
Published as a conference paper at ICLR 2025

LOCA: LOCATION-AWARE COSINE ADAPTATION FOR
PARAMETER-EFFICIENT FINE-TUNING

Zhekai Du†,‡∗, Yinjie Min⋄, Jingjing Li†B, Ke Lu†, Changliang Zou⋄, Liuhua Peng‡
Tingjin Chu‡, Mingming Gong‡,⋆
† University of Electronic Science and Technology of China ‡ The University of Melbourne
⋄ Nankai University ⋆ Mohamed bin Zayed University of Artificial Intelligence
{zhekaid, jjl, kel}@uestc.edu.cn, {nk.yjmin, nk.chlzou}@gmail.com
{liuhua.peng, tingjin.chu, mingming.gong}@unimelb.edu.au

ABSTRACT

Low-rank adaptation (LoRA) has become a prevalent method for adapting pre-
trained large language models to downstream tasks. However, the simple low-rank
decomposition form may constrain the hypothesis space. To address this limita-
tion, we introduce Location-aware Cosine Adaptation (LoCA), a novel frequency-
domain parameter-efficient fine-tuning method based on inverse Discrete Cosine
Transform (iDCT) with selective locations of learnable components. We begin
with a comprehensive theoretical comparison between frequency-domain and low-
rank decompositions for fine-tuning pre-trained large models. Our analysis reveals
that frequency-domain decomposition with carefully selected frequency compo-
nents can surpass the expressivity of traditional low-rank-based methods. Fur-
thermore, we demonstrate that iDCT offers a more efficient implementation com-
pared to inverse Discrete Fourier Transform (iDFT), allowing for better selection
and tuning of frequency components while maintaining equivalent expressivity to
the optimal iDFT-based adaptation. By employing finite-difference approxima-
tion to estimate gradients for discrete locations of learnable coefficients on the
DCT spectrum, LoCA dynamically selects the most informative frequency com-
ponents during training. Experiments on diverse language and vision fine-tuning
tasks demonstrate that LoCA offers enhanced parameter efficiency while main-
tains computational feasibility comparable to low-rank-based methods.

1 INTRODUCTION

Pre-trained large language models (LLMs) (Radford et al., 2019; Liu et al., 2019; Brown et al.,
2020) have shown strong capabilities in learning language knowledge and adapting to various natural
language processing (NLP) tasks through fine-tuning (FT). This FT paradigm has extended to vision
(Dosovitskiy et al., 2020; Liu et al., 2021) and multi-modal domains (Radford et al., 2021; Li et al.,
2022), leveraging the Transformer architecture (Vaswani et al., 2017). However, as models grow
larger, fine-tuning the entire model becomes too costly for practical use.

To address this challenge, various Parameter-Efficient Fine-Tuning (PEFT) methods (Houlsby et al.,
2019) have been developed. Adapter-based methods (Hu et al., 2023; He et al., 2021) insert small
trainable modules into Transformer layers. Prompt-based approaches (Lester et al., 2021; Wang
et al., 2023) prepend learnable vectors to input or hidden states. However, these methods often intro-
duce non-negligible inference overhead. Partial FT (Zaken et al., 2021; Xu et al., 2021) selectively
updates a subset of existing model parameters, but they still suffer from suboptimal performance
compared to full FT. To address these limitations, Low-Rank Adaptation (LoRA) (Hu et al., 2021)
offers an alternative by reparameterizing incremental updates of pre-trained weights using low-rank
decomposition. For a pre-trained weight matrix W0 ∈ Rp×q in an attention layer or a feed-forward
layer, LoRA reparameterizes fine-tuned weights asW ′ =W0+∆W =W0+BA, whereB ∈ Rp×r,
A ∈ Rr×q , and r ≪ min(p, q). During FT, only A and B are updated. This allows LoRA to signif-
icantly reduce the number of trainable parameters while still achieving impressive performance.

∗This work was done when Zhekai Du was a visiting student at The University of Melbourne.

1

Published as a conference paper at ICLR 2025

The success of LoRA has inspired a series of subsequent work. These LoRA variants typically aim
to better utilize the parameter budget (Zhang et al., 2023b; Valipour et al., 2022; Kopiczko et al.,
2023), improve computational efficiency (Dettmers et al., 2024; Zhang et al., 2023a; Hedegaard
et al., 2024), enable diverse learning patterns (Liu et al., 2024), or achieve a higher rank (Hyeon-Woo
et al., 2021; Edalati et al., 2022; Hao et al., 2024). However, they still reparameterize weight update
with the low-rank decomposition form, which may limit the hypothesis space and prevent further
parameter reduction. To address this issue, FourierFT (Gao et al., 2024) proposes to reparameterize
∆W with a randomly selected set of frequency-domain components by inverse Discrete Fourier
Transform (iDFT). This implicitly allows for enhanced expressivity and flexible parameter budget.

While FourierFT has shown empirical success, its advantages over low-rank methods have not
been theoretical analyzed. To fill this gap, we aim to provide a comprehensive understanding of
frequency-domain PEFT. We begin with a systematic analysis of weight updates during FT, and
identify the asymptotic normality of weight incremental matrices through both empirical observa-
tions and theoretical justification. This foundation enables a rigorous mathematical comparison
of the expressivity between frequency-domain and low-rank methods. Interestingly, our analysis
reveals that iDFT-based methods with randomly selected locations of learnable frequency compo-
nents exhibit lower expressivity than low-rank methods. In response, we design iDFT-based variants
with carefully selected components, which consequently surpass the expressivity of low-rank-based
methods. We further demonstrate that the best choice of iDFT-based variants can be equivalently
and more efficiently implemented using inverse Discrete Cosine Transform (iDCT).

Building on these insights, we introduce Location-aware Cosine Adaptation (LoCA), an iDCT-based
PEFT method that optimizes both the coefficients and locations of frequency components. By em-
ploying finite-difference approximation to estimate gradients for discrete location variables, LoCA
dynamically selects the most informative frequency components for each weight update matrix. We
demonstrate that LoCA offers enhanced parameter efficiency while maintaining computational fea-
sibility comparable to low-rank methods. Experiments across various language and vision tasks
show that LoCA matches state-of-the-art PEFT performance using significantly fewer parameters.

2 PRELIMINARY ANALYSIS OF FINE-TUNING MODERN LLMS

Modern LLMs are predominantly built upon the Transformer architecture (Vaswani et al., 2017),
where each Transformer block has a multi-head self-attention (MHSA) and a feed-forward network
(FFN). For input x ∈ Rn×d, MHSA projects x into query, key, and value matrices per head h using
Wh

q ,W
h
k ,W

h
v ∈ Rd×d/H , where H is the number of heads. The FFN then processes the attention

output using Wf1 ∈ Rd×dm and Wf2 ∈ Rdm×d, where dm is the hidden dimension.

To systematically analyze the behavior of fine-tuning LLMs, we fine-tune a pretrained LLaMA-
7b model (Touvron et al., 2023a) on the Alpaca-52K dataset (Taori et al., 2023). For each fine-
tuned weight matrix W

′ ∈ Rp×q (p ≥ q), we get the incremental matrix ∆W = W
′ −W0 and

examine its properties from various perspectives. Our empirical observations reveal that the weights
in each ∆W closely approximate a Gaussian distribution (Fig. 1a). We claim that this normality
can be theoretically justified. Consider a pre-trained model f with a pre-trained weight matrix W0.
Assume the fine-tuning dataset is sampled from P (X,Y ;W), where W can be considered as the
distribution parameter as well as the oracle solution of fine-tuning, X and Y denote the input data
and corresponding labels, respectively. During the FT process, we obtain the parameter W ′ by
minimizing the empirical loss. Consequently, W ′ can be regarded as an M-estimator of W , which

satisfies Pnψ(W
′)

def.
= Pn∇ℓ [Y − f(X;W ′)]

2
= 0, where Pn is the empirical average over n

samples drawn from P (X,Y ;W), ψ is the score function, and ℓ is an objective function. Under
fairly general conditions, W ′−W is known to be asymptotically normal (Yohai & Maronna, 1979):
√
n
(
W ′ −W

)V d.→ Npq (0,ΣW), where ·V denotes vectorization. We further assert that, under
some mild assumptions, the incremental matrix ∆W also exhibits asymptotic normality.

Proposition 1. Let W0 ∈ RK×K and W ′ ∈ RK×K be the pre-trained weight matrix and fine-
tuned weight trained on datasets with N and n′ data samples, respectively. Assume that (A1) The
pre-training dataset follows P (X,Y ;W 0). For real-world fine-tuning datasets, the vectorized W

V

follows a prior distributionNK2(W
V

0 , σ
2IK2), where σ is a constant. (A2) For any givenW , letW ′

2

Published as a conference paper at ICLR 2025

0.002 0.001 0.000 0.001 0.002
0

200

400

600

800

Layer 21
Gaussian (fit on Wq)
Gaussian (fit on Wv)

Wq

Wv

(a) Empirical Distribution of ∆W

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Transformer Layer

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

p-
va

lu
e

p-values
Query
Value

(b) Hypothesis Testing

0 1 2 3 4 5 6 7
Eigenvalues 1e 7

0

1

2

3

4

5

6

N
(

)

1e7 Layer 4
ESD of Wq

MP distribution (Fit on Wq)
ESD of Wv

(c) Empirical Spectral Density

Figure 1: Analysis of the weight incremental matrices. (a) Empirical distribution of the incremental
query (∆Wq) and value (∆Wv) projection matrices for a representative middle layer. (b) p-values of
the hypothesis test for ∆Wq and ∆Wv across different layers. (c) Empirical spectral density (ESD)
of ∆Wq and ∆Wv for layer 4. Same phenomena are observed in other weight matrices.

be an M-estimator that satisfies asymptotic normality. The elements on W ′ −W are asymptotically
independent and identically distributed, and the estimation error W ′ − W is independent of W .
Under these assumptions, there exists σ0 > 0, the weight update matrix ∆W =W ′ −W0 satisfies:

∆WV ∼ NK2

(
0,

(
σ2
0

n′
+ σ2

)
IK2

)
+ oP

(
1√
n′

)
+OP

(
1√
N

)
.

We justify the reasonability of these assumptions in Appendix A. For ease of representation, we use
square matrices for theoretical analysis without loss of generality. Proposition 1 shows that during
FT, the weight update follows an isotropic Gaussian, plus two error terms. In practice, the second
term can be assumed to be zero due to the vast amount of pre-training data. However, the last term,
which is related to the size of the FT dataset, causes the final distribution to deviate slightly from a
Gaussian distribution. To examine the impact of this error term, we design a hypothesis test, where
the null hypothesis posits that the total variation (TV) between the distribution of parameters w ∈
∆W and the normal distribution is less than a constant ε, i.e., H0 : dTV (P (w),N (w; µ̂, σ̂2)) ≤ ϵ,
where dTV (·, ·) denotes the total variation, P (w) is the true distribution of w, µ̂ and σ̂ are the
empirical mean and standard deviation of w respectively. We use the TV between the the empirical
distribution ofw andN (w; µ̂, σ̂2) as the test statistic and employ a bootstrap-like method to estimate
its distribution (the details are described in Appendix B). Fig. 1b illustrates the results for ∆Wq and
∆Wv across different layers. We choose ϵ = 0.001 and significance level 0.05 for this test. The
large p-values across all tests in Fig. 1b mean that the null hypothesis H0 cannot be rejected, i.e.,
the parameter updates indeed asymptotically follow a Gaussian distribution.

Another observation from Proposition 1 is that the parameters in ∆W are asymptotically i.i.d. To
examine this, we analyze the empirical spectral density (ESD) of each ∆W , which is defined as
the probability density of the eigenvalues {λi}qi=1 of the correlation matrix ∆C = 1

p∆W
T∆W ∈

Rq×q . ESD is extensively studied in random matrix theory and helps understand the asymptotic
behavior of the eigenvalues of large random matrices with i.i.d. elements. According to the
Marchenko-Pastur (MP) law (Yang et al., 2012), as p, q →∞ with a fixed aspect ratio Q = p/q, the
ESD for a random matrix converges to the MP distribution determined by the element-wise variance
σ2
mp. The agreement between the ESD and the MP distribution in Fig. 1c suggests that ∆W behaves

like an i.i.d. random matrix. This property will help us to better analyze various PEFT methods.

3 COMPARISON BETWEEN FREQUENCY-SPACE AND LOW-RANK ADAPTATION

Given the asymptotic Gaussian nature of ∆W , we can now analytically compare the expressivities of
low-rank-based and frequency-space-based adaptation methods. We regard expressivity as the ability
to approximate a fully fine-tuned weight incremental matrix using the same parameter budget.

Given any ∆W ∈ Rp×q obtained through full fine-tuning, low-rank-based methods approximate it
as ŴR = BA with N0 = (p + q)r parameters, where r is the chosen rank. In contrast, FourierFT
(Gao et al., 2024) adopts a frequency-domain approach by randomly selecting N1 components on
the Fourier spectrum F = F(∆W) to learn, setting others to zero, and approximates ∆W as

3

Published as a conference paper at ICLR 2025

Ŵ
(1)
F = F−1(F̂ (1)), where F ,F−1 denote the FFT and inverse FFT respectively, and F̂ (1) ∈ Cp×q

is the learned spectrum, which has non-zero values at randomly selected locations Id(1) = {id(1)i =

(x
(1)
i , y

(1)
i)}N1

i=1. However, FourierFT only considers learning the real part on F̂ (1), and simply
discards the imaginary part after the inverse FFT. Besides, it fails to exploit the conjugate symmetry
property inherent in the Fourier spectra for real-valued matrices. We argue that this could lead
to information loss and inefficient utilization of the parameter budget. To address these concerns,
we consider a more comprehensive approach that leverages both the real and imaginary parts of
the Fourier spectrum while exploiting the conjugate symmetry property. Specifically, we select
learnable locations only on the non-redundant half (i.e., the left half) of F , and learn both real and
imaginary coefficients at these locations. We still denote the result of the improved version as Ŵ (1)

F .

Intuitively, when approximating a matrix through low-rank decomposition, the learned low-rank ma-
trices are effectively the left and right singular matrices corresponding to the largest r singular values
of ∆W . However, for frequency-domain methods, this order statistic is not inherently involved. To
incorporate this information, we consider an oracle variant that selects N2 locations in the non-
redundant half of F(∆W) with the largest amplitude values (the search space is Ω1 = [p]× [q/2]),
and sets other locations to 0. We denote the resulting sparse Fourier spectrum with optimal locations
as F̂ (2), yielding Ŵ (2)

F = F−1(F̂ (2)). Furthermore, we explore an additional variant leveraging the
fact that each location in the Fourier spectrum has a real and an imaginary coefficient, which need
not be bound together for selection. We propose selectingN3 learnable coefficients individually with
a search space Ω2 = [p]× [q/2]× [2]. In this case, the optimal strategy is to choose the top N3 coef-
ficients with the largest absolute values in the non-redundant half of F(∆W) for learning. Denoting
the spectrum with these optimal coefficients as F̂ (3), we obtain Ŵ (3)

F = F−1(F̂ (3)). We show that,
given the asymptotic Gaussian nature of ∆W , we can mathematically compare these PEFT meth-
ods. In our theoretical analysis, we account for location indexing within the parameter budget. For
a fair comparison with rank r decomposition, we set N1 = N3 = 1/2N0 and N2 = 2/3N0

1.
Theorem 1. Let W ∈ RK×K ∼ G be a weight matrix where each element independently follows
a standard normal distribution N (0, 1). Define the reconstruction error L(W, Ŵ) = ||W − Ŵ||2F ,
where Ŵ can be ŴR, Ŵ (1)

F , Ŵ (2)
F , or Ŵ (3)

F stated above. Then, for r < K/3, we have

EId(1)EW∼G[L(W, Ŵ
(1)
F)] > EW∼G[L(W, ŴR)] > EW∼G[L(W, Ŵ

(2)
F)] > EW∼G[L(W, Ŵ

(3)
F)].

Note that we use N (0, 1) in Theorem 1 without loss of generality, as any matrix can be rescaled
to have zero mean and unit variance. Importantly, Theorem 1 shows that randomly selecting learn-
able coefficients in the frequency domain, i.e., Ŵ (1)

F , has worse expressivity than all other method,
highlighting the importance of strategic selection of frequency components. On the other hand, the
superior performance of Ŵ (3)

F , which allows for individual selection of (real or imaginary) coeffi-
cients, indicates that this increased flexibility in frequency component selection can lead to better
expressivity. These findings have significant implications for the design of PEFT methods.

4 LOCATION-AWARE COSINE ADAPTATION

4.1 PROBLEM FORMULATION

In this work, we regard the goal of PEFT as effectively reparameterizing a weight incremental ma-
trix. Building on our previous analysis, we aim to propose a frequency-domain PEFT method that
considers both the coefficients and locations of frequency components. Formally, given a pre-trained
weight matrix W0 ∈ Rp×q , our objective is to fine-tune it on a specific dataset to obtain the fine-
tuned weight matrix W ′ =W0 +∆W =W0 +αF−1(S(a, l,k)), where α is a scaling coefficient,
a = {ai}Bi=1 represents the learnable coefficients, l = {(l1i , l2i)}Bi=1 stores the component locations,
k = {0, 1}B indicates real (1) or imaginary (0) coefficients, B is the component budget, and S(·) is
an operator that scatters a onto a zero matrix according to l and k.

However, its practical implementation presents significant challenges, primarily due to the require-
ment for extensive discrete optimization of l and k. This motivates our exploration of alternative
formulations that balance the benefits of frequency-space adaptation with computational feasibility.

1A 2D location can be represented by a 1D index given the matrix height p and width q.

4

Published as a conference paper at ICLR 2025

4.2 INVERSE DISCRETE COSINE TRANSFORM-BASED REPARAMETERIZATION

Individually selecting learnable coefficients requires deciding whether to learn the real or imaginary
part on each location in l, which involves extensive discrete optimization of k in practical imple-
mentation. To address this issue, we introduce the discrete cosine transform (DCT). We prove that
in this problem, individually selecting learnable coefficients on the Fourier spectrum is equivalent to
selecting locations on the DCT spectrum, which involves only real-valued coefficients.
Theorem 2. Let W ∈ RK×K ∼ G be a weight matrix where each element independently follows
a standard normal distribution N (0, 1). Let D(·) and D−1(·) denote the discrete cosine transform
(DCT) and inverse DCT, respectively, and F(·) denote the discrete Fourier transform. Define FD as
the sparse matrix that preserves the ND coefficients with the largest absolute values on D(W) and
sets others to 0. With ŴD = D−1(FD), and L(·, ·), N3, Ŵ (3)

F stated above, if ND = N3, then:

EW∼G[L(W, Ŵ
(3)
F)] = EW∼G[L(W, ŴD)].

Theorem 2 guides us towards a more efficient alternative by utilizing the iDCT instead of the iDFT.
By reparameterizing ∆W using iDCT, We can maintain the equivalent expressivity while avoiding
the optimization of k. This is because DCT operates in the real domain, which simplifies computa-
tions and reduces the complexity of parameter selection. It is known that iDCT is essentially a linear
transformation (Ahmed et al., 1974). We can express the reparameterization based on 2D iDCT by

W ′ =W0 +∆W =W0 + α[CTS(a, l,1)D], (1)
where C ∈ Rp×p, D ∈ Rq×q are the DCT matrices. The elements of C are defined as:

Cij =

√
2

p
· ki · cos

(
π(2j + 1)i

2p

)
,where ki =

{
1√
2
, if i = 0

1, if i > 0.
(2)

The formulation is similar for D. In practice, when S(a, l,1) is highly sparse, we can further
simplify the computation by ∆W = α[CTS(a, l,1)D] = α

∑B
i=1 aiC

T
l1i ·
Dl2i ·, where Cl1i · is the l1i -

th row of C, and Dl2i · is the l2i -th row of D. This simplification reduces the computation complexity
of iDCT from O(p2q2) to O(Bpq). In contrast, when more frequency components are needed, it
is recommended to use the fast DCT algorithm with an asymptotic complexity of O(log(pq)pq).
A detailed discussion of computation complexity can be found in Appendix J. Noting that we can
pre-generateC andD with only one global copy, which does not consume additional memory usage.

4.3 ESTIMATING LOCATION GRADIENT USING FINITE-DIFFERENCE APPROXIMATION

While the coefficients a can be directly optimized through backpropagation, the operation S(·) does
not produce gradients with respect to the locations l. Furthermore, l needs to be treated as a discrete
variable, which prevents us from directly learning the locations through backpropagation.

To address this issue, we draw inspiration from the straight-through estimator (STE) (Bengio et al.,
2013), a technique that allows gradient-based optimization of neural networks with discrete variables
by using a surrogate gradient. However, unlike traditional STE that simply bypasses the gradient
computation for discrete variables, e.g., the STE used in VQ-VAE (Van Den Oord et al., 2017), we
estimate their gradients using the central difference approximation, as we elaborate below.

Forward Pass. To enable gradient-based learning of location variables, we first redefine the lo-
cations l as continuous variables. During the forward pass, we discretize l by l̂ = round(l) =

{(l̂1i , l̂2i)}Bi=1, where round(·) maps each element of l to its nearest integer.

Backward Pass. During the backward propagation, we estimate the gradient of the loss function L
to each element in l. For clarity, we take l1n and an as an example. The location gradient is

∂L
∂l1n

=

p∑
i=1

q∑
j=1

∂L
∂∆Wij

∂∆Wij

∂l1n
= tr[(

∂L
∂∆W

)T (
∂∆W

∂l1n
)]. (3)

Here, ∂L/∂∆W can be obtained directly through backpropagation. The tricky part is how to esti-
mate ∂∆W/∂l1n. In this work, we choose to use central difference approximation, i.e.,

∂∆W

∂l1n
=
αCT [S(an, (l̂1n + 1, l̂2n), 1)− S(an, (l̂1n − 1, l̂2n), 1)]D

2
. (4)

5

Published as a conference paper at ICLR 2025

For simplicity, we denote S(an, (l̂1n+1, l̂2n), 1)−S(an, (l̂1n−1, l̂2n), 1) as ∆S, then Eq. (3) becomes

∂L
∂l1n

=
α

2
tr[(

∂L
∂∆W

)TCT∆SD] =
α

2
tr[D(

∂L
∂∆W

)TCT︸ ︷︷ ︸
DCT

∆S]. (5)

Eq. (5) demonstrates that the gradient estimate for l1n can be obtained by first applying a DCT to
(∂L/∂∆W)T (we denote the resulting matrix as Z), and then multiplying it with ∆S. Note that
∆S is a matrix with non-zero elements only at locations (l̂1n − 1, l̂2n) and (l̂1n + 1, l̂2n). Therefore,
the result of Eq. (5) can be simplified as αan(Zl̂2n,l̂

1
n+1
− Z

l̂2n,l̂
1
n−1

)/2. Since Z can be reused for
computing gradients for all locations l and coefficients a (the gradient to a can also be obtained
from Z), Eq. (5) introduces almost no additional computational burden (see Appendix I).

4.4 ALTERNATING OPTIMIZATION STRATEGY

To effectively optimize both the coefficients a and locations l, we implement an alternating opti-
mization scheme inspired by coordinate ascent methods (Wright, 2015), which have shown remark-
able efficacy in tackling multi-variable optimization problems. Specifically, we initially train the
coefficients a for Ba steps while maintaining fixed locations l. Subsequently, we fix a and optimize
the locations l for Bl steps. This alternating process continues for totally Bs iterations. After that,
we only optimize the coefficients a until convergence. This strategy facilitates an efficient explo-
ration of the frequency domain while progressively refining the selected components in the early
training state, while focusing on the coefficients of the identified important frequency components
in the remaining stage. A detailed training procedure can be found in Appendix E.

5 EXPERIMENTS

We mainly evaluate LoCA across four domains: natural language understanding (NLU), natural
language generation (NLG), instruction tuning, and computer vision. For NLU tasks, we fine-tune
RoBERTa models on the GLUE benchmark (Wang et al., 2018). For NLG, we fine-tune GPT-2
(medium/large) on E2E NLG Challenge. For instruction tuning, we fine-tune LLaMA-family mod-
els on the Alpaca-52K dataset (Taori et al., 2023) and evaluate them on the MT-Bench (Zheng et al.,
2024) and Vicuna (Chiang et al., 2023) datasets. For vision tasks, we fine-tune Vision Transformer
(ViT) models on 8 classification datasets. More experiments can be found in Appendix.

Implementation Details. We implement our method using the PyTorch framework. Our code is
built on the PEFT library (Mangrulkar et al., 2022) from Huggingface, and all pre-trained models
are sourced from Huggingface’s Transformers library (Wolf et al., 2020). For the alternating op-
timization, we used Ba = 10 and Bl = 20. The coefficients a are initialized to be zeros and the
locations l are randomly initialized with a uniform distribution. We scale l to the range [0, 1] for op-
timization. All PEFT experiments are conducted on a single NVIDIA Tesla H100 GPU. Noting that
while LoCA initially optimizes both a and l, the locations are fixed after Bs iterations. Therefore,
the reported number of trainable parameters only includes the final coefficient parameters.

Baseline Methods. We compare our LoCA with Full fine-tuning (FF), BitFit (Zaken et al., 2021),
Adapter-based methods (Houlsby et al., 2019), LoRA (Hu et al., 2021), AdaLoRA (Zhang et al.,
2023b), VeRA (Kopiczko et al., 2023) , DoRA (Liu et al., 2024) and FourierFT (Gao et al., 2024).

5.1 NATURAL LANGUAGE UNDERSTANDING

We evaluate our method on NLU tasks using the GLUE benchmark (Wang et al., 2018), which
consists of diverse tasks that cover various aspects of language understanding, including single-
sentence classification, similarity and paraphrase, and inference task. For our experiments, we fine-
tune RoBERTa-base and RoBERTa-large models (Liu et al., 2019) on 8 GLUE tasks using different
adaptation methods. Following Zhang et al. (2023b); Gao et al. (2024), we report the best results on
the validation set for each task. Mean results are reported after 3 runs with different random seeds.

Implementation Details. For LoRA and its variants, we use a rank r = 8 and a scaling value
α = 8. To maintain consistency with FourierFT, we set the number of frequency components B

6

Published as a conference paper at ICLR 2025

Table 1: Fine-tuning results with RoBERTa-base/large on the GLUE benchmark. We report the
overall accuracy (matched and mismatched) for MNLI, Matthew’s correlation coefficient (MCC)
for CoLA and use the Pearson correlation coefficient (PCC) for STS-B. Accuracy (Acc.) is reported
for all other tasks. †, ‡, ∗ denote values from prior works. Best results are shown in bold.

Model FT Method Param. CoLA
MCC

MNLI
Acc

MRPC
Acc

QNLI
Acc

QQP
Acc

RTE
Acc

SST-2
Acc

STS-B
PCC

All
Avg.

FT ‡ 125M 63.6 87.6 90.2 92.8 91.9 78.7 94.8 91.2 86.4

R
oB

E
R

Ta
-b

as
e BitFit ‡ 0.1M 62.0 84.7 92.7 91.8 84.0 81.5 93.7 90.8 85.2

AdapterD ‡ 0.9M 62.6 87.3 88.4 93.0 90.6 75.9 94.7 90.3 85.4
LoRA 0.3M 62.8 86.6 89.7 93.3 90.8 79.3 94.9 91.4 86.1
AdaLoRA 0.3M 63.0 86.8 90.2 93.4 90.9 80.4 94.6 90.9 86.3
DoRA 0.31M 63.5 87.0 90.2 93.1 91.4 78.6 95.2 91.5 86.3
VeRA † 0.043M 65.6 85.1 89.5 91.8 89.6 78.7 94.6 90.7 85.7
FourierFT ∗ 0.024M 63.8 84.9 90.0 92.2 88.2 79.1 94.2 90.8 85.4
LoCA 0.024M 64.5 85.2 90.5 92.0 88.7 81.5 94.6 90.9 86.0

R
oB

E
R

Ta
-l

ar
ge

FT ‡ 355M 68.0 90.2 90.9 94.7 92.2 86.6 96.4 92.4 88.9
AdapterH ‡ 6M 66.5 89.9 88.7 94.7 92.1 83.4 96.2 91.0 87.8
LoRA 0.8M 68.4 90.5 90.2 94.4 91.6 85.7 96.2 92.4 88.7
AdaLoRA 0.8M 67.9 90.6 90.6 94.2 91.6 86.4 95.9 92.7 88.7
DoRA 0.83M 68.3 90.5 90.7 94.8 91.8 85.4 96.3 92.4 88.8
VeRA † 0.061M 68.0 90.2 90.9 94.4 90.3 85.9 96.1 91.7 88.4
FourierFT ∗ 0.048M 67.1 88.9 90.9 94.4 89.2 87.4 96.0 91.9 88.2
LoCA 0.048M 68.8 89.4 91.0 94.4 90.0 87.9 96.4 92.0 88.7

to 1000 for both frequency-domain methods, resulting in significantly less parameters compared to
low-rank decomposition methods. Since FourierFT does not report results for the MNLI and QQP
tasks, we obtained these results by our own runs with tuned hyperparameters. Following the settings
in Hu et al. (2021); Gao et al. (2024), all low-rank decomposition methods and frequency-domain
decomposition methods are applied only to the query and value matrices, and the best performance
on the validation set for each run is recorded. Detailed hyperparameters can be found in Table 6.

Experimental Results. Table 1 presents the results for RoBERTa-base and RoBERTa-large mod-
els. Our LoCA achieves competitive average scores of 86.0 and 88.7 respectively, approaching
cutting-edge performance while using significantly fewer parameters. LoCA consistently outper-
forms FourierFT across most tasks despite the same parameter budget, and shows comparable or
superior results to LoRA-family methods on several tasks. Notably, LoCA achieves the highest
scores on CoLA for both model sizes, surpassing even FF. For challenging tasks (e.g., QQP), we
will show in Section 5.5 that if we appropriately increase the parameter budget, the performance of
LoCA will improve significantly, which eventually surpasses LoRA with the same parameter budget.

5.2 NATURAL LANGUAGE GENERATION

We evaluate LoCA on the E2E NLG Challenge dataset (Novikova et al., 2017), a widely-used bench-
mark for data-to-text generation. The dataset consists of over 50K samples in the restaurant domain,
with each input being a set of slot-value pairs and the corresponding output being a natural language
description. We conduct experiments on both GPT-2 medium and GPT-2 large.

Implementation Details. Following Hu et al. (2021), we train our models using AdamW optimizer
with a linear learning rate decay schedule for 5 epochs. We set the batch size to 32 and use a label

Table 2: Results of tuning GPT-2 Medium/Large models on
the E2E benchmark. Higher values indicate better perfor-
mance for all metrics. †, ‡, ∗ denote values from prior works.

Model FT Method Param. BLEU NIST METEOR ROUGE-L CIDEr

G
PT

-2
M

ed
iu

m

FF* 354.92M 68.2 8.62 46.2 71.0 2.47
AdptL* 11.09M 68.9 8.71 46.1 71.3 2.47
AdptH* 11.09M 67.3±.6 8.5±.07 46.0±.2 70.7±.2 2.44±.01
LoRA ‡ 0.35M 68.9±.3 8.76±.06 46.6±.1 71.5±.1 2.53±.03
VeRA † 0.098M 70.1 8.81 46.6 71.5 2.50
FourierFT ‡ 0.048M 69.1±.1 8.82 ±.05 47.0 ±.3 71.8 ±.1 2.51±.02
LoCA 0.048M 69.7 ±.2 8.85 ±.04 46.6 ±.2 72.1 ±.3 2.52 ±.06

G
PT

-2
L

ar
ge

FF* 774.03M 68.5 8.78 46.0 69.9 2.45
AdptL* 23.00M 68.9±.3 8.70±.04 46.1±.1 71.3±.2 2.45±.02
LoRA ‡ 0.77M 70.1±.3 8.83±.02 46.8±.2 72.0±.3 2.47±.02
VeRA † 0.17M 70.3 8.85 46.9 71.6 2.54
FourierFT ‡ 0.072M 70.2±.2 8.90±.02 47.0±.2 71.8±.1 2.50 ±.02
LoCA 0.072M 70.4 ±.2 8.88 ±.05 47.2 ±.02 72.1 ±.2 2.54 ±.02

smoothing factor of 0.1. We only
adapt the query and value matri-
ces, with 1000 frequency compo-
nents for both LoCA and FourierFT.
See Table 7 for more details.

Experimental Results. Table 2
shows that LoCA achieves superior
performance compared to previous
PEFT methods including FourierFT
and LoRA across multiple met-
rics. Specifically, when using GPT-
2 large as the base model, LoCA
outperforms others on BLEU, ME-
TEOR and ROUGE-L scores.

7

Published as a conference paper at ICLR 2025

5.3 INSTRUCTION TUNING

We fine-tune various LLaMA-family models (Touvron et al., 2023a;b) using the Alpaca-52K dataset
(Taori et al., 2023). The Alpaca-52K dataset, derived from the self-instruct technique, provides a
diverse set of instruction-following examples. In this experiment, we mainly compare our method
with FF, LoRA and FourierFT. After fine-tuning, we evaluate the model on the MT-Bench (Zheng
et al., 2024) and Vicuna (Chiang et al., 2023) datasets, which offer challenging multi-turn and open-
ended scenarios for LLM evaluation. We employed GPT-4 to assign scores on a scale of 1-10 based
on the quality, relevance, and coherence of the responses.

Implementation Details. We apply all PEFT methods to the query and value matrices. For

Table 3: Evaluation results for fine-tuned
LLaMA-family models on MT-Bench and Vicuna
datasets, using GPT-4 as the judge with a 1-10
scoring scale. Bold and underlined values indi-
cate the best and second best results, respectively.

Model FT Method Param. MT-Bench Vicuna

LLaMA1-7b

FF 6.8B 4.46 7.24
LoRA 33.5M 4.52 7.52
FourierFT 9.6M 4.33 6.97
LoCA 9.6M 4.47 7.18

LLaMA1-13b

FF 13B 4.78 7.68
LoRA 52.4M 4.87 7.82
FourierFT 12M 4.70 7.61
LoCA 12M 4.83 7.85

LLaMA2-7b

FF 6.8B 4.94 7.81
LoRA 33.5M 4.67 7.68
FourierFT 9.6M 4.65 7.62
LoCA 9.6M 4.82 7.78

LLaMA2-13b

FF 13B 5.55 8.13
LoRA 52.4M 5.48 8.03
FourierFT 12M 5.37 7.95
LoCA 12M 5.52 8.11

LoRA, we set the rank r to 64 and the scaling
value α to 16. For FourierFT, we use 150K
frequency components and tune other hyper-
parameters to ensure the optimal performance,
since we cannot reproduce the results in Gao
et al. (2024). For LoCA, we also use 150K fre-
quency components, and set the scaling value
α to 1. We utilize the LLM-as-a-Judge reposi-
tory (Zheng et al., 2024) for fair evaluation. We
train LLaMA-1-7b/LLaMA-2-7b for 3 epochs
and LLaMA-1-13b/LLaMA-2-13b for 1 epoch.
Quantization (Dettmers et al., 2024) is used for
LLaMA-1-13b/LLaMA-2-13b to ensure feasi-
ble FT on a single GPU. Detailed hyperparam-
eters can be found in Table 8.

Experimental Results. The results in Table
3 demonstrate the competitive performance of
our method across various LLaMA model sizes
and architectures. Notably, LoCA consistently
outperforms FourierFT and, in many scenarios,
either approaches or surpasses the performance
of LoRA, despite the latter utilizing a larger parameter budget. This underscores the superior effi-
ciency of LoCA in parameter utilization and its effectiveness in acquiring task-specific knowledge.

5.4 IMAGE CLASSIFICATION

We evaluate our method on computer vision tasks by conducting experiments on 8 image classi-
fication datasets, including OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013),
CIFAR10 (Krizhevsky et al., 2009), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019),
FGVC (Maji et al., 2013), RESISC45 (Cheng et al., 2017) and CIFAR100 (Krizhevsky et al., 2009).
We fine-tune ViT/16-base and ViT/16-large models (Dosovitskiy et al., 2020), both pre-trained on
ImageNet-21k (Ridnik et al., 2021). In this experiment, we compares LoCA against several base-
lines: Linear Probing (LP), FF, LoRA, and FourierFT. Noting that we encountered significant dis-
crepancies when attempting to reproduce the results reported in Gao et al. (2024), possibly due to
the lack of detailed hyperparameter setup. To ensure a fair comparison, we re-run all methods using
our own hyperparameter settings. All results are obtained after 5 random trials.

Implementation Details. To ensure a fair comparison across all methods, the classification head is
configured identically for all approaches. For LoRA, we a rank of 16 and a scaling factor α of 16.
Following Gao et al. (2024), FourierFT is implemented with 3000 and 10,000 frequency components
and a scaling factor of 300. For our LoCA, we also evaluate 3000 and 10,000 frequency components
for both base and large models. The learning rates for all methods are carefully tuned to ensure good
performance across different tasks and model sizes. We report the number of trainable parameters
excluding the classification head to provide a clear comparison of parameter efficiency. Detailed
hyperparameter configurations for all methods can be found in Table 9.

Experimental Results. The results are presented in Table 4. Notably, LoCA achieves superior
performance compared to FourierFT while using the same number of parameters. For instance,
with ViT-Base, LoCA using 72K parameters outperforms FourierFT on most datasets, with obvious

8

Published as a conference paper at ICLR 2025

Table 4: Fine-tuning results on 8 image classification datasets with ViT-base and ViT-large models.
For fair comparison, we report the accuracy (%) and standard deviation after 10 epochs of training
for all methods. Best results are shown in bold.

Model FT Method Param. OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 Avg.
V

iT
-b

as
e

LP - 92.94±0.12 47.02±0.23 96.82±0.01 76.47±0.22 94.78±0.02 29.21±1.33 86.13±0.10 86.05±0.08 76.18
FF 85.8M 93.09±0.11 84.71±0.03 98.89±0.00 77.37±0.30 98.91±0.09 63.83±1.13 95.72±0.21 90.72±0.23 87.91
LoRA 581K 93.26±0.28 82.12±0.22 98.51±0.07 79.54±0.72 98.65±0.06 55.67±1.24 94.82±0.45 91.51±0.12 86.76
FourierFT 72K 93.07±0.34 73.74±0.13 98.64±0.02 77.72±0.74 98.32±0.05 48.24±1.09 92.89±0.07 91.23±0.04 84.23
LoCA 72K 93.36±0.03 77.78±0.14 98.66±0.21 78.44±0.31 98.94±0.06 53.23±0.96 93.88±0.20 91.40±0.11 85.71
FourierFT 239K 93.44±0.31 79.34±0.14 98.70±0.08 79.43±1.15 98.81±0.05 52.26±1.50 94.19±0.06 91.60±0.15 86.02
LoCA 239K 94.10±0.21 80.11±0.58 98.62±0.21 80.15±0.61 99.04±0.08 54.86±0.65 94.73±0.18 91.68±0.43 86.66

V
iT

-l
ar

ge

LP - 91.93±0.21 43.24±0.30 97.78±0.23 72.52±0.35 93.76±0.18 26.55±0.86 83.52±0.38 88.73±0.34 74.75
FF 303.3M 94.13±0.12 85.84±0.17 99.22±0.15 81.64±0.29 99.13±0.07 63.33±0.37 96.21±0.11 94.67±0.09 89.27
LoRA 1.57M 94.34±0.36 85.92±0.24 98.93±0.02 79.90±0.88 98.91±0.07 64.47±0.63 95.63±0.13 92.37±0.02 88.81
FourierFT 144K 94.52±0.53 75.35±0.32 99.12±0.42 79.78±0.76 98.79±0.35 48.32±0.89 94.18±0.41 93.01±0.14 85.38
LoCA 144K 94.60±0.03 82.04±0.25 98.92±0.03 79.02±0.18 98.97±0.05 57.62±0.02 94.41±91.76 91.76±0.09 87.17
FourierFT 480K 94.78±0.09 82.27±0.30 99.00±0.08 79.03±0.04 98.95±0.10 56.96±1.09 95.53±0.03 92.56±0.04 87.39
LoCA 480K 94.47±0.82 83.47±0.32 99.02±0.03 80.21±0.66 99.03±0.18 63.02±0.61 95.49±0.15 92.65±0.22 88.42

improvements on StanfordCars and FGVC. Furthermore, when increasing the parameter budget to
10,000 for LoCA, we observe performance comparable to LoRA across most tasks. These results
demonstrate that LoCA achieves a favorable balance between parameter efficiency and performance.

5.5 ANALYTICAL EXPERIMENTS

Effectiveness of Gradient Estimation. To validate the reliability of our estimated location gra-
dients, we present the training process on 4 selected datasets in Fig. 2. The left figure shows

0 200 400 600 800 1000
Iterations

1

2

3

4

Ev
al

ua
tio

n
Lo

ss

StanfordCars
CIFAR10
RTE
STS-B

0 200 400 600
Iterations

0.2

0.4

0.6

0.8

Ev
al

ua
tio

n
M

et
ric

s

StanfordCars
CIFAR10
RTE
STS-B

Figure 2: Evaluation loss (left) and performance
(right) of our method with RoBERTa-base and
ViT-base models. We record every 10 steps. The
solid lines represent alternating optimization of
coefficients and locations, while the dashed lines
represent optimizing coefficients only.

that during the alternating optimization phase,
the validation loss generally decreases in most
steps, particularly for StanfordCars and CI-
FAR10. The right figure demonstrates corre-
sponding improvements in validation accuracy
(or Pearson correlation). These trends indi-
cate that our central difference approximation
method effectively guides the optimization pro-
cess, enabling successful updates to frequency
component locations. We also conduct a toy ex-
periment to show the convergence of the alter-
nating optimization strategy in Appendix M.

Performance under Different Parameter
Budgets. Fig. 3 compares various methods
under same parameter budgets. Here we focus
on QQP and FHVC, which present significant
challenges for LoRA. The parameter budget is standardized using LoRA’s rank r as the base unit.
Our results reveal that FourierFT often underperforms LoRA when using fewer parameters. This ob-
servation aligns with expectations, as the locations of frequency components becomes increasingly
critical under constrained parameter budgets. Notably, LoCA consistently outperforms LoRA and
FourierFT across the tested scenarios. It is worth noting that our theoretical analysis centers on ex-
pected performance. While specific task structures may allow FourierFT to surpass LoRA in certain
instances, these exceptions do not undermine our overall conclusions and analytical framework.

Choice of Scaling value α and Alternating Optimization Steps Bs. Fig. 4 demonstrates the
impact of different choices of α and Bs on the MRPC task. We empirically find that a scaling value
between 1-2 can achieve better results. Additionally, setting Bs to between 10%-20% of the total
training steps is more appropriate (with a total of 5750 steps for the MRPC task).

Ablation Study of the Alternating Optimization Strategy. Table 5 compares several vari-
ants of our method: V1 only optimizes coefficients with randomly initialized locations. V2
alternately optimizes coefficients and locations throughout the training. V3 jointly optimizes
locations and coefficients in each step for Bs steps. V4 and V5 use forward and backward
difference approximation for gradient estimation, respectively. Hyperparameters are identical

9

Published as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8
Trainable Parameters (aligned with r)

89.00

89.25

89.50

89.75

90.00

90.25

90.50

90.75

Ac
cu

ra
cy

 (%
)

QQP
LoRA
FourierFT
LoCA

2 4 6 8 10 12 14 16
Trainable Parameters (aligned with r)

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Ac
cu

ra
cy

 (%
)

FGVC

LoRA
FourierFT
LoCA

Figure 3: Performance comparison under different parameter
budgets on QQP (RoBERTa-base) and FGVC (ViT-base).

Alternating Optimization Steps s

200
300

500
1000

3000
5000

Sc
alin

g V
alu

e

0.1

0.2

0.5
1.0

2.0
5.0

Ac
cu

ra
cy

 (\
%

)

85

86

87

88

89

90

91

85

86

87

88

89

90

91

Figure 4: Influence of α and Bs
on MRPC (RoBERTa-base).

Table 5: Comparison between different optimiza-
tion strategies on 4 datasets. We use RoBERTa-
base and ViT-base models for this experiment.
Best results are shown in bold.

Variants Vision Tasks (B =5000) Language Tasks (B =1000)

OxfordPets DTD QQP CoLA

V1 92.8 76.8 87.7 63.2
V2 91.9 76.3 86.5 61.6
V3 93.4 79.1 88.0 64.1
V4 93.8 79.5 88.6 64.3
V5 93.8 79.7 88.4 64.4

LoCA 93.8 79.7 88.7 64.5

to the ones in Section 5.1 and 5.4. It can be ob-
served that alternating optimization throughout
the entire process leads to instability, resulting
in a suboptimal performance. Simultaneously
optimizing coefficients makes convergence not
guaranteed, thus being less effective than al-
ternating optimization. Both one-side (forward
and backward) difference approximations show
effectiveness, but it is challenging to theoreti-
cally analyze which is superior. Therefore, we
choose using the central difference approxima-
tion as the default implementation.

6 RELATED WORK

The recent surge in LLM research has reignited interest in PEFT research. To pursue favorable
task performance while using only a small number of trainable parameters, current PEFT methods
primarily lie in four categories: adding extra trainable modules (Houlsby et al., 2019; Rücklé et al.,
2020), selectively training a small subset of key parameters (Zaken et al., 2021; Lawton et al., 2023),
employing reparameterization techniques like low-rank decomposition to the incremental matrices
(Hu et al., 2021; Zhang et al., 2023b; Liu et al., 2024; Hao et al., 2024), or combining multiple strate-
gies (Chen et al., 2023). Among them, low-rank methods have garnered significant attention due to
their mergable nature and parameter efficiency. These low-rank methods, which aim to approxi-
mate large weight matrices using a few principal components, is highly analogous to techniques
employed in data compression. In fact, low-rank decomposition (or singular value decomposition)
and frequency-domain decomposition (e.g., JPEG compression) represents two fundamental tools
in image compression and signal processing.

For image compression, frequency-domain reconstruction (e.g., DCT) are preferred due to the in-
herent smoothness prior of image data (Wallace, 1991). However, when dealing with the complex
data structures of neural network parameter matrices, the relative efficacy of these approaches re-
mains unexplored. To the best of our knowledge, although FourierFT (Gao et al., 2024) has made
an empirical study of frequency-domain PEFT by employing Fourier Transform, no prior work has
conducted a rigorous comparison between low-rank and frequency-domain decomposition methods
in the context of PEFT. Our work aims to bridge this gap by providing a comprehensive theoretical
analysis and designing a more efficient frequency-domain PEFT method.

7 CONCLUSION

This paper provides a theoretical foundation for frequency-domain PEFT methods. We prove that
carefully selected frequency components can outperform low-rank approaches, leading to the devel-
opment of location-aware frequency-domain PEFT method. Our method optimizes both coefficients
and locations of frequency components using iDCT and difference approximation. We show that
our method enhances expressiveness while maintaining computational efficiency. Extensive experi-
ments across NLP and computer vision tasks demonstrate the superior performance and parameter
efficiency compared to existing PEFT methods.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This work was supported in part by the National Natural Science Foundation of China under Grant
62273071, 62176042, 11925106, 12231011 & 12326325, and in part by TCL Technology Inno-
vation Funding SS2024105, and in part by the Fundamental Research Funds for the Central Uni-
versities (UESTC) under Grant ZYGX2024Z008, and in part by the National Key R&D Program of
China (Grant Nos. 2022YFA1003703, 2022YFA1003800), and in part by the Natural Science Foun-
dation of Xinjiang Uyghur Autonomous Region, China (No. 2024D01B07), and in part by China
Scholarship Council (CSC). MG was supported by ARC DE210101624, ARC DP240102088, and
WIS-MBZUAI 142571.

REFERENCES

Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Discrete cosine transform. IEEE transactions
on Computers, 100(1):90–93, 1974.

Barry C Arnold and Richard A Groeneveld. Bounds on expectations of linear systematic statistics
based on dependent samples. The Annals of Statistics, pp. 220–223, 1979.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Dimitris Bertsimas, Karthik Natarajan, and Chung-Piaw Teo. Tight bounds on expected order statis-
tics. Probability in the Engineering and Informational Sciences, 20(4):667–686, 2006.

Theodor Bröcker and Tammo Tom Dieck. Representations of compact Lie groups, volume 98.
Springer Science & Business Media, 2013.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18392–18402, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, and Diyi Yang. Parameter-efficient
fine-tuning design spaces. arXiv preprint arXiv:2301.01821, 2023.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

11

Published as a conference paper at ICLR 2025

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform. arXiv preprint arXiv:2405.03003,
2024.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Lukas Hedegaard, Aman Alok, Juby Jose, and Alexandros Iosifidis. Structured pruning adapters.
Pattern Recognition, pp. 110724, 2024.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Jeremy Howard and Sylvain Gugger. Fastai: a layered api for deep learning. Information, 11(2):
108, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.

Kurt Johansson. Shape fluctuations and random matrices. Communications in mathematical physics,
209:437–476, 2000.

Iain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis.
The Annals of statistics, 29(2):295–327, 2001.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, and Greg Ver Steeg. Neural archi-
tecture search for parameter-efficient fine-tuning of large pre-trained language models. arXiv
preprint arXiv:2305.16597, 2023.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165,
2017.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

12

Published as a conference paper at ICLR 2025

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model
via parameter-efficient transfer learning. arXiv preprint arXiv:2004.03829, 2020.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Charles H Martin and Michael W Mahoney. Implicit self-regularization in deep neural networks:
Evidence from random matrix theory and implications for learning. Journal of Machine Learning
Research, 22(165):1–73, 2021.

Robb J Muirhead. Aspects of multivariate statistical theory. John Wiley & Sons, 2009.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-
to-end generation. arXiv preprint arXiv:1706.09254, 2017.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Sayak Paul. Instruction-tuning stable diffusion with instructpix2pix. Hugging Face Blog, 2023.
https://huggingface.co/blog/instruction-tuning-sd.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. arXiv preprint arXiv:2104.10972, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. arXiv preprint
arXiv:2010.11918, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Matthias Thamm, Max Staats, and Bernd Rosenow. Random matrix analysis of deep neural network
weight matrices. Physical Review E, 106(5):054124, 2022.

13

https://github.com/huggingface/peft
https://github.com/huggingface/peft

Published as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Pierpaolo Vivo, Satya N Majumdar, and Oriol Bohigas. Large deviations of the maximum eigenvalue
in wishart random matrices. Journal of Physics A: Mathematical and Theoretical, 40(16):4317,
2007.

Gregory K Wallace. The jpeg still picture compression standard. Communications of the ACM, 34
(4):30–44, 1991.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Xinrui Wang and Jinze Yu. Learning to cartoonize using white-box cartoon representations. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8090–
8099, 2020.

Yaqing Wang, Jialin Wu, Tanmaya Dabral, Jiageng Zhang, Geoff Brown, Chun-Ta Lu, Fred-
erick Liu, Yi Liang, Bo Pang, Michael Bendersky, et al. Non-intrusive adaptation: Input-
centric parameter-efficient fine-tuning for versatile multimodal modeling. arXiv preprint
arXiv:2310.12100, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rmi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Stephen J Wright. Coordinate descent algorithms. Mathematical programming, 151(1):3–34, 2015.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei
Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning.
arXiv preprint arXiv:2109.05687, 2021.

Xin Yang, Ryota Itoi, and Mieko Tanaka-Yamawaki. Testing randomness by means of random
matrix theory. Progress of Theoretical Physics Supplement, 194:73–83, 2012.

Victor J Yohai and Ricardo A Maronna. Asymptotic behavior of m-estimators for the linear model.
The Annals of Statistics, pp. 258–268, 1979.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

14

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Published as a conference paper at ICLR 2025

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li Lora-fa. Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303, 2,
2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

15

Published as a conference paper at ICLR 2025

A JUSTIFICATION OF ASSUMPTIONS

In the pre-training and fine-tuning paradigm, deep neural networks are initially trained on a large
dataset with distribution P (X,Y ;W 0) and subsequently fine-tuned on a specific down-stream
dataset with distribution P (X,Y ;W). In this context, W becomes a random variable associated
with a specific data distribution.

First for assumption (A1), the large dataset used for pre-training represents an aggregation of nu-
merous sub-datasets. Each sub-dataset contributes to the overall distribution P (X,Y ;W 0). The
parameter W 0 can be seen as the central tendency (mean) of the parameters for all sub-datasets.
This aggregation naturally leads to a central limit theorem effect, where the mixture of multiple
sub-datasets can be approximated by a normal distribution around W 0, which also reflects the idea
of symmetry in the distribution of sub-datasets. In the absence of strong directional biases, it is
reasonable to consider that the parameters for different sub-datasets are symmetrically distributed.
Note that our proposition is based on all sub-datasets, which also follows the philosophy of the No
Free Lunch (NFL) theorem in machine learning. By modeling W as a distribution centered on W 0,
we account for the variability across different sub-datasets.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Eigenvalues 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
(

)

1e6 Layer 10
ESD of Wq

MP distribution (Fit on W ′

q)
ESD of W ′

v

(a) Layer 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Eigenvalues 1e 5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
(

)

1e6 Layer 20
ESD of Wq

MP distribution (Fit on W ′

q)
ESD of W ′

v

(b) Layer 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Eigenvalues 1e 5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
(

)

1e6 Layer 30
ESD of Wq

MP distribution (Fit on W ′

q)
ESD of W ′

v

(c) Layer 30

Figure 5: Empirical spectral density of the fine-tuned W ′ across multiple layers. The experimental
settings are the same as those in Section 2.

Regarding assumption (A2), the asymptotic normality of M-estimators is a commonly used assump-
tion in statistics and machine learning. The strongest assumption here should be that the elements
of W ′ −W are asymptotically independent and identically distributed given W . To demonstrate
the reasonability of this assumption. We first consider the asymptotically i.i.d. property of W ′.
While the strict i.i.d. property of parameters in trained neural networks remains a subject of ongoing
research, several studies have shwon that certain statistical properties of these parameters resemble
those of random i.i.d. matrices (Thamm et al., 2022; Martin & Mahoney, 2021; Lee et al., 2017).
Our work extends this line by examining the spectral properties of the trained weight during LLM
fine-tuning. Specifically, we use the Marchenko-Pastur (MP) law to test the fit between the empir-
ical spectral densities of W ′ and that of random matrices. The MP law is a fundamental result in
random matrix theory. It describes the asymptotic behavior of the eigenvalue distribution of large
random matrices. The law can be formally stated as follows: Consider a p × q random matrix W ,
where each element is an independent and identically distributed random variable with mean 0 and
variance σ2. Let C = (1/p)W ′TW ′ be the covariance matrix. As p, q → ∞ with a fixed aspect
ratio, the empirical spectral distribution of the eigenvalues of C converges almost surely to a deter-
ministic probability distribution known as the Marchenko-Pastur distribution. Here we are dealing
with large Transformer weight matrices. If they are asymptotically i.i.d. matrixes, the ESD of them
should closely approximate the MP distribution corresponding to their current aspect ratios. We
visualize the ESD of the fine-tuned W ′ across multiple layers, as shown in Fig. 5. And the results
show that W ′ behaves like an i.i.d random matrix. As each element on W is permutable due to
the equal role of different positions, we can summarize that W has a zero-expectation influence on
W ′−W . Therefore, the asymptotically i.i.d property of W ′−W does not violate our observations.
The assumption that W ′ −W and W are independent is analogous to treating W ′ −W as noise,
while W is the true signal. This is a common assumption in the context of asymptotic analysis,
where the estimation error (or noise) is considered to be independent of the true parameter.

16

Published as a conference paper at ICLR 2025

B DETAILS OF THE HYPOTHESIS TESTING

We now describe the detailed procedure of the hypothesis testing adopted in Section 2. Recall
that our goal is to test whether the elements w from the weight incremental matrix ∆W follows a
distribution that is close to a Gaussian. Formally, we have the following hypothesis setup and test
statistic.

Hypothesis Setup:

H0 : dTV (P (w),N (w; µ̂, σ̂2)) ≤ ϵ, H1 : dTV (P (w),N (w; µ̂, σ̂2)) > ϵ

Where dTV (·, ·) denotes the total variation distance, P (w) is the true distribution of elements in
∆W , and N (µ̂, σ̂2) is the normal distribution with sample mean and variance as parameters.

Test Statistic:
T = dTV (P̂n(w),N (w; µ̂, σ̂2))

Where P̂n(w) is the empirical distribution of w.

Testing Procedure:

Given a ∆W ∈ Rp×q yielded by full fine-tuning, our test procedure consists of the following steps.

1. From the observed ∆W , compute the empirical mean µ̂ and variance σ̂2.

2. Generate 1e5 samples from N (w; µ̂, σ̂2), denoted this set of samples by G.

3. Generate B perturbed distributions:

• Add small random perturbations e ∼ N (e; 0, σe
2) to the M samples, where σe =

1e−5.
• Calculate the empirical distribution of the perturbed samples.
• Compute the total variation distance between the obtained empirical distribution and
G.

• If the total variation distance is less than ϵ, keep this distribution.
• Repeat until 100 valid perturbed distributions are obtained.

4. For each of the 100 perturbed distributions:

• Sample 10 sets of p× q points.
• For each set, calculate the total variation distance between the empirical distribution of

this set and G. This results inM×P total variation distances, forming the distribution
of the test statistic under H0.

5. Calculate the total variation distance between the empirical distribution of ∆W and G,
denoted by T .

6. The p-value is the percentile of T in the M × P total variation distances.

7. Reject H0 if the p-value is less than the chosen significance level (e.g., 0.05). Otherwise,
accept H0.

Note that although this process is not strictly a bootstrap (as it does not directly resample from
the original data), it does use the idea of repeated sampling to generate the distribution of the test
statistic. Traditional bootstrap typically resamples with replacement directly from the original data,
whereas our method first generates a series of perturbed distributions and then samples from these
distributions. The advantage of this approach is that it allows us to explore the behavior of distribu-
tions that are close to a Gaussian distribution, while allowing for small variations. This method is
more akin to a Monte Carlo simulation, used to estimate the distribution of total variation under the
null hypothesis.

C DETAILS ABOUT BASELINE METHODS

• Full fine-tuning (FF) updates all parameters of the pre-trained model during the fine-tuning pro-
cess, allowing for comprehensive adaptation at the cost of significant computational resources.

17

Published as a conference paper at ICLR 2025

• BitFit (Zaken et al., 2021) solely fine-tunes the bias weights while keeping other parameters frozen.

• Adapter-based methods inject extra trainable modules into pre-trained models and keep the origi-
nal model parameters frozen. In our comparison, we primarily focused on three types of Adapters:
AdapterH (Houlsby et al., 2019), which inserts a two-layer adapter between the self-attention mod-
ule (or the FFN module) and the subsequent residual connections, AdapterL (Lin et al., 2020) that
inserts a lightweight adapter layer with a bottleneck architecture after the MLP module and a Lay-
erNorm layer in each Transformer block, and AdapterD (Rücklé et al., 2020) that further enhances
efficiency by strategically dropping inactive adapter layers.

• LoRA (Hu et al., 2021) reparameterizes ∆W using two trainable low-rank matrices. Therefore,
the number of trainable parameters is controlled by the chosen rank and the shape of weight matrixs.

• AdaLoRA (Zhang et al., 2023b) extends LoRA by introducing an adaptive mechanism to dynami-
cally allocate the rank budget across different parameter matrices.

• VeRA (Kopiczko et al., 2023) extends LoRA by introducing trainable scaling vectors (d and b) to
adaptively adjust the contribution of each dimension in the low-rank matrices, achieving comparable
performance with significantly fewer parameters.

•DoRA (Liu et al., 2024) is a LoRA variant that decomposes pre-trained weights into magnitude and
direction components for fine-tuning. It demonstrates learning patterns closer to full fine-tuning.

• FourierFT (Gao et al., 2024) treats weight changes as spatial-domain matrices and reparameterizes
them with a set of learnable frequency components. The number of trainable parameters is controlled
by the number of frequency components, allowing for more flexible scaling of parameter budgets.

D HYPERPARAMETERS

Table 6, 8, 7 and 9 summarize the hyperparameters we used in each experiment. It is worth noting
that for LoCA, the weight decay is not applied to the optimization of the location variables. Regard-
ing the total number of alternating learning steps Bs, we set it to approximately 10% of the total
training steps, based on the size of different datasets.

It is worth noting that our method has very stable hyperparameters (especially the scaling value)
across different tasks on GLUE, while FourierFT requires extensive parameter tuning to achieve
satisfactory results, as can be seen from Gao et al. (2024).

Table 6: Hyperparameters for our method on the GLUE benchmark.

Model Datasets CoLA MNLI MRPC QNLI QQP RTE SST2 STS-B

Common

Optimizer AdamW
LR Schedule Linear
Batch Size 32
Where Query, Value
Warmup Ratio 0.06
B 1000
Learning Rate (Postions) 1e-4
Scaling Value α 1
Random Seeds {6,66,666}

RoBERTa-base

Learning Rate (Head) 5e-3 5e-4 6e-3 1e-3 5e-4 6e-3 1e-3 1e-3
Learning Rate (Coefficients) 5e-3 5e-4 1e-2 5e-3 5e-4 5e-3 5e-3 5e-3
Max Seq. Len 512
Weight Decay 1e-4 1e-4 1e-4 5e-4 1e-4 0 5e-4 5e-4
Epochs 80 30 50 40 35 80 30 50
Bs 2100 3000 600 3000 3000 600 3000 600

RoBERTa-large

Learning Rate (Head) 5e-3 5e-4 5e-3 1e-3 5e-4 5e-3 1e-3 1e-3
Learning Rate (Coefficients) 5e-3 5e-4 1e-2 5e-3 5e-4 5e-3 5e-3 5e-3
Max Seq. Len 512
Weight Decay 1e-4 1e-4 1e-4 5e-4 1e-4 0 5e-4 5e-4
Epochs 40 15 30 25 20 50 20 50
Bs 1000 3000 400 3000 3000 300 3000 600

18

Published as a conference paper at ICLR 2025

Table 7: Hyperparameter configuration of LoCA on the E2E benchmark.

Hyperparameter GPT-2 Medium/Large

Optimizer AdamW
Dropout 0
Warmup Steps 100
Epochs 5
Where Query, Value
Label Smooth 0.1
LR Schedule Linear
Learning Rate (Coefficients) 5e-3
Learning Rate (Positions) 1e-4
Learning Rate (Head) 2e-4
Batch Size 32
Weight Decay 0.01
B 1000
Learning iterations Bs 1200
Scaling Value α 1

Table 8: Hyperparameter configuration for all methods on the instruction tuning task.

Method Hyperparameter LLaMA-7B LLaMA-13B

Common

Optimizer AdamW
LR schedule Linear
Batch Size 16

Where Query, Value
Weight Decay 0

Epochs 3 1
Accumulation Steps 4

LoRA
Rank 64

Scaling Value 16
Learning Rate 3e-4

FF Learning Rate 2e-5 1e-5

FourierFT
Frequency Components 150000

Scaling Value 64
Learning Rate 1e-3

LoCA

Frequency Components 150000
Learning Rate (coefficient) 5e-4

Scaling Value 1
Learning iterations (Bs) 600 300

Learning Rate (locations) 1e-4

19

Published as a conference paper at ICLR 2025

Table 9: Hyperparameter configuration for all methods on eight image classification datasets.

Method Hyperparameter ViT-Base ViT-Large

Common

Optimizer AdamW
LR schedule Linear
Batch Size 128

Where Query, Value
Learning Rate (Head) 1e-2 1e-3

Weight Decay 5e-5
Random Seeds {2020, 2021, 2022, 2023, 2024}

LoRA
Rank 16

Scaling Value 16
Learning Rate (ViT) 5e-3

FourierFT
Frequency Components 3000 and 10,000

Scaling Value 300
Learning Rate (ViT) 5e-2

LoCA

Frequency Components 3000 and 10,000
Learning Rate (ViT) 5e-2

Scaling Value 1 and 0.5
Learning iterations (Bs) 120

Learning Rate (locations) 1e-4

E TRAINING PROCEDURE

We provide a pseudo code of our LoCA fine-tuning method in Algorithm 1.

Algorithm 1 LoCA Fine-tuning

Require: Pre-trained weight W0, dataset D, learning rates ηa, ηl, number of alternating iterations
Bs, number of coefficient update steps Ba, number of location update steps Bl, total iterations
T , scaling factor α

Ensure: Fine-tuned weight W ′

1: Initialize a← 0, l randomly
2: for t = 1 to T do
3: Sample a mini-batch D and compute the training loss L
4: if t ≤ Bs then
5: if t mod (Ba +Bl) < Ba then
6: Update a by a← a− ηa∇aL
7: else
8: Update l by l← l− ηl ∂L∂l using Eq. (5)
9: end if

10: else
11: Update a by a← a− ηa∇aL
12: end if
13: end for
14: return W ′ =W0 + α[CTS(a, l, 1)D]

F DERIVATION OF PROPOSITION 1

Given any parameter W for a down-stream dataset, we assume that the M-estimator W ′ has asymp-
totic normality, the estimation error W ′ −W is independent of W and are asymptotically indepen-
dent and identically distributed, which can be specified as

√
n′
(
W ′ −W

)V |W d.→ NK2

(
0, σ2

0IK2

)
, (6)

20

Published as a conference paper at ICLR 2025

where n′ is the number of samples in the dataset, K is the width (length) of the weight matrix and
σ0 > 0 is a constant independent of W .
Lemma 1. Let X1, X2, . . . be a sequence of k-dimensional random variables, and let g(Xn, s)

be a parameterized function with parameter space S, such that for all s ∈ S,
√
ng(Xn, s)

d→
Nk(0, Ik). Then, for any random variable S taking values in S and independent of Xn, we have
√
ng(Xn, S)

d→ Nk(0, Ik).

Proof. Fix any point t ∈ Rk, denote all coordinates of Xn not larger than t by Xn ≤ t. Assume the
distribution of S and Xn are PS , Pn respectively. Thus

P
(√
ng(Xn, S) ≤ t

)
=

∫
√
ng(x,s)≤t

dPS(s)dPn(x)

=

∫
s∈S

P
(√
ng(Xn, s) ≤ t

)
dPS(s).

As
√
ng(Xn, s)

d.→ Nk(0, Ik),∀s ∈ S implies P (
√
ng(Xn, s) ≤ t)→ Φk(t),∀s ∈ S, where Φk(·)

is the C.D.F of standard multivariate normal distribution. Based on dominate convergence theorem
and P (

√
ng(Xn, s) ≤ t) ≤ 1, we have

P
(√
ng(Xn, S) ≤ t

)
→ Φk(t),

which is
√
ng(Xn, S)

d.→ Nk(0, Ik).

Note that we can replaceNk(0, Ik) with any continuous distribution in Rk and the result still holds.
Based on our assumption and Eq. (6), we consider

√
n′
(
W ′ −W

)V | W as a random variable
parameterized by W . Therefore, there exists a constant σ0 such that we have:

√
n′
(
W ′ −W

)V d.→ NK2

(
0, σ2

0IK2

)
,

in other words, (
W ′ −W

)V
= NK2

(
0,
σ2
0

n′
IK2

)
+ oP

(
1√
n′

)
. (7)

Besides, the assumption gives (
W −W 0

)V
= NK2

(
0, σ2IK2

)
.

Adding it to Eq. (7), we have(
W ′ −W 0

)V
= NK2

(
0,

(
σ2
0

n′
+ σ2

)
IK2

)
+ oP

(
1√
n′

)
. (8)

On the other hand, W0 is the M-estimator of W 0 using N samples, we have

W0 −W 0 = OP

(
1√
N

)
.

Combining it with Eq. (8) we have

∆WV = (W ′ −W0)
V
= NK2

(
0,

(
σ2
0

n′
+ σ2

)
IK2

)
+ oP

(
1√
n′

)
+OP

(
1√
N

)
.

G PROOF OF THEOREM 1

Before proving the proposed theorem, we first give a proposition.

For any matrixW ∈ RK×K , let its singular values be |λ1| ≥ . . . ≥ |λK |. Define the discrete Fourier
transform of W as F(W) = HWH , where H ∈ CK×K is the DFT matrix. More specifically, we
can express H as H = Re(H) + iIm(H), where i is the imaginary unit, and Re(H), Im(H) ∈

21

Published as a conference paper at ICLR 2025

RK×K are the real and imaginary coefficients, respectively. Let F = (Fij)1≤i,j≤K = F(W). For
each location (i, j), we define a reference matrix R = (Rij)1≤i,j≤K as follows:

Rij =


−1, if Fij has a symmetric counterpart and (i, j) satisfies condition U
1, if Fij has a symmetric counterpart but (i, j) does not satisfy condition U
0, otherwise

Here the condition U is a set of conjugate that
[(i = 0) ∧ (j > K − j)] ∨ [(j = 0) ∧ (i > K − i)]∨

[(j > 0) ∧ (j > K − j)] ∨ [(j = n− j) ∧ (i > K − i).]
We then define the half matrix of F by FH = (FH

ij)1≤i,j≤K , where

FH
ij = {21(Rij = 1) + 1(Rij = 0)} |Fij |2.

Similarly, we define the real and imaginary part half matrix of F by FR and F I , where

FR
ij = {21(Rij = 1) + 1(Rij = 0)}Re(Fij)

2,

F I
ij = {21(Rij = 1) + 1(Rij = 0)} Im(Fij)

2.

Based on the definition, we have FH = FR + F I . We then sort FH in descending order, denoting
it as FH

(1) ≥ . . . ≥ FH
(K2) = 0. It can be inferred that approximately half of these elements are

equal to 0. Consider the separate matrix FS = (FR, F I) ∈ RK×2K , and also sort it in descending
order, denoted as FS

(1) ≥ . . . ≥ FS
(2K2) = 0. There are also about half of these elements equal to 0.

For the simplicity of notations, we define LR = EW∼GL(W, ŴR), L
(i)
F = EW∼GL(W, Ŵ

(i)
F) for

i = 1, 2, 3. Denote Ĩd
(1)

be the set of locations that are symmetric counterparts of Id(1).
Proposition 2. With the notations defined above, for r < K, we have

LR =

K∑
i=K−r+1

|λi|2,

L
(1)
F =

∑
(i,j)/∈Id(1)∪Ĩd

(1)

|Fij |2, L(2)
F =

K2∑
i=N2+1

FH
(i), L

(3)
F =

2K2∑
i=N3+1

FS
(i),

s.t. ||W ||22 = ||F ||22 =

K∑
i=1

|λi|2 =

K∑
i=1

K∑
j=1

|Fij |2 =

K2∑
i=1

FH
(i) =

2K2∑
i=1

FS
(i),

Proof. First let us explore the reconstruction loss of low rank approximation. For any W ∈ RK×K ,
its SVD decomposition is given by

W = UΛV T , Λ = diag(λ1, . . . , λK),

UTU = V TV = IK , |λ1| ≥ . . . ≥ |λK |.

The best ŴR that minimize the reconstruction loss in terms of Frobenius norm is
ŴR = Û V̂ T , Û = UΛ1/2

r , V̂ = V Λ1/2
r ,

Λr =
(
diag(λ1, . . . , λr), 0r×(K−r)

)T
.

Thus we can easily calculate the reconstruction loss

LR = ||W − ŴR||22 = ||U(Λ− Λr)V
T ||22

= tr
({
U(Λ− Λr)V

T
}T {

U(Λ− Λr)V
T
})

= tr
(
(Λ− Λr)

T (Λ− Λr)
)

=

K∑
i=K−r+1

|λi|2.

Before moving on to L(i)
F , i = 1, 2, 3, we introduce discrete Parseval theorem first.

22

Published as a conference paper at ICLR 2025

Lemma 2 (Discrete Parseval Theorem). For a matrix X of size K × K, with its Discrete Fourier
Transform (DFT) denoted by F , the sum of the squares of the elements in the original matrix is
equal to the sum of the squares of the elements in the DFT matrix, scaled by 1/K. Formally, if X is
the original matrix and F is its DFT, then:

||X||22 =

K−1∑
i=0

K−1∑
j=0

|Xij |2 =
1

K

K−1∑
i=0

K−1∑
j=0

|Fij |2 =
1

K
||F ||22.

Since F = F(W),W = F−1(F), and Fourier transform is linear transform, we have

L
(i)
F = ||W − Ŵ (i)

F ||
2
2 = ||W −F−1(F̂ (i))||22

= ||F−1(F)−F−1(F̂ (i))||22
linearity of Fourier Transformation = ||F−1(F − F̂ (i))||22

Parseval Theorem = ||F − F̂ (i)||22.
Check i = 1, 2, 3 separately and we have

L
(1)
F =

∑
(i,j)/∈Id(1)∪Ĩd

(1)

|Fij |2, L(2)
F =

K2∑
i=N2+1

FH
(i), L

(3)
F =

2K2∑
i=N3+1

FS
(i).

As we assume W ∼ NK,K(0, IK , IK), we then define A = WTW ∼ WK(K, IK , 0), which
follows a central Wishart distribution. Recall the SVD of W , i.e., W = UΛV T , and

A =WTW = V Λ2V T , Λ2 = diag(λ21, . . . , λ
2
K),

we can conclude that λ′i = λ2i is the eigenvalue of the matrix that followsWK(K, IK , 0) distribution.

Next we present a commonly used result about the Wishart distribution in random matrix theory.
Lemma 3. The joint density of Λ2 = diag(λ′1, . . . , λ

′
K) = diag(λ21, . . . , λ

2
K) is

gL(Λ
2) = C

[
K∏
i=1

λ
′−1/2
i e−λ′

i/2

]∏
i<j

|λ′i − λ′j |

 .
Noting that Lemma 3 is a direct corollary of Weyl’s Integration Formula in Lemma 4 and 5.
Lemma 4. (Bröcker & Tom Dieck, 2013). If X ∈ RK×K is a real symmetric random matrix with
density g(λ′1, . . . , λ

′
K), where g is exchangeable, and λ′1, . . . , λ

′
K are eigenvalues. Thus the joint

density of (λ′1, . . . , λ
′
K) is

f ′(λ′1, . . . , λ
′
K) = Cg(λ′1, . . . , λ

′
K)
∏
i<j

|λ′i − λ′j |,

where C is some constant such that∫
Cg(λ′1, . . . , λ

′
K)
∏
i<j

|λ′i − λ′j |dλ′1 . . . dλ′K = 1.

Remark. Exchangeable function g means for any permutation π : [K]→ [K] and λ′1, . . . , λ
′
K ,

g(λ′1, . . . , λ
′
K) = g(λ′π(1), . . . , λ

′
π(K)).

Wishart distribution WK(K, IK , 0) has density

g(A) =
|A|−1/2 exp {−tr(A)/2}

2K2/2πK(K−1)/4
K∏
i=1

Γ((K − i+ 1)/2)

,

23

Published as a conference paper at ICLR 2025

where

|A|−1/2 =

(
K∏
i=1

λ′i

)−1/2

=

K∏
i=1

λ−1
i ,

tr(A) =

K∑
i=1

λ′i =

K∑
i=1

λ2i .

This directly yields an unordered version of the result in Lemma 3. Specifically, let λ′1, . . . , λ
′
K

be the unordered eigenvalues of A. To avoid confusion, we denote these unordered eigenvalues as
Λ̃2 = (λ̃′1, . . . , λ̃

′
K). Their joint density function is given by:

g̃L(Λ̃
2) = C̃

[
K∏
i=1

λ̃
′−1/2
i e−λ̃′

i/2

]∏
i<j

|λ̃′i − λ̃′j |

 . (9)

Note that in the density function of Λ2, all λ′1, . . . , λ
′
K are exchangeable, and for exchangeable

random variables we have Lemma 5.

Lemma 5. For any K exchangeable variables X1, . . . , XK , which means for any permutation
π : [K]→ [K], the following equation holds,

(X1, . . . , XK)
d.
= (Xπ(1), . . . , Xπ(K)).

Let g be the density function of X1, . . . , XK . Denote their order statistics as X(1) ≥ . . . ≥ X(K).
If we use g to represent the joint distribution of these order statistics, then we have:

g(x(1), . . . , x(K)) = K!g(x1, . . . , xK).

Based on Lemma 5 and Eq. (9), let gL denote the density function of the random variables with joint
density g̃L, and we finally have

gL(Λ
2) = C

[
K∏
i=1

λ
′−1/2
i e−λ′

i/2

]∏
i<j

|λ′i − λ′j |

 ,
where the constant C has following representation (Muirhead, 2009):

C =
(π
2

)K2/2 1

Γ2
K(K/2)

,

here Γp(a) is the multivariate gamma function. To summarize, we can calculate LR by taking
expectation over distribution gL,

LR =

∫ K∑
i=K−r+1

λ′igL(Λ
2)dλ′1 . . . dλ

′
K .

24

Published as a conference paper at ICLR 2025

Note that if K/2 ∈ N, there are in total CKr
K2/2+2 possible choice of Id(1) with equal probability.

EId(1)

[
EW∼G

(
K2 − L(1)

F

)]
=

1

CKr
K2/2+2

∑
Id(1)

EW∼G

(
K2 − L(1)

F

)

=
1

CKr
K2/2+2

∑
Id(1)

EW∼G

 ∑
id∈Id(1)∪Ĩd

(1)

|Fid|2


=
1

CKr
K2/2+2

∑
Id(1)

EW∼G

 K∑
i=1

K∑
j=1

|Fij |21
{
(i, j) ∈ Id(1) ∪ Ĩd

(1)
}

=
1

CKr
K2/2+2

EW∼G

 K∑
i=1

K∑
j=1

|Fij |2
∑
Id(1)

1

{
(i, j) ∈ Id(1) ∪ Ĩd

(1)
}

=
CKr−1

K2/2+1

CKr
K2/2+2

EW∼G

 K∑
i=1

K∑
j=1

|Fij |2


=
K3r

K2/2 + 2
< 2Kr,

which aligns with intuition that random choice gives average performance. Similarly, if (K+1)/2 ∈
N, there are in total CKr

(K2+1)/2 possible choices of Id(1) with equal probability. And

EId(1)EW∼G

(
K2 − L(1)

F

)
=

K3r

(K2 + 1)/2
< 2Kr.

On the other hand,

EW∼G

(
K2 − LR

)
= EW∼G

(
r∑

i=1

|λi|2
)

=

∫
gL(Λ

2)

r∑
i=1

λ′idλ
′
K . . . dλ′1.

This calculation is complicated and does not have a closed-form expression. Next, we demonstrate

EW∼G

(
K2 − LR

)
> EId(1)EW∼G

(
K2 − L(1)

F

)
.

We begin by proving that this inequality holds for the case where r = 1 and K is sufficiently
large. Following this, we extend our analysis by numerically approximating the exact values of the
integrals for various combinations of r and K. We first prove that for r = 1 and sufficiently large
K, the inequality EW∼G|λ1|2 = EW∼Gλ

′
1 > 2Kr holds. λ′1, . . . , λ

′
K has density

gL(Λ
2) =

(π
2

)K2/2 1

Γ2
K(K/2)

[
K∏
i=1

λ
′−1/2
i e−λ′

i/2

]∏
i<j

|λ′i − λ′j |

 , (10)

and λ′1 is the largest eigenvalue of a standard Wishart ensemble. We refer to the large deviation
result under this circumstance that for large K there exists c ≤ 1 and

λ′1 =

(
1√
c
+ 1

)2

K + c1/6
(

1√
c
+ 1

)4/3

K1/3χ, (11)

where the random variable χ has an K-independent limiting distribution, which is Tracy-Widom
distribution (Vivo et al., 2007; Johnstone, 2001; Johansson, 2000). Take expectation on both sides
of Eq. (11) and

EW∼G

(
K2 − LR

)
= Eλ′1 =

(
1√
c
+ 1

)2

K +O(K1/3).

25

Published as a conference paper at ICLR 2025

Thus
EW∼G (1− LR)

K
→
(

1√
c
+ 1

)2

≥ 4 > 2, which concludes the first inequality in Theorem

1. For r = 1 but not sufficiently large K, we directly calculate the Eλ′1 and compare it with 2K.
For r > 1 we can apply similar analysis but that will be much more complex. We demonstrate the
result in later numerical approximation (Fig. 6 and 7).

Now we turn to L(i)
F , i = 1, 2, 3. Remember we have

F(W) = {Re(H) + iIm(H)}W {Re(H) + iIm(H)}
= {Re(H)WRe(H)− Im(H)WIm(H)}+ i {Im(H)WRe(H) +Re(H)WIm(H)}
= Re(F(W)) + iIm(F(W)).

After vectorization,

Re(F(W))V = {Re(H)⊗Re(H)− Im(H)⊗ Im(H)}WV ,

Im(F(W))V = {Re(H)⊗ Im(H) + Im(H)⊗Re(H)}WV .

As WV ∼ NK2 (0, IK2), and the linear transform of multivariate normal is still normal, we have

Re(F(W))V ∼ Nn2(0,ΣR), Im(F(W))V ∼ Nn2(0,ΣI),where

ΣR = {Re(H)⊗Re(H)− Im(H)⊗ Im(H)} {Re(H)⊗Re(H)− Im(H)⊗ Im(H)}T ,

ΣI = {Re(H)⊗ Im(H) + Im(H)⊗Re(H)} {Re(H)⊗ Im(H) + Im(H)⊗Re(H)}T .
Next we propose that Re(H)Im(H) = 0.
Lemma 6. For any K, H is the 2d DFT K ×K matrix defined by

Hu,v =
1√
K
{cos(2πuv/K)− i sin(2πuv/K)} ,

we have Re(H)Im(H) = 0.

Proof. First, let us denote the real part R and the imaginary part I of H as follows:

Ru,v =
1√
K

cos

(
2πuv

K

)
, Iu,v = − 1√

K
sin

(
2πuv

K

)
We calculate the matrix product R · I , where R and I are K × K matrices. The element of the
resulting matrix at location (u,w) is given by:

(RI)u,w =

K−1∑
v=0

Ru,vIv,w.

Substituting the expressions for R and I:

(RI)u,w =

K−1∑
v=0

{
1√
K

cos

(
2πuv

K

)}{
− 1√

K
sin

(
2πvw

K

)}

= − 1

K

K−1∑
v=0

cos

(
2πuv

K

)
sin

(
2πvw

K

)
.

Next, we use the trigonometric identity that cos(x) sin(y) = [sin(x+ y)− sin(x− y)] /2. Apply-
ing this identity, we have

cos

(
2πuv

K

)
sin

(
2πvw

K

)
=

1

2

{
sin

(
2πuv

K
+

2πvw

K

)
− sin

(
2πuv

K
− 2πvw

K

)}
.

Substituting back, we get

(RI)u,w = − 1

2K

K−1∑
v=0

{
sin

(
2π(u+ w)v

K

)
− sin

(
2π(u− w)v

K

)}
= 0 .

26

Published as a conference paper at ICLR 2025

This lemma gives Re(H)Im(H) = Im(H)Re(H) = 0. Therefore
{Re(H)⊗Re(H)− Im(H)⊗ Im(H)} {Re(H)⊗ Im(H) + Im(H)⊗Re(H)}

= {Re(H)}2 ⊗Re(H)Im(H) +Re(H)Im(H)⊗ {Re(H)}2−
Im(H)Re(H)⊗ {Im(H)}2 − {Im(H)}2 ⊗ Im(H)Re(H)

=0,

which indicates ΣRΣI = 0, due to the normality, Re(F(W)) is independent of Im(F(W)). H has
slightly different property whenK is an odd or even number. For the simplicity of proof, we assume
K/2 ∈ N, the odd case can be proved similarly.
Lemma 7. When K/2 ∈ N, Re(H)Re(H)T and Im(H)Im(H)T have the following property:

{
Re(H)Re(H)T

}
u,w

=



1, u = w = 0,K/2,

1

2
, u = w ̸= 0,K/2,

1

2
, u ̸= w, u+ w = K,

0, otherwise.

{
Im(H)Im(H)T

}
u,w

=



0, u = w = 0,K/2,

1

2
, u = w ̸= 0,K/2,

− 1

2
, u ̸= w, u+ w = K,

0, otherwise.

Proof. Follow previous notations,(
RRT

)
u,w

=
1

2K

K−1∑
v=0

{
cos

(
2π(u+ w)v

K

)
+ cos

(
2π(u− w)v

K

)}
.

First we get
(
RRT

)
0,0

=
(
RRT

)
K/2,K/2

= 1. When u = w ̸= 0,K/2,

(
RRT

)
u,w

=
1

2K

K−1∑
v=0

cos

(
2π(u+ w)v

K

)
+

1

2
=

1

2
,

since K ∤ (u+ w). When u ̸= w but u+ w = K,(
RRT

)
u,w

=
1

2K

K−1∑
v=0

cos

(
2π(u− w)v

K

)
+

1

2
=

1

2
,

since K ∤ (u− w). For other u,w, it is easy to derive
(
RRT

)
u,w

= 0.

Moreover, HH
T
= IK , where · means conjugation, indicating that RRT + IIT = IK , and we get

the result for IIT .

As Re(H)Im(H) = Im(H)Re(H) = 0, we can calculate
ΣR =

{
Re(H)Re(H)T

}
⊗
{
Re(H)Re(H)T

}
+
{
Im(H)Im(H)T

}
⊗
{
Im(H)Im(H)T

}
,

ΣI =
{
Re(H)Re(H)T

}
⊗
{
Im(H)Im(H)T

}
+
{
Im(H)Im(H)T

}
⊗
{
Re(H)Re(H)T

}
.

Based on Lemma (7), we can assert that there are 4 locations in ΣR containing the element 1. These
locations are (0, 0), (K/2,K/2), (K2/2,K2/2), and ((K2+K)/2, (K2+K)/2). Excluding rows
and columns 0, K/2, K2/2, and (K2 +K)/2, each of the remaining rows and columns contains 2
locations with the value 0.5. There exists a row permutation matrix U ∈ RK×K , such that

UΣRU
T =


I4

∆2

∆2

. . .
∆2

 , ∆2 =

(
0.5 0.5
0.5 0.5

)
. (12)

27

Published as a conference paper at ICLR 2025

Since

ΣR +ΣI =
{
Re(H)Re(H)T + Im(H)Im(H)T

}
⊗
{
Re(H)Re(H)T + Im(H)Im(H)T

}
=
(
HH

T
)
⊗
(
HH

T
)
= IK ⊗ IK = IK2 ,

we have similar results on ΣI that

UΣIU
T =


04

∆−
2

∆−
2

. . .
∆−

2

 , ∆−
2 =

(
0.5 −0.5
−0.5 0.5

)
. (13)

This analysis aligns with the definitions of FR and F I . Given that WV follows a standard normal
distribution and ΣRΣI = 0, we can represent ΣR and ΣI as shown in Eq. (12) and Eq. (13),
respectively. Let R be the reference matrix, for i, j with Rij = 0, the i, j-th element corresponds to
the element with variance 1, and FR

ij ∼ χ2
1, F

I
ij = 0; for i, j with Rij = 1, FR

ij , F
I
ij ∼ χ2

1; for i, j
such that Rij = −1, FR

ij = F I
ij = 0. And for all i, j with Rij ̸= −1, FR

ij and F I
ij are independent.

When Rij = 0,
∣∣FH

ij

∣∣2 = Re(Fij)
2 ∼ χ2

1; when Rij = 1,
∣∣FH

ij

∣∣2 = 2Re(Fij)
2 + 2Im(Fij)

2 ∼
χ2
2. Thus we can reformulate L(2)

F and L(3)
F in a more clear way. Define ψ1, . . . , ψK2

i.i.d.∼ χ2
1,

ϕ1, . . . , ϕ(K2−4)/2
i.i.d.∼ χ2

2, ϕ(K2−2)/2, . . . , ϕ(K2+4)/2
i.i.d.∼ χ2

1. Denote the order statistics of ψi, ϕi
as ψ(1) ≥ . . . ≥ ψ(K2) and ϕ(1) ≥ . . . ≥ ϕ((K2+4)/2), we then have

L
(2)
F

d.
=

(K2+4)/2∑
i=N2+1

ϕ(i), L
(3)
F

d.
=

K2∑
i=N3+1

ψ(i) , (14)

where d.
= means equality in distribution. In other words,

EW∼G

(
K2 − L(2)

F

)
=

N2∑
i=1

Eϕ(i), EW∼G

(
K2 − L(3)

F

)
=

N3∑
i=1

Eψ(i) ,

i.e., EW∼G

(
K2 − L(3)

F

)
is the summation of i.i.d. chi square order statistics’ expectation. Simi-

larly, we can bound EW∼G

(
K2 − L(2)

F

)
, by defining

ξ
(1)
1 , . . . , ξ

(1)
(K2−4)/2, ξ

(2)
1 , . . . , ξ(K2+4)/2 ∼ χ2

2,

and corresponding order statistics

ξ
(1)
(1) ≥ . . . ≥ ξ

(1)
((K2−4)/2), ξ

(2)
(1) ≥ . . . ≥ ξ

(2)
((K2+4)/2).

Define M1 =
N2∑
i=1

Eξ(1)(i) and M2 =
N2∑
i=1

Eξ(2)(i) , we have M1 ≤ EW∼G

(
K2 − L(2)

F

)
≤M2.

Lemma 8. For any n i.i.d. random variables with pdf f(x) and cdf H(x), the l-th largest order
statistic has density hl(x) = nCl−1

n−1h(x)H(x)l−1 {1−H(x)}n−l.

We claim that for given r < K/3,

N3∑
i=1

Eψ(i) ≥M2 ≥M1 ≥
∫
gL(Λ

2)

r∑
i=1

λ′idλ
′
K . . . dλ′1, (15)

where gL(Λ2) is given in Eq. (10). We verify this inequality by numerical calculation, since each
item in Eq. (15) is already a closed form integration. Specifically, we compare the ratios L

K2 for
various combinations of K and r, where L represents LR, L(1)

F , L(2)
F , and L(3)

F . For commonly used

28

Published as a conference paper at ICLR 2025

r values, we examined K from 100 to 300, while for larger matrices with K = 768 and K = 4096,
we tested r values from 8 to 32. Throughout these tests, we employ specific definitions for the
different L values: L(1)

F = 2Kr, K2 −M2 ≤ L
(2)
F ≤ K2 −M1, and L(3)

F = LD, with the last
definition verified by Theorem 2.

Remark. Given that the four integrals in Eq. (15) are not easily expressed in a straightforward man-
ner, directly proving the inequality is impractical. Beyond numberical approximation for commonly
used r and K in Fig. 6 and 7, we offer an intuitive illustration to show why the inequality holds.

A tight bound on order statistics is given by Arnold & Groeneveld (1979); Bertsimas et al. (2006):
for X1, · · · , Xn i.i.d. with expectation µ and variance σ2, the expectation of l-th order statistic is

bounded by µ+ σ

√
n− l
l

. Consider using this bound to approximate
N3∑
i=1

Eψ(i) and M1,M2:

n1 = K2, µ1 = Eψi = 1, σ1 =
√
V ar(ψi) =

√
2,

n2 = K2/2 + 2, µ2 = Eξ(2)i = 2, σ2 =

√
V ar(ξ

(2)
i) = 2.

Thus

2

2Kr/3∑
i=1

√
K2/2 + 2− i

i
=
√
2

2Kr/3∑
i=1

√
K2

i
+

4

i
− 2

≈
√
2

2Kr/3∑
i=1

√
K2

i
− 1

<
√
2

Kr∑
i=1

√
K2

i
− 1,

which gives the upper bound of M2 is smaller than that of
N3∑
i=1

Eψ(i).

Figure 6: Reconstruction errors of different r, K and methods. Specify r = 8, 16, 24, 32 and
K ∈ [100, 300]. R denotes the low rank method, the curve is LR/K

2; M1 and M2 denotes 1 −
M1/K

2, 1−M2/K
2 respectively; D denotes L(3)

F /K2 or LD/K
2; U denotes 1− 2r/K.

29

Published as a conference paper at ICLR 2025

Figure 7: Reconstruction errors of different r, K and methods. Specify K = 768, 4096 and r ∈
[8, 32]. R denotes the low rank method, the curve is LR/K

2; M1 and M2 denotes 1−M1/K
2, 1−

M2/K
2 respectively; D denotes L(3)

F /K2 or LD/K
2; U denotes 1− 2r/K.

H PROOF OF THEOREM 2

Proof. Theorem 2 is a corollary of Eq. (14). For notation simplicity, denote the expectation of
reconstruction loss of DCT method as LD = EW∼G

{
L(W, ŴD)

}
.

Denote discrete cosine transform as D = D(W) = QWQT , where Q ∈ RK×K is the DCT matrix
satisfies QQT = IK . Vectorize D we get

DV = (Q⊗Q)WV ∼ NK2(0,ΣD),

where ΣD = (Q⊗Q)(Q⊗Q)T = (QQT)⊗ (QQT) = IK2 .

Denote the order statistics of D’s elements as D(1) ≥ . . . ≥ D(K2). The Parseval theorem also
holds for DCT, thus

LD = EW∼G


K2∑

i=ND+1

|D(i)|2
 = K2 − EW∼G

{
ND∑
i=1

|D(i)|2
}
.

Under the situation of W ∼ G, |Dij |2 ∼ χ2
1 and K2 − LD is the expectation of the largest ND out

ofK2 random χ2
1 variables, which exactly equals to theK2−L(3)

F in Eq. (14) whenND = N3.

I COMPUTATIONAL EFFICIENCY OF GRADIENT ESTIMATION

Recall that the 2D iDCT can be represented as ∆W = α[CTS(a, l,1)D], here CT andD are iDCT
transformation matrices for rows and columns respectively. We show that the gradient of location l
is computed alongside with the gradient of a, introducing only negligible additional computations.

For ease of representation, we denote the sparse matrix S(a, l,1) as Ws. We first show how a
change at location (i, j) in Ws affects location (m,n) in ∆W 2:

∂∆W [m,n]

∂Ws[i, j]
= αCT [m, i]D[j, n]. (16)

Now, consider ∂L/∂∆W that we get during backpropagation, if we want to get the gradient of an
element in a (indexed by i, j), we need to compute:

∂L
∂Ws[i, j]

=
∑
m,n

(
∂L

∂∆W [m,n]

∂∆W [m,n]

∂Ws[i, j]
). (17)

2Here we use [·, ·] to denote the index operation on a matrix.

30

Published as a conference paper at ICLR 2025

Expanding Eq. (17), we have
∂L

∂Ws[i, j]
= α

∑
m,n

(
∂L

∂∆W [m,n]
CT [m, i]D[j, n]) = α (D(

∂L
∂∆W

)TCT)T︸ ︷︷ ︸
DCT,matrixZ

[i, j]. (18)

Therefore, to get the gradient of a, we also need to compute the matrix Z in Eq. (5). The gradient of
each element in a can be directly indexed by locations, while the gradient of each element in l can
be estimated according to Section 4.3, which will introduce only negligible additional computation.

J COMPUTATIONAL COMPLEXITY AND MEMORY COST COMPARISON

As discussed in Section 4.2, the original implementation of DCT, i.e., Eq. (1) can take two enhanced
forms depending on the sparsity of the DCT spectrum: a sparse matrix-based implementation and
a fast algorithm-based implementation. The computational complexity of using the sparse matrix
implementation is O(Bpq), where B is the number of frequency components, and p and q are the
dimensions of the weight matrix. The fast algorithm-based implementation has a complexity of
O(pq log(pq)). It is worth noting that PyTorch currently lacks a specialized fast algorithm for DCT.
To address this, we implemented a fast DCT based on FFT. In comparison, LoRA has a complex-
ity of O(rpq), where r is the rank. FourierFT, which utilizes iFFT algorithm, has an asymptotic
complexity of O(pq log(pq)).

From an asymptotic analysis perspective, the fast implementations of LoCA and FourierFT have the
same complexity, while the complexity of LoRA is lower when r < log(pq). However, noting that
the practical performance can differ significantly from theoretical asymptotic analysis due to various
factors such as implementation details, hardware-specific optimizations, the constant coefficient in
computation complexity and the actual values of B, r, and pq. In our experimental comparisons,
we observed that the actual running times of these methods are much closer than the asymptotic
analysis might suggest. Table 10 presents a comparison of the three methods.

Table 10: Comparison of actual training speed and memory costs on a single Tesla H100 GPU.
LoCA1 represents the sparse matrix-based iDCT implementation, and LoCA2 refers to the fast
iDCT implementation based on iFFT. LoCA 3 is the DCT implementation in the original matrix
multiplication form (default implementation). All experimental configurations are consistent with
the ones in main experiments.

Method Asymptotic Complexity
MRPC

RoBERTa-base
Alpaca-52K

LLaMA-1-7b
StanfordCars

ViT-base

Training Speed
(iterations/s)

Memory Cost
(MB)

Training Speed
(iterations/s)

Memory Cost
(MB)

Training Speed
(iterations/s)

Memory Cost
(MB)

LoCA1 O(B log(pq)) 28.56 3,828 - - 2.28 4,214
LoCA2 O(pq log(pq)) 25.12 3,834 0.63 57,152 1.01 3,782
LoCA3 O(p2q2) 27.77 3,793 0.87 57,888 2.33 3,754
FourierFT O(pq log(pq)) 28.82 4,050 0.89 58,868 2.35 3,760
LoRA O(rpq) 31.14 3,758 1.18 53,154 2.78 3,708

As shown in Table 10, despite the differences in asymptotic complexities, the actual running speeds
of LoCA and FourierFT are very close, with LoRA being slightly faster (since the matrix multiplica-
tion operation is highly optimized on the GPU). This suggests that the implementation efficiency and
hardware utilization play significant roles in practical performance. For the memory consumption,
both LoCA and FourierFT exhibit marginally higher memory usage compared to LoRA. However,
LoCA consistently maintains a lower memory footprint than FourierFT across all test scenarios.

Notably, there is still potential for further optimization for our method. Since the current fast DCT
implementation is based on FFT, a lot of redundant computation is introduced to construct a DCT
into the form of a DFT. A specialized fast DCT algorithm could potentially improve the speed of
LoCA even further, potentially bringing its speed closer to or even surpassing that of LoRA while
maintaining its superior adaptation capability. For FourierFT, while FFT can handle complex data, it
introduces computational redundancies when processing real-valued data, making DCT theoretically
superior in terms of both computational speed and memory usage for real-number operations. We
leave the development and implementation of such optimizations as future work.

31

Published as a conference paper at ICLR 2025

K EXAMPLES OF INSTRUCTION TUNING EXPERIMENTS

Fig. 8 and Fig. 9 show multi-turn conversations on two MT-Bench questions of a fine-tuned LLaMA
model using LoCA and a pre-trained LLaMA model. From the dialogue, we can see that the
instruction-following ability of the pre-trained LLaMA is quite limited. The first-turn answer does
not perfectly address the given question, and in the second round, it barely responds according to
the user request at all. However, after LoCA fine-tuning, there is a noticeable improvement in the
quality of the answers, which can be seen from the evaluation of GPT-4.

Please describe the concept of machine learning. Could you elaborate on the differences between
supervised, unsupervised, and reinforcement learning? Provide real-world examples of each.

Machine learning is a subfield of computer science
that focuses on the development of algorithms that can
learn from data. It is a branch of artificial
intelligence that deals with the design and
development of algorithms that can learn from data and
use the information to make predictions.\n Machine
learning algorithms can be divided into three
categories: supervised, unsupervised, and
reinforcement learning.\n Supervised learning
algorithms are trained using labeled data. The
algorithms are given a set of labeled data, and they
learn to make predictions based on the data.\n
Unsupervised learning algorithms are trained using
unlabeled data. The algorithms are given a set of
unlabeled data, and they learn to make predictions
based on the data.\n Reinforcement learning algorithms
are trained using a reward system. The algorithms are
given a set of unlabeled data, and they learn to make
predictions based on the data. The algorithms are also
given a reward system, and they learn to make
predictions based on the data and the reward system.\n
Supervised learning algorithms are used in
applications like spam filtering, speech recognition,
and computer vision. Unsupervised learning algorithms
are used in applications like clustering, anomaly
detection, and recommender systems. Reinforcement
learning algorithms are used in applications like
autonomous driving, robotics, and game playing.

Machine learning is a subfield of artificial intelligence that involves
the development of algorithms that can learn from and make predictions
based on data. These algorithms are trained on large datasets and can
improve their performance over time as they receive more data.\nThere are
three main types of machine learning: supervised learning, unsupervised
learning, and reinforcement learning.\n1. Supervised Learning: In
supervised learning, the algorithm is trained on labeled data, meaning
that the correct output is provided for each input. The algorithm learns
to predict the output for new data by finding patterns in the training
data. For example, a supervised learning algorithm could be trained on a
dataset of images of cats and dogs, and then be able to accurately
classify new images as either cats or dogs.\n2. Unsupervised Learning: In
unsupervised learning, the algorithm is trained on unlabeled data,
meaning that the correct output is not provided for each input. The
algorithm learns to find patterns and structure in the data on its own.
For example, an unsupervised learning algorithm could be trained on a
dataset of customer transactions, and then be able to identify clusters
of similar customers based on their purchasing habits.\n3. Reinforcement
Learning: In reinforcement learning, the algorithm learns by interacting
with its environment and receiving feedback in the form of rewards or
penalties. The algorithm learns to make decisions that maximize the
rewards and minimize the penalties. For example, a reinforcement learning
algorithm could be trained to play a game like chess or Go, where it
learns to make moves that lead to victory by receiving rewards for
winning games and penalties for losing games.\nIn summary, machine
learning is a powerful tool that can be used to make predictions and
decisions based on data. The three main types of machine learning are
supervised learning, unsupervised learning, and reinforcement learning,
each with its own strengths and applications.

In your last example of reinforcement learning, can we use supervised learning to solve it?

The assistant's response provides a basic explanation
of machine learning and the three primary categories:
supervised, unsupervised, and reinforcement learning.
However, there are several repetition and clarity
issues. The response lacks depth and fails to
sufficiently elaborate on how these learning methods
differ. The examples provided are appropriate but
could be expanded upon to provide more real-world
context. There is also a factual inaccuracy in the
description of reinforcement learning. Overall, the
response is somewhat helpful and relevant but lacks
accuracy, depth, and clarity.

Rating: [[5]]

The assistant's response is accurate, relevant, and detailed. It provides
a clear and concise definition of machine learning and elaborates on the
differences between supervised, unsupervised, and reinforcement learning.
The assistant also provides real-world examples for each type of machine
learning, which helps to illustrate the concepts in a practical context.
The response is comprehensive and informative, providing a good
understanding of the topic. Therefore, I would rate this response highly.

Rating: [[9]]

Reinforcement learning is a subfield of machine
learning that deals with the design and development of
algorithms that can learn from data and use the
information to make predictions. Reinforcement
learning algorithms are trained using a reward system.
The algorithms are given a set of unlabeled data, and
they learn to make predictions based on the data and
the reward system.

No, reinforcement learning is a type of machine learning that is distinct
from supervised learning. Reinforcement learning involves learning from
interactions with an environment and receiving feedback in the form of
rewards or penalties. Supervised learning, on the other hand, involves
training an algorithm on labeled data, where the correct output is
provided for each input. While both methods can be used to solve problems,
they are different approaches that are better suited to different types
of problems.

The assistant's response is accurate and relevant to the user's question.
It correctly explains why supervised learning cannot be used in place of
reinforcement learning, highlighting the differences between the two. The
assistant also provides a clear and concise explanation of the unique
characteristics of reinforcement learning and supervised learning.
However, the assistant could have provided a more detailed explanation or
example to illustrate why supervised learning would not be suitable for a
problem typically solved by reinforcement learning, such as a game like
chess or Go. Overall, the response is helpful and informative, but could
benefit from additional depth and detail.

Rating: [[8]]

The assistant's response is problematic. The assistant
repeats the basic definition of reinforcement learning,
which was already provided in the previous answer.
This repetition does not address the question. The
response does not answer the user's question about
whether supervised learning can be used in place of
reinforcement learning. It completely misses the
opportunity to explain the fundamental differences
between these approaches and when one might be
preferable over the other. Overall, the response fails
to address the user's question, repeats irrelevant
information, and perpetuates an earlier inaccuracy.

Rating: [[2]]

Before Fine-Tuning After Fine-Tuning

Turn 1

Turn 2

Figure 8: Question 149 from MT-Bench with the multi-turn interactions of pre-trained LLaMA-7b
(left) and fine-tuned LLaMA-7b using LoCA (right). We also attach the single-answer grading GPT-
4 judgment for reference.

32

Published as a conference paper at ICLR 2025

Draft a professional email seeking your supervisor's feedback on the 'Quarterly Financial Report' you
prepared. Ask specifically about the data analysis, presentation style, and the clarity of conclusions
drawn. Keep the email short and to the point.

Here is a draft email you can send:\nSubject:

Review and feedback on Quarterly Financial Report

Dear [Supervisor],

I have attached the Quarterly Financial Report for
your review and feedback.

As requested, I would like to specifically seek your
feedback on the following areas:

- Data analysis: Was the data accurate, relevant, and
presented in a clear and concise manner?

- Presentation style: Was the layout of the report
visually appealing and easy to follow?

- Clarity of conclusions drawn: Were the conclusions
drawn from the data analysis clear and supported by
the data?

Thank you in advance for your valuable feedback. I
look forward to discussing the report with you further.

Dear [Supervisor],

I hope this email finds you well. I am writing to seek your feedback on
the 'Quarterly Financial Report' that I have prepared.

Firstly, I would like to express my gratitude for the opportunity to
present the report to you. I have analyzed the data and presented the
findings in a clear and concise manner. I believe that the report
accurately reflects the financial performance of the company during the
quarter.

Secondly, I would like to know if you find the presentation style of the
report effective. I have used graphs and charts to highlight the key
points and make the data easily understandable.

Lastly, I would appreciate your feedback on the conclusions drawn from
the report. I have presented the findings in a logical manner and have
provided recommendations for future action.

Thank you for taking the time to review the report. Please let me know if
you have any further comments or questions. I look forward to your
feedback.

Take a moment to evaluate and critique your own response.

The assistant's response is professional, concise, and to the point. It
covers all the points requested by the user, including seeking feedback
on the data analysis, presentation style, and clarity of conclusions
drawn in the 'Quarterly Financial Report'. The assistant also expresses
gratitude for the opportunity to present the report, which adds a nice
touch of politeness and professionalism. The assistant's response is
well-structured and easy to understand, making it an effective
communication. Therefore, I would rate it highly.

Rating: [[9]]

Here are some things to consider when critiquing your
own work:

-Did you follow all the instructions and meet the
stated requirements?
- Was the email concise and to the point?
- Was the subject line clear and appropriate?
- Did you use professional and polite language in the
email?
- Did you include any relevant attachments?
- Was the tone appropriate for the situation?
- Did you leave any typos or grammatical errors?

By critiquing your own work, you can identify areas
for improvement and refine your writing skills.

My response was well-structured and professional. I addressed the
specific points mentioned in the email and provided clear and concise
information. The language used was appropriate and polite. Overall, the
response was effective in conveying the message.

The assistant's self-evaluation is accurate. The assistant's response to
the user's request was indeed well-structured, professional, and
addressed the specific points mentioned. The language used was
appropriate and polite, and the message was effectively conveyed. The
assistant demonstrated a good understanding of the task and executed it
well. However, the assistant could have been more critical in its self-
evaluation, perhaps pointing out areas where it could improve or change
its approach. Nonetheless, the assistant's self-evaluation was largely
accurate and fair.

Rating: [[8]]

The assistant's response is relevant and accurate, as
it provides a list of factors to consider when
evaluating the quality of the email draft. However, it
doesn't directly critique the assistant's own response
to the user's first question. The assistant should
have provided a self-evaluation of the email draft,
pointing out its strengths and weaknesses based on the
factors listed. The response lacks depth and detail
because it doesn't provide a specific critique of the
email draft. Therefore, the assistant's response is
not as helpful as it could be.

Rating: [[5]]

Before Fine-Tuning After Fine-Tuning

The assistant's response is relevant, accurate, and
helpful. It provides a professional and concise draft
email that addresses the user's request. The assistant
specifically asks for feedback on the data analysis,
presentation style, and clarity of conclusions drawn,
as requested by the user. The assistant's response is
also creative and detailed, providing a clear structure
for the email and suggesting a subject line. Therefore,
the assistant's response is of high quality.

Rating: [[8]]

Turn 1

Turn 2

Figure 9: Question 82 from MT-Bench with the multi-turn interactions of pre-trained LLaMA2-13b
(left) and fine-tuned LLaMA2-13b using LoCA (right). We also attach the single-answer grading
GPT-4 judgment for reference.

Fig. 10 shows the responses of LLaMA-2-7b models fine-tuned with LoCA and FourierFT on two
open-ended questions from the Vicuna dataset. It can be observed that while both fine-tuned models
answered the questions well, the LoCA fine-tuned model provided more detailed and insightful
responses, as evidenced by GPT-4’s evaluation.

33

Published as a conference paper at ICLR 2025

What are the differences between plant-based and animal-based protein sources?

Both assistants provide comprehensive and accurate responses to the user's question, detailing the differences between
plant-based and animal-based protein sources. They both discuss the source of the protein, nutritional value,
environmental impact, and other factors. \n\nHowever, Assistant A goes a step further by discussing the protein quality,
processing and cooking, and cost, which Assistant B does not mention. Assistant A also explains the concept of
biological value, which is an important aspect when discussing protein quality. Therefore, Assistant A provides a more

detailed and informative response. Final Verdict: [[A]]

Question 6

Plant-based and animal-based protein sources
differ in several ways.\nFirst, the source of
the protein. Animal-based protein comes from
meat, fish, eggs, and dairy products, while
plant-based protein comes from sources like
legumes, nuts, seeds, and grains.\nSecond,
the nutritional value. Plant-based proteins
tend to be richer in fiber, vitamins, and
minerals, while animal-based proteins are
generally higher in essential fatty acids and
vitamin B12.\nThird, the impact on the
environment. Animal-based protein production
requires a lot of land, water, and resources,
while plant-based protein production is
generally more sustainable.\nFinally, the
taste and texture. Animal-based proteins tend
to be more flavorful and have a more
satisfying texture, while plant-based
proteins can vary in taste and texture
depending on the source.\nIn summary, plant-
based and animal-based protein sources differ
in their source, nutritional value,
environmental impact, and taste and texture.
Ultimately, it's up to the individual to
choose the protein source that best meets
their needs and preferences.

Assistant A (Ours) Assistant B (FourierFT)

Plant-based and animal-based protein sources differ in several
ways:\n1. Nutritional Composition: Plant-based protein sources
like beans, lentils, and nuts are generally richer in fiber,
vitamins, and minerals, while animal-based protein sources like
meat and eggs are richer in essential amino acids and other
nutrients.\n2. Protein Quality: Plant-based protein sources are
generally considered to have lower protein quality than animal-
based sources. This is because they generally have a lower
biological value, meaning that the body may not absorb as much of
the protein from plant sources as it would from animal
sources.\n3. Environmental Impact: Plant-based protein sources
have a lower environmental impact than animal-based sources.
Raising animals for food requires a lot of land, water, and feed,
and produces greenhouse gases. Plant-based protein sources
require less resources to produce and have a smaller
environmental footprint.\n4. Processing and Cooking: Plant-based
protein sources are generally easier to process and cook than
animal-based sources. For example, it is easier to boil, steam or
grill beans or lentils than to grill or fry meat.\n5. Cost:
Plant-based protein sources are generally cheaper than animal-
based sources. However, the cost may vary depending on the
specific foods and the location.\nIn conclusion, both plant-based
and animal-based protein sources have their advantages and
disadvantages. It's important to choose sources that align with
your dietary preferences, nutritional needs, and environmental
values.

How can I develop my critical thinking skills?

Both Assistant A and Assistant B provide helpful and relevant responses to the user's question about developing critical
thinking skills. They both suggest reading widely, asking questions, being open-minded, and practicing regularly.
However, Assistant A goes a step further by suggesting additional strategies such as engaging in debate, learning to
think logically, practicing active listening, and continuous learning. This makes Assistant A's response more detailed
and comprehensive, providing the user with more strategies to develop their critical thinking skills. Therefore,

Assistant A's response is superior in this case. Final Verdict: [[A]]

Question 7

Here are some tips to help you develop your critical
thinking skills:\n1. Read widely: Reading is an
excellent way to develop critical thinking. Read widely,
including nonfiction books, essays, and articles, to
broaden your perspective and expose yourself to
different ideas and arguments.\n2. Ask questions: Always
ask questions, whether they be in your head or out loud.
This will help you to challenge assumptions, explore
different perspectives, and dig deeper into issues.\n3.
Think for yourself: Don't accept everything you hear at
face value. Use your own judgment and reasoning to
evaluate information and arguments.\n4. Be skeptical:
Always be skeptical of claims, especially those that
seem too good to be true. Don't believe everything you
read or hear, but instead, use your critical thinking
skills to evaluate the evidence and arguments.\n5.
Consider multiple perspectives: Try to consider multiple
perspectives when evaluating an issue. Don't just see
things from one side, but try to understand the
arguments and perspectives of others.\n6. Be open-minded:
Don't be afraid to change your mind if new evidence or
arguments present themselves. Be open to new ideas and
perspectives, and don't be afraid to challenge your own
beliefs.\n7. Practice: Like any skill, critical thinking
takes practice. Try to apply these tips to your daily
life and see how they can help you think more
critically.\nRemember, critical thinking is a skill that
takes time and effort to develop, but with practice and
dedication, you can improve your abilities.

Here are some tips to help you develop your critical
thinking skills:\n1. Read widely: Reading is an
excellent way to develop critical thinking skills. When
you read, try to analyze the author's arguments,
evaluate the evidence, and identify logical
fallacies.\n2. Practice problem-solving: Solving
problems is a great way to exercise your critical
thinking skills. Try to approach problems from different
angles, and think creatively to find solutions.\n3. Ask
questions: Asking questions is a great way to develop
critical thinking skills. When you're presented with new
information, try to analyze it and ask questions to
understand it better.\n4. Engage in debate: Debate is a
great way to exercise your critical thinking skills. Try
to evaluate the arguments of others and form your own
opinions.\n5. Learn to think logically: Logical thinking
is the foundation of critical thinking. Try to learn the
basics of logic, such as how to identify and evaluate
arguments, and how to spot logical fallacies.\n6. Be
open-minded: Being open-minded is essential for critical
thinking. Try to keep an open mind when you're presented
with new information, and don't be afraid to challenge
your own beliefs.\n7. Practice active listening: Active
listening is a great way to develop critical thinking
skills. When you're listening to someone, try to analyze
their arguments and evaluate their evidence.\n8. Keep
learning: Finally, never stop learning. The more you
learn, the better your critical thinking skills will
become. So, keep an open mind, and keep exploring new
topics and ideas.

Assistant A (Ours) Assistant B (FourierFT)

Figure 10: Question 6 and 7 from Vicuna-Bench. We present the pairwise-version judgment by
GPT-4 to differentiate the performance of our fine-tuned LLaMA2-7b (left) and FourierFT fine-
tuned LLaMA2-7b (right).

L INSTRUCTION TUNING STABLE DIFFUSION

We show how our PEFT method can be used to fine-tune Stable Diffusion (Rombach et al., 2022) so
that it can perform specific image editing tasks according to instructions. Our experiment is based on
InstructPix2Pix (Brooks et al., 2023), which performs instruction fine-tuning on numerous generated

34

Published as a conference paper at ICLR 2025

image pairs and prompts using pretrained Stable Diffusion checkpoints. The public InstructPix2Pix
model is good at executing general instructions, but may not be skilled at specific instructions.

Following Paul (2023), we choose cartoonlization as the target task for fine-tuning. The fine-tuning
dataset includes 5000 paired image-cartoon images as well as the corresponding prompting texts.
The original images are randomly sampled from the training set of ImageNette (Howard & Gugger,
2020), and the corresponding edited images are obtained with the Whitebox Cartoonizer model
(Wang & Yu, 2020). The prompts are generated using ChatGPT 3. All pretrained models are from
the Huggingface Diffusers 4 library. We apply PEFT methods to the Key, Query, Value and Out
matrixs in the Unet of Stable Diffusion for fine-tuning. After fine-tuning, we randomly choose
some images from the photo domain of the PACS dataset (Li et al., 2017) for evaluation, using the
prompt Change the natural image to a cartoon-style image. We provide the
hyperparameters for our LoCA and FourierFT in Table 11.

Original Image Fine-tuned with LoCAInstructPix2Pix Fine-tuned with FourierFT

“Change

the

natural

image to a

cartoon-

style

image.”

Figure 11: Comparison of the instruction-following abilities of InstructPix2Pix, FourierFT and Our
LoCA on the cartoonlization task.

3https://chatgpt.com/
4https://huggingface.co/docs/diffusers/index

35

Published as a conference paper at ICLR 2025

From Fig. 11, we can see that the pre-trained InstructPix2Pix model does not perform perfectly
on this specific cartoonization task, especially in terms of preserving the original content. After
fine-tuning, there is a noticeable improvement in the quality of the edits. However, the images
produced by our fine-tuning method show better detail preservation compared to those generated by
FourierFT.

Table 11: Hyperparameters of FourierFT and LoCA for the Stable Diffusion fine-tuning experiment.

Hyperparameter FourierFT LoCA

Optimizer AdamW
Weight Decay 1e-2
Learning Rate 1e-3 1e-4
Scaling Value 64 1
Where Key, Query, Value, Out
Accumulation Steps 4
Batch Size 2
Training Steps 10000
Learning iterations (Bs) - 1200

M TOY EXPERIMENT OF THE CONVERGENCE

To visually demonstrate the convergence process of our method, we designed a toy experiment based
on a regression task.

Data Generation. We generated 5000 6-dimensional samplesX ∈ R5000×6, where each dimension
of each sample was independently sampled from a Gaussian distribution N (0, 20).

Network and Ground-truth Labels Preparation. We design a simple three-layer neural network
with parameter matrices W1,W2, and W3, each with a shape of 6 × 6. We reparameterized W2 as
W2 = iDCT(F2), where F2 is a sparse frequency domain matrix with only 3 non-zero coefficients.
Then, we randomly initialize W1, the coefficients of F2, and W3 using N (0, 0.2), and initialize
the locations of F2’s non-zero coefficients using a uniform distribution. We denote these initialized
network weights as the ground-truth weights W ∗

1 , F ∗
2 , W ∗

3 , and use them to generate ground-truth
labels, i.e., Y =W ∗

3 iDCT(F
∗
2)W

∗
1X .

Optimization Details. We now fix W1∗ and W3∗, and re-initialize the coefficient locations of
F2, and set its coefficients to zero (the same as that in our method design). We aim to explore
whether, through our alternating optimization method, the zero matrix F2 could converge to F ∗

2
5.

The entire optimization process uses an SGD optimizer and mean squeue error loss function. We set
the learning rate of coefficients and locations to 0.02 and 0.05, respectively, and alternately optimize
the coefficients and locations of F2 in a period of 10 steps.

Experimental Results. From Fig. 12, we can see that after re-initialization, the locations of the
learnable coefficients in F2 have changed. If we only learn the coefficients without changing their
locations, it would be impossible to converge to F ∗

2 . Through our alternating optimization strategy,
the locations of the learnable coefficients begin to change gradually after 200 steps and eventually
converge successfully to the ground-truth locations. At that, if we fix the locations and only learn
the coefficients, we can perfectly converge to F ∗

2 , which can be observed in Fig. 13. This is the
rationale behind the design of our optimization method.

Remark. It is worth noting that our location gradient is estimated through difference approximation
and is not entirely precise. The most accurate calculation method would be to compute the one-
sided gradients in 8 directions separately and then choose the direction with the largest gradient
for movement. However, this approach would introduce implementation difficulties and additional
computational costs. In our experiments, we find that the difference approximation generally works
well. Given the large scale of the weight matrix in Transformer, using an approximate method is a
more reasonable approach. Although in practical applications, it may be too demanding to require

5We ensure the uniqueness of the solution through a 6x6 full-rank matrix.

36

Published as a conference paper at ICLR 2025

every coefficient to converge to its optimal locations, we show that even if one parameter moves in a
better direction, it will improve the training effect. This can be observed from the loss descent curve
in Fig. 13.

Figure 12: Optimization process of F2 for the toy experiment.

37

Published as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350 400
Iterations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Tr
ai

ni
ng

 L
os

s

Alternating Optimization Strategy
Without Learning Locations

Figure 13: Comparison of the training loss of our method with and without alternating optimization
strategy on the toy experiment.

N COMPARISON OF LEARNING PATTERNS IN DIFFERENT FINE-TUNING
METHODS

Δ𝑊𝑞 Δ𝑊𝑣 Δ𝑊𝑞 Δ𝑊𝑣

Layer 6 Layer 8

Lo
R

A
FF

Lo
C

A
(O

u
rs

)

Figure 14: Visualization of learned ∆Wq and ∆Wv in different fine-tuning methods with RoBERTa-
base. We choose layer 6 and layer 8 tuned on MNLI task as an example. For a clearer presentation,
we use average pooling to downsample to 1/8 of the original size.

38

Published as a conference paper at ICLR 2025

To visually compare the differences in learning patterns between frequency domain methods and
low-rank decomposition methods, we present in Fig. 14 the incremental matrices learned through
FF, LoRA, and our LoCA. The hyperparameter settings for the experiment are the same as in Section
5.1. It can be observed that the ∆W obtained from full fine-tuning shows more degrees of freedom
across the entire matrix, exhibiting a Gaussian-like distribution. This aligns with the asymptotic
normality we proposed in Proposition 1. In contrast, the incremental weights learned by LoRA dis-
play a structured absence of many elements on the matrix, likely due to its low-rank approximation.
This suggests that the optimization of LoRA may be constrained and it may not effectively capture
the information present in the weight updates. LoCA circumvents the constraints of low-rank de-
composition through frequency domain decomposition. As can be seen from Fig. 14, the pattern of
LoCA is more diverse compared to LoRA, thus enabling it to better capture the learning pattern of
full fine-tuning.

O EXTENDED ANALYSIS ON OTHER LORA VARIANTS

Our theoretical analysis in Theorem 1 focuses specifically on the classical low-rank reconstruction
method LoRA (Hu et al., 2021), which potentially constrains our comparative analysis with various
LoRA variants. While it may not be feasible to encompass all low-rank methods within a single
theorem, as some methods like VeRA (Kopiczko et al., 2023) are not explicitly designed for recon-
struction, we can conduct case-by-case analyses since all low-rank-based methods are inherently
bounded in their reconstruction capabilities.

For a given ∆W ∈ Rn×n, VeRA decomposes it to ΛbBΛdA where B,A are draw i.i.d. from a
certain distribution and frozen and shared over all training steps and layers, Λb,Λd are learnable
diagonal matrix. From a reconstruction perspective, the i-th element of Λb is the ordinary least
squares (OLS) coefficient while setting the response as i-th row of ∆W and covariate as i-th row of
BΛdA. This idea enables us to find Λd that maximize the correlation between i-th row of ∆W and
i-th row of BΛdA. However A and B are chosen randomly independent of ∆W , the reconstruction
error is approximately the error we learn from white noise.

We can conduct a detailed theoretical analysis of DoRA (Liu et al., 2024), here we only give the
outline. For a given ∆W , DoRA first decomposes it as ∆W = AΛ where Λ is diagonal and each
column of A has magnitude 1. The r-rank approximation is ArΛ, where Ar = UrΛrV

T
r , and

Ur, Vr ∈ Rn×r and Λr contains r largest eigenvalues of A. If each element in ∆W follows i.i.d.
standard normal, we can derive the independency of A and Λ. Using total expectation, we have the
following reconstruction loss

E(∥AΛ−ArΛ∥2) = E{E(∥AΛ−ArΛ∥2|A)} =
√
2
Γ((n+ 1)/2)

Γ(n/2)
E(∥A−Ar∥2)

As each non-zero element in Λ follows i.i.d. χ(n) distribution. Subsequent calculations only require
computing the reconstruction loss based on the distribution of A. At this point, the reconstruction
loss is consistent with the LoRA method, except that the distributions are different. This requires
complex calculations, but since each column of A is the direction of a random normal vector, the
difference should not be significant. The loss corresponding to DoRA should therefore be approxi-
mately the same as that of LoRA.

P ANALYSIS OF NON-I.I.D. EFFECTS

While our main theoretical analysis assumes independence of weight updates for analytical tractabil-
ity, practical neural network training through gradient-based optimization introduces dependencies
between parameters. In this section, we provide a detailed analysis of how deviations from the i.i.d.
assumption affect our theoretical results.

Correlation Structure. To systematically study the impact of parameter dependencies, we consider
a controlled correlation setting where the vectorized weight updates follow a multivariate normal
distribution:

WT ∼ NK2(0,Σ) (19)
where the covariance matrix Σ takes the form:

Σ = ρ11T + IK2 (20)

39

Published as a conference paper at ICLR 2025

Here, 1 = (1, . . . , 1)T ∈ RK2

is the all-ones vector, IK2 is the identity matrix, and ρ controls the
strength of uniform correlation between all pairs of parameters. This structure allows us to pre-
cisely control the degree of dependency while maintaining the marginal distributions of individual
parameters.

Critical Correlation Analysis. We conduct extensive numerical experiments to identify the critical
correlation levels where the relative performance of different adaptation methods changes signif-
icantly. For these experiments, we fix the matrix size to 300 × 300 and vary the rank r used in
low-rank approximations. For each rank setting, we identified the critical correlation value ρc where
LoRA’s reconstruction ability begins to outperform LoCA. The results are shown in Fig. 15.

Re
co

ns
tr

uc
tio

n
er

ro
r

Correlation value

Figure 15: Reconstruction errors of different r under different correlation values ρ. R, M1, M2, D,
U denote the same meaning in Fig. 6.

The results show that when r = 8, 16, 24, and 32, the critical values ρc are 0.09, 0.14, 0.17, and
0.19, respectively, which are quite high and indicate our method remains effective under substantial
dependencies.

Statistical Detection of Correlation. To validate that these critical correlation levels represent
statistically significant departures from independence, we developed a test based on the Marchenko-
Pastur (MP) law. According to the MP law, under independence, the eigenvalues of the sample
correlation matrix should fall within a specific interval [λ−, λ+]. We define a test statistic:

T =

∑
λ/∈[λ−,λ+] λ∑

λ
. (21)

This statistic measures the proportion of eigenvalue mass that falls outside the MP bounds. Through
Monte Carlo simulation, we determined that the critical value at the 0.95 significance level is 0.005.
For our identified critical correlation values ρc = 0.09, 0.14, 0.17, 0.19, the corresponding test statis-
tics are:

• ρc = 0.09: T = 0.086

• ρc = 0.14: T = 0.134

40

Published as a conference paper at ICLR 2025

• ρc = 0.17: T = 0.143

• ρc = 0.19: T = 0.146

All these test statistics substantially exceed the critical value, confirming that these levels of corre-
lation are readily detectable and represent significant departures from independence.

Implications for Theory. These findings have several important implications:

1. The critical correlation values where method performance characteristics change are statis-
tically significant and detectable using standard random matrix theory diagnostics.

2. The monotonic increase in critical correlation with rank suggests that higher-dimensional
representations are more robust to dependencies.

3. Even under substantial and detectable correlations, the performance advantages of
frequency-domain methods persist, supporting the practical validity of our theoretical
framework.

These results demonstrate that while strict independence is violated in practice, our theoretical in-
sights remain valid under realistic levels of parameter dependency. The robustness of our results to
substantial correlations, as quantified by both performance analysis and statistical tests, supports the
practical applicability of frequency-domain adaptation methods.

41

	Introduction
	Preliminary Analysis of Fine-Tuning Modern LLMs
	Comparison between frequency-space and low-rank Adaptation
	Location-aware Cosine Adaptation
	Problem Formulation
	Inverse Discrete Cosine Transform-based Reparameterization
	Estimating location gradient using finite-difference approximation
	Alternating Optimization Strategy

	Experiments
	Natural Language Understanding
	Natural Language Generation
	Instruction Tuning
	Image Classification
	Analytical Experiments

	Related Work
	Conclusion
	Justification of Assumptions
	Details of the Hypothesis Testing
	Details about Baseline Methods
	Hyperparameters
	Training Procedure
	Derivation of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Computational Efficiency of Gradient Estimation
	Computational Complexity and Memory Cost Comparison
	Examples of Instruction Tuning Experiments
	Instruction Tuning Stable Diffusion
	Toy Experiment of the Convergence
	Comparison of Learning Patterns in Different Fine-tuning Methods
	Extended Analysis on other LoRA Variants
	Analysis of Non-i.i.d. Effects

