
RP1M: A Large-Scale Motion Dataset for Piano
Playing with Bi-Manual Dexterous Robot Hands

Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

A RP1M Dataset Collection Details1

A.1 Reward formulation2

In Equation (3) , we give the overall reward function used in our paper. We now give details of each3

term. rPress
t indicates whether the active keys are correctly pressed and inactive keys are not pressed.4

We use the same implementation as [1], given as: rPress
t = 0.5 ·(1

K

∑K
t g(||kis−1||2))+0.5 ·(1−1fp).5

K is the number of active keys, kit is the normalized key states with range [0, 1], where 0 means the6

i-th key is not pressed and 1 means the key is pressed. g is tolerance from Tassa et al. [2], which is7

similar to the one used in Equation (2). 1fp indicates whether the inactive keys are pressed, which8

encourages the agent to avoid pressing keys that should not be pressed. rSustain
t encourages the agent9

to press the pseudo sustain pedal at the right time, given as rSustain
t = g(st − starget

t). st and starget
t are10

the state of current and target sustain pedal respectively. rCollision
t penalizes the agent from collision,11

defined as rCollision
t = 1 − 1collision, where 1collision is 1 if collision happens and 0 otherwise. rEnergy

t12

prioritizes energy-saving behavior. It is defined as rEnergy
t = |τjoints|⊺|vjoints|. τjoints and vjoints are joint13

torques and joint velocities respectively.14

A.2 Training details15

Observation Space Our 1144-dimensional observation space includes the proprioceptive state of16

dexterous robot hands and the piano as well as L-step goal states obtained from the MIDI file. In our17

case, we include the current goal and 10-step future goals in the observation space (L=11). At each18

time step, an 89-dimensional binary vector is used to represent the goal, where 88 dimensions are for19

key states and the last dimension is for the sustain pedal. The dimension of each component in the20

observation space is given in Table 1.21

Table 1: Observation space.

Observations Dim
Piano goal state L · 88

Sustain goal state L · 1
Piano key joints 88

Piano sustain state 1
Fingertip position 30

Hand state 46

Training Algorithm & Hyperparameters Although our proposed method is compatible with22

any reinforcement learning method, we choose the DroQ [3] as Zakka et al. [1] for fair comparison.23

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

DroQ is a model-free RL method, which uses Dropout and Layer normalization in the Q function to24

improve sample efficiency. We list the main hyperparameters used in our RL training in 2.25

Table 2: Hyperparameters used in our RL agent.

Hyperparameter Value
Training steps 8M
Episode length 550
Action repeat 1
Warm-up steps 5k
Buffer size 1M
Batch size 256
Update interval 2
Piano environment

Lookahead steps 10
Gravity compensation True
Control timestep 0.05
Stretch factor 1.25
Trim slience True

Agent
MLPs [256, 256, 256]
Num. Q 2
Activation GeLU
Dropout Rate 0.01
EMA momentum 0.05
Discount factor 0.88
Learnable temperature True

Optimization
Optimizer Adam
Learning rate 3e-4
β1 0.9
β2 0.999
eps 1e-8

A.3 Computational resources26

We train our RL agents on the cluster equipped with AMD MI250X GPUs, 64 cores AMD EPYC27

“Trento” CPUs, and 64 GBs DDR4 memory. Each agent takes 21 hours to train. The overall data28

collection cost is roughly 21 hours * 2089 agents = 43,869 GPU hours.29

A.4 MuJoCo XLA Implementation30

To speed up training, we re-implement the RoboPianist environment with MuJoCo XLA (MJX),31

which supports simulation in parallel with GPUs. MJX has a slow performance with complex scenes32

with many contacts. To improve the simulation performance, we made the following modifications:33

• We disable most of the contacts but only keep the contacts between fingers and piano keys34

as well as the contact between forearms.35

• Primitive contact types are used whenever possible.36

• The dimensionality of the contact space is set to 3.37

2

• The maximal contact points are set to 20.38

• We use Newton solver with iterations=2 and ls iterations=6.39

After the above modifications, with 1024 parallel environments, the total steps per second is 159,376.40

We use PPO implementation implemented with Jax to fully utilize the paralleled simulation. The PPO41

with MJX implementation is much faster than the DroQ implementation, which only takes 2 hours and42

7 minutes for 40M environment steps on the Twinkle Twinkle Little Star song while as a comparison,43

DroQ needs roughly 21 hours for 8M environment steps. However, the PPO implementation fails to44

achieve a comparable F1 score as the DroQ implementation as shown in Fig. 1. Therefore, we use45

the DroQ implement with the CPU version of the RoboPianist environment.46

0 20 40
Environment Steps (1e6)

0.00

0.25

0.50

0.75

1.00

F
1

S
co

re
Twinkle Twinkle Little Star

DroQ
PPO+MJX

Figure 1: Comparison of the RL performance between DroQ and PPO with the MJX implementation
of the RoboPianist environment. PPO+MJX is faster to run but has a worse performance than DroQ.
We use DroQ with the CPU-version RoboPianist environment when training our RL agents.

B Multitask Benchmarking Details47

A single multi-task policy capable of playing various songs is highly desirable. However, playing48

different music pieces on the piano results in diverse behaviors, creating a complex action distribution,49

particularly for dexterous robot hands with a large number of degrees of freedom (DoFs). This section50

introduces the baseline methods we have compared and the hyperparameters we have used. We also51

talk about the details of our multitask training and evaluation.52

B.1 Baselines and hyperparameters53

B.1.1 BC54

Behavior Cloning (BC) [4] directly learns a policy by using supervised learning on observation-action55

pairs from expert demonstrations, which is one of the simplest methods to acquire robotic skills.56

Due to its straightforward approach and proven efficacy, BC is popular across multiple fields. The57

method employs a Multi-Layer Perceptron (MLP) as the policy network. Given expert trajectories,58

the policy network learns to replicate expert behavior by minimizing the Mean Squared Error (MSE)59

between predicted and actual expert actions. Despite its advantages, BC tends to perform poorly in60

generalizing to unseen states from the expert demonstrations. In our study, we evaluated three MLP61

models with varying hidden dimensions—256, 1024, and 4096. The first two models feature three62

layers, while the model with 4096 hidden dimensions is designed with six layers.63

B.1.2 IBC64

Implicit Behavioral Cloning (IBC) [5] adopts a novel angle on behavior cloning by reformulating65

supervised imitation learning as a conditional energy-based modeling problem. It trains an implicit66

3

Table 3: BC

Hyperparameter Value
Batch Size 256
Optimizer Adam

Learning Rate 3e-4
Activation GELU

Training Steps 1M
Observation Horizon 1
Prediction Horizon 1

Action Horizon 1

policy represented by an energy function that is conditioned on both the action and observation,67

utilizing the InfoNCE loss [6]. This method demonstrates improved generalization over traditional68

BC. However, it encounters typical difficulties associated with training energy-based models, and the69

need for intensive action sampling and optimization at inference time, which may not scale well to70

high-dimensional action spaces.71

Table 4: IBC

Hyperparameter Value
Batch Size 256
Optimizer AdamW

Learning Rate 1e-4
Learning Rate Scheduler cosine

Training Steps 1M
Weight Decay 1e-6

Prediction Num of Iteration 5
Prediction Num of Sample 1024

Observation Horizon 2
Prediction Horizon 2

Action Horizon 1

B.1.3 BC-RNN72

BC-RNN [7] is a variant of BC that incorporates a Recurrent Neural Network as the policy network73

to capture a sequence of past observations. It is the best-performing baseline in the Robomimic74

paper [7].75

Table 5: BC-RNN

Hyperparameter Value
Batch Size 256
Optimizer AdamW

Learning Rate 1e-4
Learning Rate Scheduler linear

Training Steps 1M
Observation Horizon 1
Prediction Horizon 4

Action Horizon 1

4

B.1.4 Diffusion Policy76

Diffusion models have achieved many state-of-the-art results across image, video, and 3D content77

generation [8, 9, 10, 11, 12]. In the context of robotics, diffusion models have been used as policy78

networks for imitation learning in both manipulation [13, 14, 15, 16] and locomotion tasks [17],79

showing remarkable performance across various robotic tasks. Diffusion Policy [13] proposed to80

learn an imitation learning policy with a conditional diffusion model. It models the action distribution81

by inverting a process that gradually adds noise to a sampled action sequence, conditioning on a state82

and a sampled noise vector. We used a CNN-based Diffusion Policy with DDIM [18] as the sampler83

to diffuse out action trajectories for improved efficiency. We build our diffusion policy training84

pipeline based on the Robomimic [7] and DROID [19], which provide high-quality implementations.85

Table 6: Diffusion Policy

Hyperparameter Value
Batch Size 128
Optimizer Adam

Learning Rate 1e-4
Learning Rate Scheduler Linear

Training Steps 1M
Diffusion Method DDIM

EMA Power 0.75
U-Net Hidden Layer Sizes [256, 512, 1024]

Observation Horizon 2
Prediction Horizon 4

Action Horizon 1

B.2 Training and evaluation86

We train the policies with 3 different sizes of expert data: 50, 150, and 300 songs, respectively.87

Subsequently, we assess the trained policies using three distinct categories of musical pieces. The88

first category, in-distribution songs, includes pieces that are part of the training datasets. Evaluating89

with in-distribution songs tests the multitasking abilities of the policies and checks if a policy can90

accurately recall the songs on which it was trained. The second group of songs for evaluation are91

easy out-of-distribution (OOD) songs: those music pieces do not overlap with the training songs92

but they are easy to play. They only contain slow motions and short horizons. The third group93

of evaluation songs are hard out-of-distribution songs: those are difficult music pieces that do not94

overlap with the training songs. They contain more diverse motions and longer horizons. This out-of-95

distribution evaluation measures the zero-shot generalization capabilities of the policies. Analogous96

to an experienced human pianist who can play new pieces at first sight, we aim to determine if it is97

feasible to develop a generalist agent capable of playing the piano under various conditions.98

Additionally, our framework is designed with flexibility in mind, allowing users to select songs not99

included in our dataset for either training data collection or evaluation. Furthermore, users have the100

option to assess their policies on specific segments of a song rather than the entire piece.101

5

Table 7: In-distribution songs

RoboPianist-etude-12-FrenchSuiteNo1Allemande-v0
RoboPianist-etude-12-FrenchSuiteNo5Sarabande-v0
RoboPianist-etude-12-PianoSonataD8451StMov-v0
RoboPianist-etude-12-PartitaNo26-v0
RoboPianist-etude-12-WaltzOp64No1-v0
RoboPianist-etude-12-BagatelleOp3No4-v0
RoboPianist-etude-12-KreislerianaOp16No8-v0
RoboPianist-etude-12-FrenchSuiteNo5Gavotte-v0
RoboPianist-etude-12-PianoSonataNo232NdMov-v0
RoboPianist-etude-12-GolliwoggsCakewalk-v0
RoboPianist-etude-12-PianoSonataNo21StMov-v0
RoboPianist-etude-12-PianoSonataK279InCMajor1StMov-v0

Table 8: Easy out-of-distribution songs

RoboPianist-debug-TwinkleTwinkleLittleStar-v0
RoboPianist-debug-CMajorChordProgressionTwoHands-v0
RoboPianist-debug-TwinkleTwinkleRousseau-v0
RoboPianist-debug-NocturneRousseau-v0
RoboPianist-debug-NocturneRousseau-v0

Table 9: Hard out-of-distribution songs

GP-AkimenkoTheodoreAuCoinDuFeuOp28-v0
GP-AgnewRoy2PianoPieces-v0
GP-AlbaAntonioElEnsuenoOp16-v0
GP-AlbaAntonioSensitiva-v0
GP-MinotAdolfMisterioso-v0

6

References102

[1] K. Zakka, P. Wu, L. Smith, N. Gileadi, T. Howell, X. B. Peng, S. Singh, Y. Tassa, P. Florence,103

A. Zeng, et al. RoboPianist: Dexterous piano playing with deep reinforcement learning. In 7th104

Annual Conference on Robot Learning, 2023.105

[2] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,106

J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.107

[3] T. Hiraoka, T. Imagawa, T. Hashimoto, T. Onishi, and Y. Tsuruoka. Dropout Q-functions for108

doubly efficient reinforcement learning. arXiv preprint arXiv:2110.02034, 2021.109

[4] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural110

information processing systems, 1, 1988.111

[5] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee,112

I. Mordatch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning,113

pages 158–168. PMLR, 2022.114

[6] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.115

arXiv preprint arXiv:1807.03748, 2018.116

[7] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,117

Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations118

for robot manipulation. In A. Faust, D. Hsu, and G. Neumann, editors, Proceedings of the 5th119

Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research,120

pages 1678–1690. PMLR, 08–11 Nov 2022. URL https://proceedings.mlr.press/121

v164/mandlekar22a.html.122

[8] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis123

with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision124

and pattern recognition, pages 10684–10695, 2022.125

[9] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models.126

Advances in Neural Information Processing Systems, 35:8633–8646, 2022.127

[10] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi,128

D. J. Fleet, et al. Imagen video: High definition video generation with diffusion models. arXiv129

preprint arXiv:2210.02303, 2022.130

[11] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. DreamFusion: Text-to-3d using 2d diffusion.131

arXiv preprint arXiv:2209.14988, 2022.132

[12] Z. Liu, Y. Feng, M. J. Black, D. Nowrouzezahrai, L. Paull, and W. Liu. MeshDiffusion:133

Score-based generative 3d mesh modeling. arXiv preprint arXiv:2303.08133, 2023.134

[13] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:135

Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.136

[14] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill137

acquisition. In Conference on Robot Learning, pages 3766–3777. PMLR, 2023.138

[15] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal-conditioned imitation learning using score-based139

diffusion policies. arXiv preprint arXiv:2304.02532, 2023.140

[16] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,141

C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213,142

2024.143

7

https://proceedings.mlr.press/v164/mandlekar22a.html
https://proceedings.mlr.press/v164/mandlekar22a.html
https://proceedings.mlr.press/v164/mandlekar22a.html

[17] X. Huang, Y. Chi, R. Wang, Z. Li, X. B. Peng, S. Shao, B. Nikolic, and K. Sreenath. Diffuseloco:144

Real-time legged locomotion control with diffusion from offline datasets. arXiv preprint145

arXiv:2404.19264, 2024.146

[18] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint147

arXiv:2010.02502, 2020.148

[19] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,149

M. K. Srirama, L. Y. Chen, K. Ellis, P. D. Fagan, J. Hejna, M. Itkina, M. Lepert, Y. J. Ma,150

P. T. Miller, J. Wu, S. Belkhale, S. Dass, H. Ha, A. Jain, A. Lee, Y. Lee, M. Memmel, S. Park,151

I. Radosavovic, K. Wang, A. Zhan, K. Black, C. Chi, K. B. Hatch, S. Lin, J. Lu, J. Mercat,152

A. Rehman, P. R. Sanketi, A. Sharma, C. Simpson, Q. Vuong, H. R. Walke, B. Wulfe, T. Xiao,153

J. H. Yang, A. Yavary, T. Z. Zhao, C. Agia, R. Baijal, M. G. Castro, D. Chen, Q. Chen, T. Chung,154

J. Drake, E. P. Foster, J. Gao, D. A. Herrera, M. Heo, K. Hsu, J. Hu, D. Jackson, C. Le, Y. Li,155

K. Lin, R. Lin, Z. Ma, A. Maddukuri, S. Mirchandani, D. Morton, T. Nguyen, A. O’Neill,156

R. Scalise, D. Seale, V. Son, S. Tian, E. Tran, A. E. Wang, Y. Wu, A. Xie, J. Yang, P. Yin,157

Y. Zhang, O. Bastani, G. Berseth, J. Bohg, K. Goldberg, A. Gupta, A. Gupta, D. Jayaraman,158

J. J. Lim, J. Malik, R. Martı́n-Martı́n, S. Ramamoorthy, D. Sadigh, S. Song, J. Wu, M. C. Yip,159

Y. Zhu, T. Kollar, S. Levine, and C. Finn. Droid: A large-scale in-the-wild robot manipulation160

dataset. 2024.161

8

	RP1M Dataset Collection Details
	Reward formulation
	Training details
	Computational resources
	MuJoCo XLA Implementation

	Multitask Benchmarking Details
	Baselines and hyperparameters
	BC
	IBC
	BC-RNN
	Diffusion Policy

	Training and evaluation

