22
23

RPIM: A Large-Scale Motion Dataset for Piano
Playing with Bi-Manual Dexterous Robot Hands
Supplementary Material

Anonymous Author(s)
Affiliation
Address

email

A RPIM Dataset Collection Details

A.1 Reward formulation

In Equation (3) , we give the overall reward function used in our paper. We now give details of each
term. 7™ indicates whether the active keys are correctly pressed and inactive keys are not pressed.
We use the same implementation as [1], given as: rires = 0.5 (& ZtK g(l|ki—1]]2))+0.5- (1 —1,).
K is the number of active keys, k; is the normalized key states with range [0, 1], where O means the
i-th key is not pressed and 1 means the key is pressed. g is tolerance from Tassa et al. [2], which is
similar to the one used in Equation (2). 1y, indicates whether the inactive keys are pressed, which
encourages the agent to avoid pressing keys that should not be pressed. 5" encourages the agent
to press the pseudo sustain pedal at the right time, given as 73" = g(s, — s\"*%). 5, and s;"**' are

the state of current and target sustain pedal respectively. 7COlsio" penalizes the agent from collision,

iQi E
defined as rOUsO" = 1 — 1 1i6ion, Where Leopiision 1; 1 if collision happens and 0 otherwise. 7,
prioritizes energy-saving behavior. It is defined as r;"® = |Tigints|T[Vioints | Tjoints and Viints are joint

torques and joint velocities respectively.

A.2 Training details

Observation Space Our 1144-dimensional observation space includes the proprioceptive state of
dexterous robot hands and the piano as well as L-step goal states obtained from the MIDI file. In our
case, we include the current goal and 10-step future goals in the observation space (L=11). At each
time step, an 89-dimensional binary vector is used to represent the goal, where 88 dimensions are for
key states and the last dimension is for the sustain pedal. The dimension of each component in the
observation space is given in Table 1.

Table 1: Observation space.

Observations Dim
Piano goal state L-88
Sustain goal state L-1
Piano key joints 88
Piano sustain state 1
Fingertip position 30
Hand state 46

Training Algorithm & Hyperparameters Although our proposed method is compatible with
any reinforcement learning method, we choose the DroQ [3] as Zakka et al. [1] for fair comparison.

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

24
25

27
28
29

30

31
32
33

34

35

36

37

DroQ is a model-free RL method, which uses Dropout and Layer normalization in the Q function to
improve sample efficiency. We list the main hyperparameters used in our RL training in 2.

Table 2: Hyperparameters used in our RL agent.

Hyperparameter

Value

Training steps
Episode length
Action repeat
Warm-up steps
Buffer size
Batch size
Update interval
Piano environment
Lookahead steps
Gravity compensation
Control timestep
Stretch factor
Trim slience
Agent
MLPs
Num. Q
Activation
Dropout Rate
EMA momentum
Discount factor
Learnable temperature
Optimization
Optimizer
Learning rate
b1
f2

eps

&M
550
1
Sk
IM
256

10
True
0.05
1.25
True

[256, 256, 256]
2
GeLU
0.01
0.05
0.88
True

Adam
3e-4
0.9
0.999
le-8

A.3 Computational resources

MuJoCo XLA Implementation

We train our RL agents on the cluster equipped with AMD MI250X GPUs, 64 cores AMD EPYC
“Trento” CPUs, and 64 GBs DDR4 memory. Each agent takes 21 hours to train. The overall data
collection cost is roughly 21 hours * 2089 agents = 43,869 GPU hours.

To speed up training, we re-implement the RoboPianist environment with MuJoCo XLA (MJX),
which supports simulation in parallel with GPUs. MJX has a slow performance with complex scenes
with many contacts. To improve the simulation performance, we made the following modifications:

» We disable most of the contacts but only keep the contacts between fingers and piano keys

as well as the contact between forearms.

* Primitive contact types are used whenever possible.

» The dimensionality of the contact space is set to 3.

39

40

41
42
43
44
45
46

47

48
49
50
51
52

53

54

55
56
57
58
59
60
61
62
63

64

65
66

» The maximal contact points are set to 20.

¢ We use Newton solver with iterations=2 and 1s_iterations=6.

After the above modifications, with 1024 parallel environments, the total steps per second is 159,376.

We use PPO implementation implemented with Jax to fully utilize the paralleled simulation. The PPO
with MJX implementation is much faster than the DroQ implementation, which only takes 2 hours and
7 minutes for 40M environment steps on the Twinkle Twinkle Little Star song while as a comparison,
DroQ needs roughly 21 hours for 8M environment steps. However, the PPO implementation fails to
achieve a comparable F1 score as the DroQ implementation as shown in Fig. 1. Therefore, we use
the DroQ implement with the CPU version of the RoboPianist environment.

Twinkle Twinkle Little Star

1.00
r'

o
~
ol

F1 Score
o
o1
o

0.25 —— DroQ
— PPO+MJX
0.00
0 20 40

Environment Steps (1e6)

Figure 1: Comparison of the RL performance between DroQ and PPO with the MJX implementation
of the RoboPianist environment. PPO+MJX is faster to run but has a worse performance than DroQ.
We use DroQ with the CPU-version RoboPianist environment when training our RL agents.

B Multitask Benchmarking Details

A single multi-task policy capable of playing various songs is highly desirable. However, playing
different music pieces on the piano results in diverse behaviors, creating a complex action distribution,
particularly for dexterous robot hands with a large number of degrees of freedom (DoFs). This section
introduces the baseline methods we have compared and the hyperparameters we have used. We also
talk about the details of our multitask training and evaluation.

B.1 Baselines and hyperparameters
B.1.1 BC

Behavior Cloning (BC) [4] directly learns a policy by using supervised learning on observation-action
pairs from expert demonstrations, which is one of the simplest methods to acquire robotic skills.
Due to its straightforward approach and proven efficacy, BC is popular across multiple fields. The
method employs a Multi-Layer Perceptron (MLP) as the policy network. Given expert trajectories,
the policy network learns to replicate expert behavior by minimizing the Mean Squared Error (MSE)
between predicted and actual expert actions. Despite its advantages, BC tends to perform poorly in
generalizing to unseen states from the expert demonstrations. In our study, we evaluated three MLP
models with varying hidden dimensions—256, 1024, and 4096. The first two models feature three
layers, while the model with 4096 hidden dimensions is designed with six layers.

B.1.2 1IBC

Implicit Behavioral Cloning (IBC) [5] adopts a novel angle on behavior cloning by reformulating
supervised imitation learning as a conditional energy-based modeling problem. It trains an implicit

67
68
69
70
71

72

73
74
75

Table 3: BC

Hyperparameter Value
Batch Size 256
Optimizer Adam

Learning Rate 3e-4
Activation GELU
Training Steps IM
Observation Horizon 1
Prediction Horizon 1
Action Horizon 1

policy represented by an energy function that is conditioned on both the action and observation,
utilizing the InfoNCE loss [6]. This method demonstrates improved generalization over traditional
BC. However, it encounters typical difficulties associated with training energy-based models, and the
need for intensive action sampling and optimization at inference time, which may not scale well to

high-dimensional action spaces.

Table 4: IBC
Hyperparameter Value
Batch Size 256
Optimizer AdamW
Learning Rate le-4
Learning Rate Scheduler cosine
Training Steps M
Weight Decay le-6
Prediction Num of Iteration 5
Prediction Num of Sample 1024
Observation Horizon 2
Prediction Horizon 2
Action Horizon 1

B.1.3 BC-RNN

BC-RNN [7] is a variant of BC that incorporates a Recurrent Neural Network as the policy network
to capture a sequence of past observations. It is the best-performing baseline in the Robomimic

paper [7].

Table 5: BC-RNN

Hyperparameter Value
Batch Size 256
Optimizer AdamW

Learning Rate le-4
Learning Rate Scheduler linear
Training Steps IM
Observation Horizon 1
Prediction Horizon 4
Action Horizon 1

76

77
78
79
80
81
82
83
84
85

86

87
88
89
90
91
92
93
94
95
96
97
98

99
100
101

B.1.4 Diffusion Policy

Diffusion models have achieved many state-of-the-art results across image, video, and 3D content
generation [8, 9, 10, 11, 12]. In the context of robotics, diffusion models have been used as policy
networks for imitation learning in both manipulation [13, 14, 15, 16] and locomotion tasks [17],
showing remarkable performance across various robotic tasks. Diffusion Policy [13] proposed to
learn an imitation learning policy with a conditional diffusion model. It models the action distribution
by inverting a process that gradually adds noise to a sampled action sequence, conditioning on a state
and a sampled noise vector. We used a CNN-based Diffusion Policy with DDIM [18] as the sampler
to diffuse out action trajectories for improved efficiency. We build our diffusion policy training
pipeline based on the Robomimic [7] and DROID [19], which provide high-quality implementations.

Table 6: Diffusion Policy

Hyperparameter Value
Batch Size 128
Optimizer Adam

Learning Rate le-4
Learning Rate Scheduler Linear
Training Steps M
Diffusion Method DDIM
EMA Power 0.75
U-Net Hidden Layer Sizes [256, 512, 1024]
Observation Horizon 2
Prediction Horizon 4
Action Horizon 1

B.2 Training and evaluation

We train the policies with 3 different sizes of expert data: 50, 150, and 300 songs, respectively.
Subsequently, we assess the trained policies using three distinct categories of musical pieces. The
first category, in-distribution songs, includes pieces that are part of the training datasets. Evaluating
with in-distribution songs tests the multitasking abilities of the policies and checks if a policy can
accurately recall the songs on which it was trained. The second group of songs for evaluation are
easy out-of-distribution (OOD) songs: those music pieces do not overlap with the training songs
but they are easy to play. They only contain slow motions and short horizons. The third group
of evaluation songs are hard out-of-distribution songs: those are difficult music pieces that do not
overlap with the training songs. They contain more diverse motions and longer horizons. This out-of-
distribution evaluation measures the zero-shot generalization capabilities of the policies. Analogous
to an experienced human pianist who can play new pieces at first sight, we aim to determine if it is
feasible to develop a generalist agent capable of playing the piano under various conditions.

Additionally, our framework is designed with flexibility in mind, allowing users to select songs not
included in our dataset for either training data collection or evaluation. Furthermore, users have the
option to assess their policies on specific segments of a song rather than the entire piece.

Table 7: In-distribution songs

RoboPianist-etude-12-FrenchSuiteNo1 Allemande-v0
RoboPianist-etude-12-FrenchSuiteNo5Sarabande-v0
RoboPianist-etude-12-PianoSonataD8451StMov-v0
RoboPianist-etude-12-PartitaNo26-v0
RoboPianist-etude-12-WaltzOp64No1-v0
RoboPianist-etude-12-BagatelleOp3No4-v0
RoboPianist-etude-12-KreislerianaOp16No8-v0
RoboPianist-etude-12-FrenchSuiteNo5Gavotte-v0
RoboPianist-etude-12-PianoSonataNo232NdMov-v0
RoboPianist-etude-12-GolliwoggsCakewalk-v0
RoboPianist-etude-12-PianoSonataNo2 1 StMov-v0
RoboPianist-etude-12-PianoSonataK279InCMajor1StMov-v0

Table 8: Easy out-of-distribution songs

RoboPianist-debug-TwinkleTwinkleLittleStar-v0
RoboPianist-debug-CMajorChordProgressionTwoHands-v0
RoboPianist-debug-TwinkleTwinkleRousseau-v0
RoboPianist-debug-NocturneRousseau-v0
RoboPianist-debug-NocturneRousseau-v0

Table 9: Hard out-of-distribution songs

GP-AkimenkoTheodore AuCoinDuFeuOp28-v0
GP-AgnewRoy2PianoPieces-v0
GP-AlbaAntonioElEnsuenoOp16-v0
GP-AlbaAntonioSensitiva-v0
GP-MinotAdolfMisterioso-v0

102

103
104
105

106
107

108
109

110
111

112
113
114

115
116

117
118
119
120
121
122

123
124
125

126
127

128
129
130

131
132

133
134

135
136

137

139
140

141
142
143

References

[1] K. Zakka, P. Wu, L. Smith, N. Gileadi, T. Howell, X. B. Peng, S. Singh, Y. Tassa, P. Florence,
A. Zeng, et al. RoboPianist: Dexterous piano playing with deep reinforcement learning. In 7¢th
Annual Conference on Robot Learning, 2023.

[2] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[3] T. Hiraoka, T. Imagawa, T. Hashimoto, T. Onishi, and Y. Tsuruoka. Dropout Q-functions for
doubly efficient reinforcement learning. arXiv preprint arXiv:2110.02034, 2021.

[4] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

[5] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee,
I. Mordatch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning,
pages 158-168. PMLR, 2022.

[6] A.v.d.Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[7] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martin-Martin. What matters in learning from offline human demonstrations
for robot manipulation. In A. Faust, D. Hsu, and G. Neumann, editors, Proceedings of the 5th
Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research,
pages 1678-1690. PMLR, 08-11 Nov 2022. URL https://proceedings.mlr.press/
v164/mandlekar22a.html.

[8] R.Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10684—10695, 2022.

[9] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models.
Advances in Neural Information Processing Systems, 35:8633-8646, 2022.

[10] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi,
D. J. Fleet, et al. Imagen video: High definition video generation with diffusion models. arXiv
preprint arXiv:2210.02303, 2022.

[11] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. DreamFusion: Text-to-3d using 2d diffusion.
arXiv preprint arXiv:2209.14988, 2022.

[12] Z. Liu, Y. Feng, M. J. Black, D. Nowrouzezahrai, L. Paull, and W. Liu. MeshDiffusion:
Score-based generative 3d mesh modeling. arXiv preprint arXiv:2303.08133, 2023.

[13] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[14] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill
acquisition. In Conference on Robot Learning, pages 3766-3777. PMLR, 2023.

[15] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal-conditioned imitation learning using score-based
diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

[16] O.M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213,
2024.

https://proceedings.mlr.press/v164/mandlekar22a.html
https://proceedings.mlr.press/v164/mandlekar22a.html
https://proceedings.mlr.press/v164/mandlekar22a.html

144 [17] X.Huang, Y. Chi, R. Wang, Z. Li, X. B. Peng, S. Shao, B. Nikolic, and K. Sreenath. Diffuseloco:
145 Real-time legged locomotion control with diffusion from offline datasets. arXiv preprint
146 arXiv:2404.19264, 2024.

147 [18] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint
148 arXiv:2010.02502, 2020.

149 [19] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,

150 M. K. Srirama, L. Y. Chen, K. Ellis, P. D. Fagan, J. Hejna, M. Itkina, M. Lepert, Y. J. Ma,
151 P. T. Miller, J. Wu, S. Belkhale, S. Dass, H. Ha, A. Jain, A. Lee, Y. Lee, M. Memmel, S. Park,
152 I. Radosavovic, K. Wang, A. Zhan, K. Black, C. Chi, K. B. Hatch, S. Lin, J. Lu, J. Mercat,
153 A. Rehman, P. R. Sanketi, A. Sharma, C. Simpson, Q. Vuong, H. R. Walke, B. Wulfe, T. Xiao,
154 J. H. Yang, A. Yavary, T. Z. Zhao, C. Agia, R. Baijal, M. G. Castro, D. Chen, Q. Chen, T. Chung,
155 J. Drake, E. P. Foster, J. Gao, D. A. Herrera, M. Heo, K. Hsu, J. Hu, D. Jackson, C. Le, Y. Li,
156 K. Lin, R. Lin, Z. Ma, A. Maddukuri, S. Mirchandani, D. Morton, T. Nguyen, A. O’Neill,
157 R. Scalise, D. Seale, V. Son, S. Tian, E. Tran, A. E. Wang, Y. Wu, A. Xie, J. Yang, P. Yin,
158 Y. Zhang, O. Bastani, G. Berseth, J. Bohg, K. Goldberg, A. Gupta, A. Gupta, D. Jayaraman,
159 J. J. Lim, J. Malik, R. Martin-Martin, S. Ramamoorthy, D. Sadigh, S. Song, J. Wu, M. C. Yip,
160 Y. Zhu, T. Kollar, S. Levine, and C. Finn. Droid: A large-scale in-the-wild robot manipulation
161 dataset. 2024.

	RP1M Dataset Collection Details
	Reward formulation
	Training details
	Computational resources
	MuJoCo XLA Implementation

	Multitask Benchmarking Details
	Baselines and hyperparameters
	BC
	IBC
	BC-RNN
	Diffusion Policy

	Training and evaluation

