance in each group, respectively.

Method Single-Source
(Supervised)

Multi-Source (Unsupervised)
2-Source 3-Source

Unconditional
PIT* (Yu et al., 2017) 2.1 ± 0.33 - -
MixIT (Wisdom et al., 2020) - -1.7 ± 0.44 -2.9 ± 0.51

MixPIT (Karamatlı & Kırbız, 2022) - -1.4 ± 0.51 -3.1 ± 0.39

Image Conditional
CLIPSep-Img (Dong et al., 2022) 1.3 ± 0.34 -0.5 ± 0.27 -1.2 ± 0.35

CLIPSep-Img* (Dong et al., 2022) 1.7 ± 0.36 0.4 ± 0.31 -0.6 ± 0.28

SOP* (Zhao et al., 2018) 1.6 ± 0.23 0.3 ± 0.41 -0.9 ± 0.26

Language Conditional
CLIPSep-Text (Dong et al., 2022) 2.1 ± 0.26 0.8 ± 0.31 -0.1 ± 0.27

CLIPSep-Text* (Dong et al., 2022) 2.5 ± 0.29 1.2 ± 0.44 0.5 ± 0.38

BertSep* 2.0 ± 0.27 0.7 ± 0.31 0.3 ± 0.22

CLAPSep* 2.3 ± 0.32 1.1 ± 0.36 0.5 ± 0.28

LASS-Net (Liu et al., 2022) 2.2 ± 0.31 0.9 ± 0.28 0.2 ± 0.29

Weak-Sup (Pishdadian et al., 2020) - 0.6 ± 0.39 -0.8 ± 0.33

Proposed Framework - 2.2 ± 0.35 1.7 ± 0.39

Table 9: Performance comparison on AudioCaps Dataset representing natural multi-source mixture
training. Same test set of 2-Mixture separation is used for all cases. All methods are reproduced
under the same setting. * denotes implementation with our improved U-Net model. Our proposed
method significantly improves the performance over the baselines. Bold and blue represents the best
and second best performance in each group, respectively.

Method Test SDR
Image Conditional
CLIPSep-Image (Dong et al., 2022) -0.7 ± 0.47

CLIPSep-Image* (Dong et al., 2022) 0.4 ± 0.33

SOP* (Zhao et al., 2018) 0.2 ± 0.25

Language Conditional
CLIPSep-Text (Dong et al., 2022) 0.7 ± 0.36

CLIPSep-Text* (Dong et al., 2022) 1.3 ± 0.31

BertSep* 0.9 ± 0.29

CLAPSep* 1.2 ± 0.41

LASS-Net (Liu et al., 2022) 0.8 ± 0.38

Proposed Framework 2.9 ± 0.35
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Table 10: SDR comparison on 3-source separation test set form the MUSIC Dataset under super-
vised and unsupervised training scenarios. All methods are reproduced under the same setting. *
denotes implementation with our improved U-Net model. Bold and blue represents the best and
second best performance in each group, respectively.

Method Single-Source
(Supervised)

Multi-Source (Unsupervised)
2-Source 3-Source 4-Source

Unconditional
PIT* (Yu et al., 2017) 2.3 ± 0.26 - - -
MixIT (Wisdom et al., 2020) - -2.3 ± 0.34 -3.1 ± 0.57 -4.2 ± 0.35

MixPIT (Karamatlı & Kırbız, 2022) - -1.9 ± 0.46 -2.8 ± 0.41 -3.9 ± 0.35

Image Conditional
CLIPSep-Img (Dong et al., 2022) 0.7 ± 0.25 -0.8 ± 0.27 -1.7 ± 0.35 -2.9 ± 0.32

CLIPSep-Img* (Dong et al., 2022) 1.6 ± 0.22 0.1 ± 0.31 -0.9 ± 0.28 -1.8 ± 0.43

CoSep* (Gao & Grauman, 2019) 1.8 ± 0.28 0.4 ± 0.37 -0.2 ± 0.29 -0.7 ± 0.36

SOP* (Zhao et al., 2018) 1.3 ± 0.23 -0.5 ± 0.41 -1.6 ± 0.26 -2.6 ± 0.42

Language Conditional
CLIPSep-Text (Dong et al., 2022) 1.8 ± 0.21 -0.2 ± 0.35 -1.1 ± 0.27 -2.1 ± 0.45

CLIPSep-Text* (Dong et al., 2022) 2.4 ± 0.27 0.9 ± 0.41 0.3 ± 0.32 -0.4 ± 0.41

BertSep* 1.9 ± 0.27 0.4 ± 0.31 -0.2 ± 0.22 -1.1 ± 0.27

CLAPSep* 2.2 ± 0.31 0.6 ± 0.36 0.1 ± 0.28 -0.8 ± 0.33

LASS-Net (Liu et al., 2022) 2.1 ± 0.25 0.5 ± 0.26 0.3 ± 0.29 -0.9 ± 0.36

Weak-Sup (Pishdadian et al., 2020) - -1.1 ± 0.47 -2.3 ± 0.38 -3.2 ± 0.33

Proposed - 3.5 ± 0.35 2.7 ± 0.42 2.2 ± 0.38

Comparisons on VGGSound: We have conducted performance comparison on VGGSound
dataset under supervised and unsupervised with synthetic, 2- & 3-source mixtures training sce-
narios, as shown in Table 8. We observe unconditional methods suffer from convergence issues
during unsupervised training that results in significant performance drops. Conditional methods,
on the other hand, achieve considerably higher performance in general compared to their uncon-
ditional counterparts. Since the dataset contains variable length of sounding events with large
amount of noise components, image-conditional methods in general achieves lower SDR compared
to language-conditional methods. However, we observe our method achieves 88%, 68% of the su-
pervised method’s performance on 2-source separation test set in 2-source and 3-source training
scenarios, respectively. Furthermore, we achieve 1.83x, and 3.4x SDR improvements over the sec-
ond best method in 2-source and 3-source training scenarios, respectively, while using the same
model architecture.

Comparisons on AudioCaps: AudioCaps contains natural mixtures with 1 ∼ 6 single source
components in each mixture which makes the separation task particularly challenging. To test on
AudioCaps, we prepare a synthetic mixture-of-mixtures (MoM) test set by mixing random mixture
pairs. Table 9 shows the comparison results. Due to severe convergence issues in unconditional
methods, we only present comparisons for image and language conditional methods. Since the au-
dio contains variable number of sounding sources with different durations, it becomes increasingly
difficult to condition with images compared to text prompts which results in lower SDR for image
conditional baselines. Nonetheless, our proposed method achieves superior performance outper-
forming the second highest baseline by achieving 2.3x SDR improvement under the same setting.

G.5 COMPARISONS ON HIGHER ORDER MIXTURE TEST SETS

So far, we have shown all performance comparisons on a common test set of 2-source mixtures.
Here, we present the same comparisons on more challenging test mixtures containing combinations
of three single source components from the MUSIC dataset. The results are reported in Table 10. In
general, we observe significant performance drops compared to 2-source test setting for all methods
including ours. In particular, the mix-and-separate-based baselines suffer from 62.5% SDR drop
in the supervised setting in the 2-source mixture training scenario. Interestingly, our weakly su-
pervised approach outperforms the supervised method achieving 1.5x and 1.1x higher SDR on the
3-source test set when trained on 2-source, and 3-source mixtures, respectively. This result reveals
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Table 11: Ablation on the effect of CLAP-constraint in supervised single-source training. Same test
set of 2-Source separation is used for all cases. All methods are reproduced under the same setting.
* denotes implementation with our improved U-Net model. Bi-modal semantic CLAP constraint
introduces additional regularization in supervised training, which results in notable performance
improvement. Bold and blue represents the best and second best performance in each group, respec-
tively.

Method MUSIC Dataset VGGSound Dataset
w/o CLAP w/ CLAP w/o CLAP w/ CLAP

CLIPSep-Text (Dong et al., 2022) 7.7 ± 0.21 8.2 ± 0.32 2.1 ± 0.26 2.5 ± 0.31

CLIPSep-Text* (Dong et al., 2022) 8.3 ± 0.27 8.8 ± 0.41 2.5 ± 0.29 2.9 ± 0.44

BertSep* 7.9 ± 0.27 8.3 ± 0.35 2.0 ± 0.27 2.5 ± 0.31

CLAPSep* 8.1 ± 0.31 8.7 ± 0.34 2.3 ± 0.32 2.8 ± 0.31

a key feature of our framework that is consistent with our observations through our other ablation
studies; namely, the weak supervision proposed in our framework acts as an effective regularization
mechanism, that can significantly improve the model’s generalization, especially when we test it on
the 3-source mixture set. In other words, the supervised method tends to overfit to the separation
task on its training distribution, and that is why it experiences larger performance drop when the
test distribution shifts. Whereas, in our framework, due to the inherent regularization properties of
the weak supervision mechanism, the performance drop is less dramatic when the test distribution
shifts.

G.6 EFFECT OF BI-MODAL CLAP CONSTRAINT ON SUPERVISED TRAINING

Apart from using bi-modal CLAP constraint as weak-supervision for multi-source (unsupervised)
training, we study its impact on single source (supervised) training on the baseline methods. In
particular, we add the bi-modal semantic CLAP-constraint in the form LCNT loss to the mix-and-
separate LURL loss, while training using supervised single-source samples from the MUSIC and
VGGSound datasets. The results are reported in Table 11. As the results show, there is a consis-
tent SDR improvement across the board when we incorporate the CLAP constraint in supervised
learning, even though, intuitively speaking, the weak supervision obtained from LCNT should be
impertinent in the presence of the strong supervision signal coming from the supervised loss. We
hypothesize that the integration of CLAP constraint here introduces additional regularization to su-
pervised training by transferring the knowledge obtained through CLAP’s large-scale pre-training
to the problem of audio source separation. This result further shows that our proposed framework
not only boost the separation quality in unsupervised and semi-supervised training scenarios, it can
also help the supervised training itself by introducing extra cross-domain regularization.

G.7 ADDITIONAL COMPARISONS FOR SEMI-SUPERVISED TRAINING

Table 12 depicts additional performance comparisons between supervised training on single source
sounds, unsupervised training on multi-source mixture sounds, and proposed semi-supervised train-
ing on both single-source and multi-source mixture sounds. We split the MUSIC training dataset
with different ratios for single-source and multi-source training as mentioned before. Multi-source
mixtures are composed of two single-source components here. In general, semi-supervised training
significantly outperforms both supervised and unsupervised training. With the increase in single
source data portion, we note the performance improves in general. Similarly, unsupervised perfor-
mance on multi-source mixtures also depend on available training data. Also note that the unsu-
pervised performance with different splits of training data largely closes the performance gap in
comparison with single-source supervised training, which is consistent with our prior observations.
More notably, however, by combining both single-source and multi-source training mixtures in the
proposed semi-supervised learning framework, we achieve considerable performance improvement
compared to 100% supervised performance reaching 9.5 SDR, which is 28% higher than the 100%
scenario for the supervised baseline. This result, again, suggests the regularization effects of the pro-
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Table 12: Performance comparisons between supervised, unsupervised, and semi-supervised set-
tings using both single source and multi source (2-source) training data from the MUSIC dataset.
Test SDR on 2-source mixtures is reported. x% of training data is used for single-source super-
vised training, while (1 − x)% of data is used for multi-source weakly-supervised training with
synthetic mixtures. CLAPSep is used for supervised training, while our proposed weakly super-
vised training is applied for the multi-source data. Lastly, the semi-supervised training is applied
on the combination of single source and multi-source data. Semi-supervised learning consistently
achieves better performance in all data splits. Training on single-source, multi-source, and joint
single- and multi-source data are referred as “Supervised”, “Unsupervised”, and “Semi-supervised”
method, respectively. Bold and blue represents the best and second best performance in each group,
respectively.

Single Source
Split

Two Source
Split

SDR Performance
Supervised Unsupervised Semi-Supervised

- 100% - 7.9 -
5% 95% 2.6 7.6 8.8
10% 90% 3.9 7.4 8.9
25% 75% 5.3 7.1 9.2
50% 50% 6.6 6.2 9.4
75% 25% 7.4 4.9 9.5

100% - 8.1 - -

Table 13: The effects of prompt tuning for our proposed framework. We use the 2-source training
mixtures from MUSIC dataset. Test SDR on 2-source mixtures is reported. We initially separate
several full length single source audio samples from each category for training learnable prompts.
Bold and blue represents the best and second best performance in each group, respectively.

(a) Ablation study on learnable prompt length with number of
training audio samples per category. Each full-length audio
represents a single source audio. We extract several overlap-
ping frames from audio samples to train the learnable text
prompts.

Prompt Length #Audios/Category Test SDR

8
1 8.1
2 8.4
5 8.6

16
1 8.2
2 8.5
5 8.7

32
1 8.0
2 8.6
5 8.8

(b) Comparison between the learnable and
the template-based prompts.

Prompt Type Test SDR
Template-based 7.9

Learnable 8.8
OCT (Tzinis et al., 2023) 8.7

OCT++ (Tzinis et al., 2023) 9.0

posed framework which can significantly reduce the reliance on single-source data and supervised
training for conditional sound separation.

G.8 EFFECTS OF PROMPT TUNING FOR THE CLAP MODEL

We primarily use the bi-modal CLAP model to generate weak supervision for single-source sepa-
ration from the corresponding language entity. Since the CLAP model is trained on large corpora
of audio-language pairs, it can effectively generate weak supervision signals for a target dataset
based on hand-crafted language prompts. We have studied the performance impacts of the CLAP
model customization on a target dataset by tuning language prompts with few-shot single-source
reference audio samples. The results are given in Table 13. For this experiment, first we separate
few samples of full-length single-source audio samples for each category to incorporate learnable
language prompts instead of the template-based ones. We then randomly sample single-source audio
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Table 14: Subjective evaluation performance analysis. * denotes implementation with our improved
U-Net model. Bold and blue represent best and second best performance, respectively.

Training Data Method Correct (%) ↑ Wrong (%) ↓ Both (%) ↓ None (%) ↓
Supervised CLIPSep-Text* (Dong et al., 2022) 71.1 0.9 26.9 1.1

Unsupervised CLIPSep-Text* (Dong et al., 2022) 30.4 20.5 40.6 8.5
Proposed Framework 68.9 1.5 27.4 2.2

Semi-supervised Proposed Framework 82.6 0.4 16.2 0.8

segments from a hold-out dataset to train learnable language prompts. By learning such prompts,
we can customize the CLAP model for our target dataset to generate more informative supervision
signal. In Table 13a, we report the effects of the prompt lengths as well as the number of full-length
audio samples per category on the 2-Source test set using the proposed weakly supervised training
on 2-source mixtures. By using 5-shot single-source audio samples per category and the prompt
length of 32, we achieve around 12% SDR improvement compared to the template-based prompts
(Table 13b).

Apart from the text-based prompt tuning using CLAP model, our proposed framework can also
integrate heterogeneous prompting with other cues of the target source. Following Tzinis et al.
(2023), we experiment with heterogeneous training conditions, such as text description, signal en-
ergy, and harmonicity of the target sound for source separation. We use the hold-out single source
samples (5/Category) for each category to estimate the additional cues for prompting target sounds
in mixtures. The baseline OCT method performs on-par with our learnable text prompting technique
(8.7 vs. 8.8). We note that OCT with the embedding refinement approach (OCT++) achieves the
best performance of 9.0 SDR. Hence, our proposed framework can effectively integrate advanced
prompting techniques to separate the target sounds from the mixture.

H SUBJECTIVE EVALUATION

We conduct a subjective human evaluation to compare different models’ performances based on
human perception. Following prior work (Zhao et al., 2018; Dong et al., 2022), we have randomly
sampled separated sounds from 2-source mixtures and presented them to the evaluators, who are
then asked “Which sound do you hear? 1. A, 2.B, 3. Both, or 4. None of them”. Here, A and B are
replaced by the single-source sounding entities present in the input mixture, e.g. A. cat meowing,
B. pigeon, dove cooing. In Table 14, we present the percentages of predicted samples that are
correctly identified by the evaluator as the source class (Correct), which are incorrectly perceived
by the evaluator (Wrong), which contains audible sounds of both sources (Both), and which doesn’t
contain any of the target sounds (None). We use the same 30 sample predictions on 2−source
mixture test sets for comparing models trained with supervised single-source, unsupervised multi-
source, and semi-supervised single with multi-source data. 20 human evaluators have participated
in this evaluation. We use the CLIPSep (Dong et al., 2022) method as the competitive baseline of
the mix-and-separate framework with the text prompts.

As the results show, our proposed framework improves over the CLIPSep baseline’s correct percent-
age statistics of 30.4% in the unsupervised setting by more than twice, reaching 68.9% and almost
closing the gap with the performance of CLIPSep under the supervised regime (i.e. 71.1%). Further-
more, our framework’s performance under the semi-supervised training setup goes even beyond that
of the supervised setting by significantly reducing the number of under-separated instances from
26.9% to 16.2%, leading to 11.5% increase in correct percentage statistics to the total of 82.6%.
This result shows the efficacy of our weakly-supervised training strategy under both unsupervised
and semi-supervised training regimes. But more importantly, these results are consistent with our
quantitative evaluation results, which further corroborate our conclusions.

I QUALITATIVE COMPARISONS

In this appendix, we present qualitative comparisons between the proposed method and the mix-and-
separate approach represented by the CLIPSep Dong et al. (2022) framework under the unsupervised

16



Under review as a conference paper at ICLR 2024

training scenario. The MUSIC dataset is used for this analysis. The models are trained and tested
using 2-source mixtures. The results are given in Figure 5 - Figure 8. Due to the lack of single-source
supervision in the mix-and-separate approach, most of its predictions exhibit significant spectral
leakage, and large cross-interference. In contrast, our proposed method significantly reduces the
spectral loss and cross interference. Also, separation under challenging cases of spectral overlap
produces reasonable performance. These examples demonstrate the effectiveness of the proposed
weakly supervised training method in disentangling single-source audio components form the input
mixture.
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Figure 5: Qualitative comparisons between the proposed method and the mix-and-separate approach
(CLIPSep (Dong et al., 2022)): The input mixture contains piano (source 1) and violin(source 2)
sounds. For the lack of single source supervision in CLIPSep, large cross-interference is visible in
its prediction for the piano source . In contrast, our method significantly reduces cross-interference.

19



Under review as a conference paper at ICLR 2024

Figure 6: Qualitative comparisons between the proposed method and the mix-and-separate approach
(CLIPSep (Dong et al., 2022)): The input mixture contains accordion (source 1) and ukulele(source
2) sounds. For accordion sound separation, CLIPSep exhibits significant spectral loss, while for
ukulele sound separation, it shows cross-interference. However, our method largely reduces both
the spectral loss for accordion sound segmentation and the cross-interference for ukulele sound
segmentation.

20



Under review as a conference paper at ICLR 2024

Figure 7: Qualitative comparisons between the proposed method and the mix-and-separate ap-
proach (CLIPSep (Dong et al., 2022)): The input mixture contains xylophone (source 1) and ac-
cordion(source 2) sounds. CLIPSep can hardly differentiate between these two sources due to a
large spectral overlap. Our method, however, reasonably separates the two sounds despite showing
some spectral loss for the accordion prediction.
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Figure 8: Qualitative comparisons between the proposed method and the mix-and-separate approach
(CLIPSep (Dong et al., 2022)): The input mixture contains tuba (source 1) and congas(source 2)
sounds. CLIPSep cannot properly identify the tuba sound due to the lack of single source training.
Whereas, our method achieves considerable results in separating the tuba sound. nevertheless, some
spectral loss can be observed for the tuba sound separation, which is reasonable considering the
significant spectral overlaps of the two sounds.
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