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A COMPUTE RESOURCES USED

All models were trained either on 48GB A6000s or 24GB A5000s. Each experiment on synthetic
image reconstruction took about 5 hrs to train. Each experiment on TS5 with Adapters for GLUE
(T5-GLUE) took about 16 hours to train. Each experiment on ResNet with Adapters for DomainNet
(Res-Dom) took about 11 hours to train.

B EXPERIMENT DETAILS

B.1 DAE-SYN

All of the experiments use learning rate of 1e~* with batch size of 128 and were trained for 200k
steps with the warmup ratio of 0.1. For ST-Gumbel estimator, we use 7 value of 10 and anneal rate of
1e~% in the equation 3. For REINFORCE, we use values of 1, 1e =%, and 1e 2 for the corresponding
a, f3, and «y hyperparameters in the equation 2. The values for a and +y are tuned over {1,0.1} and
{le7!,1e72,1e73} by fixing 3 to 0 and then the value of 3 is tuned over {0, 175,175, 1e~*} by
taking the best values of « and «y found in the previous setup. The value of § in the equation 1 is set
to standard value of 0.5 for all the REINFORCE experiments in all settings. The loss weight for the
supervising the router is taken as 10 for all of the estimators after tuning over {10,1,0.1,0.01}.

B.2 T5-GLUE

All T5 models are trained for 2'® steps with learning rate of 1e 3, with 2k warmup steps, and batch
size of 128. We use 7 value of 10 and anneal rate of 1e~% for the ST-Gumbel estimator. The values
of a, B, and ~y for the REINFORCE estimators are 1le~2, 54, and le~2 following (Clark et al.,
2022). The weight of the loss for supervising the router is taken as 1 for all of the estimators after
tuning over {10,1,0.1,0.01}.

The adapters used in this settings are simple bottleneck architectures with swish non-linearity in
between. The inputs values are added back to the output of the bottleneck block and then layer
normalization is applied for calculating the final output of the adapter.

B.3 REs-DoMm
All ResNet models are trained for 100k steps with batch size of 128 and learning rate of 1e~> and
no warm up. We use 7 value of 10 and anneal rate of 1e~* for the ST-Gumbel estimator. The values

of o, 3, and ~ for the REINFORCE estimators are le~2, 5e~%, and le~?2 similar to T5-GLUE
experiments. The supervised loss weight is taken as 0.1 after tuning over {1,0.1,0.01}.

The adapters used are same bottleneck architectures with the same non-linearity as in TS-GLUE.
The inputs are first batch normalized and then passed through the bottleneck architectures. The final
output of the adapter is the sum of input and the output of the bottleneck block.

C Focus AND Cover SCORES

In tables 3 and 4 we list the Focus and Cover scores for all estimators in all scenarios we consider,
with and without varying levels of tag annotation supervision.

D CONTINUE TRAINING FROM SUPERVISION CHECKPOINT

In table 5 we show the performance of continuing training the model after removing routing super-
vision loss.

E FULL RESULTS ON T5-GLUE AND RES-DoOM

‘We show full results of TS-GLUE in table 6 and Res-Dom in table 7.
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Routing DAE-Syn T5-GLUE Res-Dom
Tag 1.00 1.00 1.00
Monolithic 0.03 0.09 0.08
Hash 0.15 0.21 0.21
Top-k 0.49 0.35 0.36
w/ 1% supervision 0.52 (+0.03) 0.98 (+0.63) 0.75 (+0.39)
w/ 10% supervision 1.00 (+0.51) 0.99 (+0.64) 0.77 (+0.41)
w/ 30% supervision 1.00 (+0.51) 0.99 (+0.64) 0.77 (+0.41)
w/ 100% supervision 1.00 (+0.51) 0.99 (+0.64) 0.78 (+0.42)
ST-Gumbel 0.49 0.32 0.13
w/ 1% supervision 0.55 (+0.06) 0.98 (+0.66) 0.75 (+0.62)
w/ 10% supervision ~ 0.90 (+0.41) 0.99 (+0.67) 0.77 (+0.64)
w/ 30% supervision ~ 0.99 (+0.50) 0.99 (+0.67) 0.77 (+0.64)
w/ 100% supervision  1.00 (+0.51) 0.99 (+0.67) 0.78 (+0.65)
REINFORCE 0.57 0.35 0.29
w/ 1% supervision 0.59 (+0.02) 0.98 (+0.63) 0.74 (+0.45)
w/ 10% supervision 1.00 (+0.43) 0.99 (+0.64) 0.77 (+0.48)
w/ 30% supervision 1.00 (+0.43) 0.99 (+0.64) 0.78 (+0.49)
w/ 100% supervision 1.00 (+0.43) 0.99 (+0.64) 0.77 (+0.48)

Table 3: Focus scores for routing schemes learned by different estimators. X% supervision corre-
sponds to including a tag annotation and training against it for X% of the training data.

Routing DAE-Syn T5-GLUE Res-Dom
Tag 1.00 1.00 1.00
Monolithic 0.22 0.18 0.28
Hash 0.15 0.08 0.16
Top-k 0.45 0.70 0.64
w/ 1% supervision 0.47 (+0.02) 1.00 (+0.30) 0.80 (+0.16)
w/ 10% supervision 1.00 (+0.55) 1.00 (+0.30) 0.82 (+0.18)
w/ 30% supervision 1.00 (+0.55) 1.00 (+0.30) 0.82 (+0.18)
w/ 100% supervision 1.00 (+0.55) 1.00 (+0.30) 0.83 (+0.19)
ST-Gumbel 0.44 0.57 0.44
w/ 1% supervision 0.53 (+0.09) 0.99 (+0.42) 0.79 (+0.35)
w/ 10% supervision ~ 0.90 (+0.46) 1.00 (+0.43) 0.82 (+0.38)
w/ 30% supervision ~ 0.99 (+0.55) 1.00 (+0.43) 0.82 (+0.38)
w/ 100% supervision 1.00 (+0.56) 1.00 (+0.43) 0.82 (+0.38)
REINFORCE 0.54 0.75 0.55
w/ 1% supervision 0.56 (+0.02) 1.00 (+0.25) 0.78 (+0.23)
w/ 10% supervision 1.00 (+0.46) 0.99 (+0.24) 0.82 (+0.27)
w/ 30% supervision 1.00 (+0.46) 1.00 (+0.25) 0.82 (+0.27)
w/ 100% supervision 1.00 (+0.46) 1.00 (+0.25) 0.82 (+0.27)

Table 4: Cover scores for routing schemes learned by different estimators. X% supervision corre-
sponds to including a tag annotation and training against it for X% of the training data.
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Routing DAE-Syn T5-GLUE  Res-Dom
Top-k 0.1 81.9 61.8
from supervision checkpoint 0.1 (+0.0) 81.0 (-0.9) 62.2 (+0.4)
ST-Gumbel 0.4 81.0 61.8
from supervision checkpoint 0.2 (-0.2) 81.0 (+0.0) 61.5(-0.3)
REINFORCE 0.1 81.6 61.8

from supervision checkpoint 0.1 (+0.0) 81.7 (+0.1) 62.1 (+0.3)

Table 5: Performance of estimators from further training of tag supervised models by removing the

supervision. Tag supervision considered for DAE-Syn, TS-GLUE, and Res-Dom are 30%, 1%, and
10% of total tags.

Figure 3: Synthetic images used for DAE-Syn. The (alphabet identity, alphabet location, foreground
color, background color) tags for each image are (F, top-left, green, grey), (Z, bottom-mid, yellow,
violet), (H, top-mid, red, purple) and (O, mid-right, yellow, grey) in the order of images.
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Table 6: Full TS-GLUE results.
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Table 7: Full Res-Dom results.
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