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Abstract

Towards energy-efficient artificial intelligence
similar to the human brain, the bio-inspired spik-
ing neural networks (SNNs) have advantages of
biological plausibility, event-driven sparsity, and
binary activation. Recently, large-scale language
models exhibit promising generalization capabil-
ity, making it a valuable issue to explore more
general spike-driven models. However, the binary
spikes in existing SNNs fail to encode adequate
semantic information, placing technological chal-
lenges for generalization. This work proposes the
first fully spiking mechanism for general language
tasks, including both discriminative and genera-
tive ones. Different from previous spikes with
{0,1} levels, we propose a more general spike
formulation with bi-directional, elastic amplitude,
and elastic frequency encoding, while still main-
taining the addition nature of SNNs. In a single
time step, the spike is enhanced by direction and
amplitude information; in spike frequency, a strat-
egy to control spike firing rate is well designed.
We plug this elastic bi-spiking mechanism in lan-
guage modeling, named SpikeLM. It is the first
time to handle general language tasks with fully
spike-driven models, which achieve much higher
accuracy than previously possible. SpikeLM also
greatly bridges the performance gap between
SNNs and ANNs in language modeling. Our
code is available at https://github.com/Xingrun-
Xing/SpikeLM.
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1. Introduction
Creating artificial general intelligence by simulating the
human brain has always been a human dream, which is
known as Brain-Inspired Computing (BIC) (Mehonic &
Kenyon, 2022; Zhang et al., 2020b). Although artificial neu-
ral networks (ANNs) (Touvron et al., 2023; Kirillov et al.,
2023) have achieved tremendous success, the working ways
are still so different from the human brain. The biological
neurons communicate with spikes (Roy et al., 2019) and
only activate when the membrane potential exceeds a cer-
tain threshold. Spiking neural networks (SNNs) (Maass,
1997) are designed by simulating biological neuron dynam-
ics (Gerstner et al., 2014), and have distinctive attributions
of biological plausiblity, event-driven sparsity, and binary
activation. Given event-driven computation, high sparsity is
dynamically achieved by event occurrence. Given binary ac-
tivations, matrix multiplications convert to accumulate (AC)
operations. These characteristics make bio-inspired SNNs
a significantly energy-efficient alternative (Yin et al., 2021;
Schuman et al., 2022) to traditional ANNs. Deepening our
understanding of spiking neurons (Fang et al., 2021b) and
expanding the usage scope of SNNs (Kim et al., 2020; Zhou
et al., 2024) have become increasingly valuable issues.

Previous SNNs mainly focus on computer vision (Wu et al.,
2021; Hu et al., 2021) due to relatively simple tasks and
smaller model sizes. Recently, large-scale language models
(Touvron et al., 2023; Du et al., 2022) exhibit much more
advanced generalization ability (Brown et al., 2020) than
other fields in machine learning, which motivates us to
pursue more general spike-driven models with language
modeling. However, this objective is no-trial due to the
technological challenges in spike representation (Deng &
Gu, 2020; Guo et al., 2023b) and optimization (Neftci et al.,
2019; Wu et al., 2018; Guo et al., 2023c). In representation,
binary spike leads to severe information loss (Deng & Gu,
2020), making it difficult to generalize across language tasks.
In optimization, large-scale language models require stable
and highly efficient gradient calculation, while neuronal
dynamics in SNNs are non-differentiable. Therefore, there
are very limited language-oriented SNNs.

This work focuses on fully spike-driven language modeling
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Figure 1. Comparisons between previous spike encoding (a) and
our elastic bidirectional encodings (b, c, d). The bidirectional,
frequency and amplitude encodings are sequentially applied .

in general tasks, including both discriminative and gener-
ative ones, which is not addressed in the previous SNN
studies. Notably, fully spike-driven indicates replacing all
matrix multiplications as spike operations, except the last
regression. To explore the capabilities and limitations of
current SNNs, we initially apply existing SNN technolo-
gies (Hu et al., 2021; Gerstner et al., 2014) to construct
fully spike-driven baselines. Basically, there is a large per-
formance gap between language-oriented ANNs and SNNs.
Moreover, the fixed spike firing rate in SNNs makes a subop-
timal trade-off between performance and energy efficiency.

To address the aforementioned issues, we focus on boosting
modeling capabilities of SNNs through generalized spike
encoding methods. To extend semantic information, we se-
quentially generalize spike formulations as shown in Fig.1:
(i) Bi-directional spike encoding. Different from previous
binary spike levels {0, 1}, we propose bidirectional spikes
with ternary levels {−1, 0, 1}. Bidirectional encoding dou-
bles semantic information and maintains the addition nature
of SNNs at the same time.
(ii) Elastic spike frequency encoding. Different from pre-
vious empirical spike firing rates, we encode spike frequency
according to input distributions, achieving a controllable fir-
ing rate for better performance and energy trade-off.
(iii) Elastic spike amplitude encoding. To retain mem-
brane potential intensity, we encode spike with amplitude
information as {−α, 0, α}. A layerwise α is used, which
can be merged with weights after training. Therefore, the
addition nature of SNNs is still maintained.
Given a multi-step spike, these encoding methods jointly
extend spike capabilities by direction and amplitude in each
time step and frequency across time steps. We plug this
elastic bi-spiking mechanism in language modeling, termed

Table 1. Comparisons with SpikeBERT (Lv et al., 2023) and
SpikeGPT (Zhu et al., 2023). The ”+” sign indicates the level
of capability, with SpikeGPT only utilized for basic language mod-
eling, lacking applications in sentence-level generation tasks. AC
and MAC indicate ACcumulate and Multiply-ACcumulate.

Task/Operation SpikeBERT SpikeGPT SpikeLM

Discrimination +++ +++ +++
Generation - + +++

Spike-Driven Fully Partly Fully
Matrix Mul. ACs MACs ACs

Table 2. Comparisons between ANN and SNNs in generative and
discriminative tasks in the same BERT or BART architecture.

Dataset ANN LIF-SNN SpikeLM

MNLI-m/mm (Acc.) 83.8/83.4 56.8/55.2 77.1/77.2
MRPC (F1) 89.8 82.3 85.7
STS-2 (Acc) 92.3 80.6 87.0
RTE (Acc.) 69.3 53.8 69.0
STS-B (SP.) 89.4 20.0 84.9

XSUM (R-L) 34.7 28.3 32.9
CNN-DM (R-L) 31.7 28.1 29.1
WMT16 (BLEU) 26.8 19.0 23.0

Average 66.8 47.1 62.9

SpikeLM. Thanks to improved spikes, as Table 1, it achieves
the first fully spiking mechanism in general language tasks,
by replacing all matrix multiplications in ANNs. Our con-
tributions are summarised as follows:

• We propose SpikeLM, the first general fully spike-
driven language modeling, significantly broadening
the usage scope of language-oriented SNNs. As Ta-
ble 2, SpikeLM achieves much higher accuracy than
what was possible previously and largely bridges the
performance gap between SNNs and ANNs.

• We propose an elastic bi-spiking mechanism. At the
same time, it maintains the addition nature of SNNs. A
controllable spike firing rate is also achieved.

• We introduce the dynamic isometry (Chen et al., 2020),
and theoretically prove that the training stability of the
elastic bi-spiking function surpasses the ReLU function
in ANNs, ensuring stable optimization for SpikeLMs.

2. Related Work
Bio-inspired SNNs. BIC field (Mehonic & Kenyon, 2022;
Zhang et al., 2020b) is boosted by both advanced neuro-
science and deep learning. Recent BIC field gets inspiration
from learning rules (Payeur et al., 2021), structures (Pham
et al., 2021), and energy-efficient computation (Schuman
et al., 2022; Yao et al., 2023b) in the nervous system. As a
BIC algorithm, SNN (Maass, 1997) also takes advantages of
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deep learning, for example, the spike-driven residual learn-
ing (Fang et al., 2021a), normalization (Zheng et al., 2021;
Guo et al., 2023d), self-attention (Yao et al., 2023a; Zhou
et al., 2023; Yao et al., 2024a), backpropagation (Meng et al.,
2022; Li et al., 2021; Su et al., 2023; Guo et al., 2023a),
and ANN-SNN conversion (Bu et al., 2021; Deng & Gu,
2020) technologies. One of the recent works also introduces
ternary spikes (Guo et al., 2024) in the computer vision
field, while this work is in parallel with it and has different
frequency and amplitude encoding to reduce average firing
rate in language tasks. Inspired by generalization capability
in both the spike-driven human brain (Gerstner et al., 2014;
Izhikevich, 2003) and recent large language models (Tou-
vron et al., 2023; Brown et al., 2020), we are the first time to
explore fully spike-driven models in general language tasks.

Neuromorphic chips. Neuromorphic chips are inspired by
the brain with non-von Neumann architectures (Yao et al.,
2024b; Schuman et al., 2022; Roy et al., 2019; Merolla et al.,
2014). Owning the high sparsity and event-driven SNNs,
their energy consumption can be tens to hundreds of mWs
(Basu et al., 2022) in SNNs workloads by compute gating
or clock gating techniques (Narayanan et al., 2020).

Language-oriented SNNs. SpikeBERT (Lv et al., 2023)
distills the spikingformer (Zhou et al., 2023) in some dis-
criminative tasks. However, performance drops to 59.7% on
the GLUE. SpikeGPT (Zhu et al., 2023) introduces spike
propagation between transformer blocks, but overall blocks
are still ANNs. Compared with recent weight-quantized lan-
guage models, BitNet (Wang et al., 2023) and ternary BitNet
(Ma et al., 2024), SNNs more concentrate on bio-plausible
activation spike encoding.

3. Problem Formulation
3.1. Language Modeling with Vanilla SNNs

We start by developing the first general baseline for fully
spike-driven language modeling. Without loss of generality,
we apply the most popular Leaky Integrate-and-Fire (LIF)
neurons (Gerstner et al., 2014) to encode real-valued activa-
tions into spike sequences. Fully spike-driven transformers
are achieved through LIF neurons in linear layers and the
key and value of self-attention (Vaswani et al., 2017).

Spike encoding in linear. LIF neurons are neuronal dynam-
ics added before linear layers, which output binary spikes
with {0, 1} levels. The following matrix multiplication is
converted to additions. By simulating the charging and fir-
ing of biological neurons, LIF neurons can be governed by:

ml(t) = vl(t− 1) + xl−1(t), (1)

sl(t) =

{
0, ifml(t) < θl

1, ifml(t) ≥ θl
, (2)

Figure 2. Spike firing rate in LIF-BERT (left) and activated rate in
Binary BERT (right) in every linear layer.

vl(t) = βml(t)(1− sl(t)) + vresets
l(t). (3)

At each time step t, the LIF neuron performs a spike encod-
ing until a certain spike length T . ml(t) and vl(t) indicate
the membrane potential before and after spike encoding re-
spectively. To simulate the charging process,ml(t) adds the
inputs xl−1(t) at the current moment to the membrane po-
tential vl(t−1) from the last moment. When the membrane
potentialml(t) exceeds the firing threshold θl, the neuron
is triggered and the spike sl(t) is encoded as 1; otherwise, it
is 0. After spike encoding, the membrane potential vl(t) is
reset to a certain potential vreset if the spike is 1; otherwise,
it will decay by a factor β(< 1).

Spike encoding in the key and value. The matrix multipli-
cations in self-attention include the multiplication between
the key and query, and the multiplication between the at-
tention map and value. By encoding the key and value as
spikes by Eq.1,2,3, all matrix multiplications are converted
to additions. We set β = 0 in key and value. Notably, the
time step of SNNs is an additional dimension.

We construct LIF-based transformers for both BERT (Devlin
et al., 2018) and BART (Lewis et al., 2019) architectures,
termed LIF-BERT and LIF-BART, for discriminative and
generative tasks respectively. For optimization, we propose
a straight-through estimator (STE) (Bengio et al., 2013)
based backpropagation in Appendix A.1, which achieves a
strong baseline in general language tasks.

3.2. Performance & Energy Efficiency in SNNs

Previous SNNs directly encode spikes, leading to an ill-
posed problem: when the spike firing rate is low, it leads to
a reduced information entropy in the Bernoulli-distributed
spikes, limiting model capability. When the spike firing rate
is high, it decreases the sparsity of the spikes, resulting in
increased energy consumption.

Performance drop. As shown in Table 2, compared with
ANNs, the LIF-based SNNs are driven by sparse binary
spike, resulting in the average 19.7% performance drop. We
analyze the spike firing rate in LIF-BERT in Fig.2. Although
the LIF-BERT has a low firing rate, the sparse and binary
encoded spike is too simple without much capability to
represent semantic information.
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Energy efficiency. We consider a case of the high firing
rate. We directly replace the LIF neuron with a binary
quantization function for one-step spike encoding following
BiPFT (Xing et al., 2024), which is a Binary BERT with
the {-1, +1} binarization level. For binary neural networks
(BNNs) (Courbariaux et al., 2016; Xing et al., 2022), the
binary activations can map to {0, 1} in inference. As shown
in Fig.2, the proportion of 1 in Binary-BERT is close to
50%. Compared with SNNs, BNNs demonstrate a much
higher activation rate. With equally probable 0 and 1, in-
formation entropy in the Bernoulli distribution approaches
maximum. However, the reduced sparsity leads to signifi-
cantly increased energy consumption.

4. General Spike Language Modeling
We divide and conquer the problem of effective spike en-
coding into three aspects: spike direction encoding, spike
frequency encoding, and spike amplitude encoding. From
these perspectives, we present general and advanced spike
encoding strategies, significantly enhancing the overall rep-
resentational capacity of the spike signals. Finally, we the-
oretically confirm the effectiveness of our spike encoding
methods in general language-oriented SNNs.

4.1. Bi-Directional Spike Encoding

As shown in Eq.2, the previous spike encoding binarizes the
current membrane potential into {0, 1}, overlooking all neg-
ative membrane potentials with half of the information. We
propose a bidirectional spike encoding with ternary levels
{−1, 0, 1}, considering both positive and negative mem-
brane potentials. Since the spike encoding of the membrane
potential is non-differentiable, we first define stochastic
spike encoding to relax spikes as random variables. Then,
we calculate the expectation of gradient based on the distri-
bution of the spikes for backward propagation.

We first define positive stochastic spikes s̃+(t) and nega-
tive stochastic spikes s̃−(t) to encode positive and negative
membrane potentials respectively. And then, the bidirec-
tional stochastic spike s̃±(t) can be defined as the summa-
rization of positive and negative spikes:

s̃+(t)
def
=

{
0, p0 = clip(1−m(t), 0, 1)

+1, p+ = clip(m(t), 0, 1)
, (4)

s̃−(t)
def
=

{
0, p0 = clip(1 +m(t), 0, 1)

−1, p− = clip(−m(t), 0, 1)
, (5)

s̃±(t)
def
= s̃+(t) + s̃−(t), (6)

where p+, p0, and p− indicate the probability of +1, 0, and
-1 respectively. We define the p+, p0, and p− according to
their distance to the value of +1, 0 and -1, and the clip(.)

operations confirm the probability in the range of [0,1], so
that, the definitions of s̃+(t) and s̃−(t) confirm p++p0 = 1
and p− + p0 = 1 respectively.

Backward propagation. Eq.4 and 5 are non-differentiable.
To enable backpropagation in the entire SNN, we calculate
the expectation of the stochastic gradient of s̃±(t). We use
the gradient expectation Es̃±(t) in place of the deterministic
gradient to complete the backpropagation:

Es̃±(t)[
∂s̃±(t)

∂m(t)
] =

∂

∂m(t)
E[s̃±(t)]

=
∂

∂m(t)
(−1× p− + 0× p0 + 1× p+)

=
∂

∂m(t)
clip(m(t),−1, 1)

, (7)

where the gradient expectation Es̃±(t) can be derived as
the straight-through estimator (STE) (Bengio et al., 2013),
which is widely applied to relax non-differentiable oper-
ations. The backpropagation can achieve high efficiency,
which only performs gradient identity between +1 and -1.

Forward propagation. Eq.4 and 5 involve random sam-
pling. In practice, we convert stochastic spike encoding into
deterministic by setting fixed thresholds for efficiency:

s±(t) =


−1, ifm(t) < −1
0, ifm(t) ∈ (−1,+1)

+1, ifm(t) > +1

, (8)

which is derived by setting the probability condition p+ = 1
in Eq.4 and p− = 1 in Eq.5 for +1 and -1 spike encod-
ing respectively. After bidirectional spike encoding, the
membrane potentials are encoded by sequences of {+1,0,-
1}. Notably, matrix multiplications between bidirectional
spikes and real-valued weights can be converted to pure
addition and subtraction operations.

Under the same firing rate r, a bidirectional spike can, at
most, increases information entropy r bits for each time
compared to the unidirectional spike. This is achieved by
directly calculatingH(s±i (t))−H(s

+
i (t)), where the infor-

mation entropy of the original and bidirectional spikes are
formulated by Eq.9:

H(s+i (t)) = −r log(r)− (1− r) log(1− r),

H(s±i (t)) = −2×
r

2
log(

r

2
)− (1− r) log(1− r).

(9)

According to Eq.4,5, information entropy achieves maxi-
mum, as long as the positive and negative spikes have the
same probability.

4.2. Spike Frequency Encoding

As shown in Eq.2, previous spike encoding disregards input
distributions, directly using a fixed threshold θl to binarize
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Figure 3. Relationship between the variance of input distributions
and the spike firing frequencies.

inputs. However, the input distributions vary across differ-
ent neurons. A key issue with previous spike encoding is
its failure to perceive the variance of input distributions,
resulting in difficulties to maintain a reasonable firing rate.

Distribution-aware frequency encoding. We introduce a
distribution-aware frequency encoding, which adjusts the
input distribution for each neural layer. We achieve stable
and manually controllable spike firing frequencies by elasti-
cating membrane potentials with a scaling factor α(t), and
the elastic membrane potential is m̂(t) =m(t)/α(t). As
illustrated in Fig. 3, by adjusting the variance of the input
distribution, we can encode spikes in different frequencies,
where a larger variance distribution results in a higher spike
firing rate. We define the scaling factor as k times the mean
of membrane potential amplitude, 1

n

∑n
i=1 |mi(t)|:

αl(t)
def
=

k

n

n∑
i=1

∣∣∣ml,(1)
i (t)

∣∣∣ , (10)

whereml,(1)
i (t) indicates the membrane potential under the

first batch of training data. For stable training, we deter-
mine every αl(t) by the first batch, and then freeze αl(t) in
training. We replace theml(t) in Eq.8 with the elastic mem-
brane potential m̂l(t) and obtain the frequency encoding:

s±(t) =


−1, ifm(t) < −α(t)
0, ifm(t) ∈ (−α(t),+α(t))
+1, ifm(t) > +α(t)

. (11)

In Eq.10, we define k as an adjustable hyperparameter.
When reducing k, it equally reduces the spike threshold in
Eq.11, leading to an increased spike frequency; conversely,
increasing k reduces the spike frequency.

Then, we will understand αl(t) from the perspective of
the variance of input, which distribution is widely believed
as roughly zero-mean Gaussian or Laplacian (Lin et al.,
2022; Banner et al., 2019). For simplification, we also use
this assumption; for more complex distributions, it can be
proved similarly as follows.

Lemma 1. Given a zero-mean Gaussion or Laplacian mem-
brane potential m, i.e.,m ∼ N (0, σ2) or m ∼ La(0, b),

the scaling factor αl(t) is
√

2
πσk or bk.

This is proved by calculating the expectation of αl(t), and
αl(t) = kE[|ml(t)|] = k

∫∞
−∞ |m|f(m) dm, where f(.) is

zero-mean Gaussian or Laplacian distribution. As Lemma 1,
αl(t) is linearly related to the standard deviation σ.

4.3. Spike Amplitude Encoding

Eq.2 also neglects the intensity of membrane potential in-
tensity. To preserve the intensity information, we encode
the expectation of membrane potentials into spikes ampli-
tude. This is achieved by scaling spike amplitude to αl(t),
which formulates an identity transformation for membrane
potentials in expectation:

s±(t) =


−α(t), ifm(t) < −α(t)
0, ifm(t) ∈ (−α(t),+α(t))
+α(t), ifm(t) > +α(t)

. (12)

In this case, the backpropagation is the same as Eq.7, since
Eq.12 is equivalent to dividing and then multiplying Eq.8 by
α(t) before and after respectively. Due to the spike ampli-
tude becoming αl(t), we accordingly revise the membrane
potential update formula Eq.3 as:

vl(t) =ml(t)(α(t)− sl(t)) + vresets
l(t). (13)

Notably, at each time step t, we employ a layerwise ampli-
tude encoding. Due to the commutative property of multipli-
cation, we can first conduct matrix multiplications with unit
amplitude spikes, and then reweight the results using spike
amplitude. After training, the spike amplitude can merge
with the weights in this layer. Amplitude encoding does not
change the addition property of spike-driven operations.

4.4. Conquering Language Modeling with SNNs

We refer to the proposed spike encoding in Eq.1,12,13 as
elastic bi-spiking mechanisms, which jointly encodes ex-
tended direction, frequency, and amplitude information of
membrane potentials. We replace the traditional LIF neu-
rons with elastic bi-spiking mechanisms and construct di-
rectly trainable language-oriented SNNs, termed SpikeLM.

We theoretically prove that elastic bi-spiking mechanisms
ensure high optimization stability in SpikeLM, guaranteeing
its performance in general language tasks. This is achieved
by dynamical isometry: if a neural network achieves dy-
namical isometry, it prevents gradients from vanishing or
exploding, maintaining nearly all values of its input-output
Jacobian matrixes around one. A neural network can gener-
ally be viewed as a series of blocks f jθj with parameters θj :

f(x0) = fLθL ◦ fL−1θL−1 ◦ · · · ◦ f1θ1(x0), (14)
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where the Jacobian matrix ∂fj

∂fj−1 is Jj . It can be defined

φ(J)
def
= E[tr(J)], and ϕ(J) def

= φ(J2)− φ(J)2.

Definition 1. Block Dynamical Isometry (Definition 3.1 in
(Chen et al., 2020)). Consider a neural network that can be
represented as Eq. 14 and the j-th block’s Jacobian matrix
is denoted as Jj . If ∀ j, φ(JjJTj ) ≈ 1 and ϕ(JjJTj ) ≈ 0,
the network achieves block dynamical isometry.

Lemma 2. Given the probability of the input greater than 0
is p, the values of φ(J) and ϕ(J) are p and p− p2 for the
ReLU function. (Proof in A.6 (Chen et al., 2020))

Lemma 3. Given the spike fire rate is r, the values of φ(J)
and ϕ(J) are 1− r and r − r2 respectively for the elastic
bi-spiking function in Eq.12.

Proof. For clarity, we denote the elastic spike encoding
(Eq.12) as s(m), wherem is the membrane potential, and
donate the Jacobian matrix as sm. Because s(m) is the
element-wise operation, sm is a diagonal matrix. According
to Eq.7, the gradient of s(m) is the STE between -1 and +1,
so that, the value of sm is 0 or 1. Given the spike firing rate
r, the probability in [-1,+1] is 1− r. Therefore, the spectral
density of sm is: ρsm(z) = rδ(z) + (1− r)δ(z − 1). And
we have ρsmsmT (z) = ρsm(z) because of the {0,1} matrix
value. Accordingly, we have:

φ(smsm
T ) =

∫
R
zρsmsmT (z)dz = 1− r,

ϕ(smsm
T ) =

∫
R
z2ρsmsmT (z)dz − φ2(smsm

T )

= r − r2.

(15)

Theorem 1. In a deep neural network, the elastic bi-spiking
function achieves better dynamical isometry than the ReLU:
φ(smsm

T ) > φ(fxfx
T ), ϕ(smsm

T ) < ϕ(fxfx
T ).

Proof. In Lemma 2 and Lemma 3, p is usually believed
0.5 for zero-mean input distribution and r is roughly 0.1
to 0.3 in SNNs. Accordingly, φ(smsm

T ) > φ(fxfx
T ) is

achieved. Moreover, the function f(x) = x− x2 achieves
maximum given x = 0.5, so that, ϕ(smsm

T ) < ϕ(fxfx
T )

is achieved.

Based on Theorem 1, the Jacobian matrix of Eq.12 is closer
to I than the ReLU function in ANNs. As a result, the
elastic bi-spiking function has better optimization stability
than ReLU at least. The training stability of SpikeLM is
confirmed accordingly.

5. Experiments
We evaluate previous SNNs and SpikeLMs on a range of
general language tasks, including discriminative and gener-

ative. We mainly explore three key issues: (i) the baseline
performance of traditional SNNs in general language tasks;
(ii) the effectiveness of elastic bidirectional spike encod-
ing in SpikeLM; and (iii) how to achieve controllable spike
firing rate for energy efficiency.

5.1. Settings

Language tasks. For discriminative tasks, we evaluate
SNNs on the standard GLUE benchmark(Wang et al., 2018),
which includes 8 subsets for classification and regression
in different scenes. For generative tasks, we evaluate text
summarization benchmarks: XSUM (Narayan et al., 2018)
and CNN-DailyMail (Nallapati et al., 2016). Additionally,
we evaluate the machine translation task on the WMT16
English-Romanian dataset (Bojar et al., 2016).

Architectures. We develop SNN baselines and SpikeLM
for discriminative and generative tasks using BERT and
BART architectures respectively. For frequency encoding,
we set k = 2. As Section 3.1, we implement SNNs by
replacing all matrix multiplications in ANNs with spike op-
erations, maintaining the same architectures. Specifically,
we use: (i) the BERT base (Devlin et al., 2018) for discrimi-
native tasks, which is a 12-layer encoder transformer with
110M parameters; (ii) the BART base (Lewis et al., 2019)
for text summarization, which is a encoder-decoder trans-
former with 6 layers for each and totally 139M parameters;
and (iii) the mBART large model (Liu et al., 2020) for trans-
lation tasks, which is pretrained on 25 languages and has
680M parameters.

5.2. Discriminative Tasks

We follow the standard ANN-based BERT to develop SNN-
based LIF-BERT and SpikeLM, which include two stages:
pretraining and finetuning. In pretraining, we use the
BooksCorpus (Zhu et al., 2015) and English Wikipedia
(Devlin et al., 2018) as training data, including 800M and
2500M words respectively. In finetuning, we use the GLUE
benchmark training with the common settings of ANNs.
Training details are reported in Appendix A.2.

Results of GLUE benchmark. As shown in Table 3, we
compare SpikeLM with both ANNs and SNNs. Our ANN
baselines include BERTs (Devlin et al., 2018), ELMo (Pe-
ters et al., 2018), and Q2BERT with 2-bit weights and 8-bit
activations (Zhang et al., 2020a), while the SNN baselines
include SpikeBERT (Lv et al., 2023) and directly training
SpikeingFormer (Zhou et al., 2023). We additionally imple-
ment spike-driven BERTs with the PSN (Fang et al., 2023b)
and LIF (Gerstner et al., 2014) neurons with original neuron
settings (Fang et al., 2023a; Lv et al., 2023). The differ-
ence between LIF-BERT and LIF-BERT∗ is in Appendix
A.1. Compared with BERTbase, SpikeLM reduces the per-
formance gap to 6.7%, while the original gap is 28.3% in
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Table 3. Comparisons between SpikeLM and ANNs or other SNNs on the GLUE dev set. The energy consumption is evaluated by FP32
operations and more results about FP16 energy consumption are in Table 5. We report the evaluation metric in Appendix A.3. We
implement LIF-BERT∗ and PSN-BERT∗ with LIF and PSN spiking neurons in Spikingjelly (Fang et al., 2023a), where the hyperparameters
of spiking neurons follow previous SpikeBERT (Lv et al., 2023). BERT3L and SpikeLM6L indicate the 3-layer BERT model and 6-layer
SpikeLM respectively. We transfer the vision-oriented SpikingFormer (Zhou et al., 2023) to language tasks by removing spiking neurons
in the query and attention weight for a fair comparison with LIF-BERT and SpikeLM. Except for SpikeBERT (Lv et al., 2023), all spiking
models apply the same training scheme.

Model Energy (mJ) Time MNLI-m/mm QQPF1 QNLI SST-2 CoLA STS-B MRPCF1 RTE Avg.
BERTbase 51.41 – 83.8/83.4 90.5 90.7 92.3 60.0 89.4 89.8 69.3 83.2
BERT3L 12.9 – 77.1/77.1 85.2 85.8 88.1 31.7 85.7 86.4 66.4 75.9
Q2BERT – – 47.2/47.3 67.0 61.3 80.6 0.0 4.7 81.2 52.7 49.1
ELMo – – 68.6/– 86.2 71.1 91.5 44.1 70.4 76.6 53.4 70.2

SpikeBERT 14.30 4 71.4/71.0 68.2 66.4 85.4 16.9 18.7 82.0 57.5 59.7
LIF-BERT∗ – 4 35.4/35.2 0.0 50.5 50.9 0.0 0.0 81.2 52.7 34.6
PSN-BERT∗ – 4 35.4/35.2 0.0 50.5 50.9 0.0 6.8 81.2 52.7 34.7
LIF-BERT 7.98 4 56.8/55.2 70.0 60.6 80.6 14.6 20.0 82.3 53.8 54.9
SpikingFormer – 1 67.8/68.6 79.3 74.6 82.7 16.7 72.3 83.0 58.8 67.1
SpikingFormer – 4 70.2/70.6 80.9 79.5 83.9 12.8 77.0 83.0 62.1 68.9

SpikeLM6L 2.05 1 73.9/75.3 83.2 84.2 86.2 30.7 83.7 85.7 66.8 74.4
SpikeLM6L 7.06 4 75.1/75.3 83.5 84.6 87.4 33.7 84.5 86.5 64.3 75.0
SpikeLM 3.98 1 76.0/76.9 84.0 84.9 86.5 37.9 84.3 85.6 65.3 75.7
SpikeLM 13.74 4 77.1/77.2 83.9 85.3 87.0 38.8 84.9 85.7 69.0 76.5

Table 4. Comparisons between SpikeLM, SpikingFormer (Zhou et al., 2023), and ultra-low bit quantization methods on the GLUE dev set.
Weight and Act. indicate the bit-width of weights and activations respectively, where ter indicates the ternary quantization level. For
SpikeLM and SpikingFormer, we set the time step as 1. The 1-bit weight SpikeLM has similar operations with binary BERTs, which
is because the binary BERTs have about 0.5× equivalent sparsity (Fig. 2) while SpikeLM has less activation firing rate in the BERT
architecture.

Model Weight Act. MNLI-m/mm QQPacc QNLI SST-2 CoLA STS-B MRPCacc RTE Avg.
Q2BERT 2 8 47.2/47.3 67.0 61.3 80.6 0.0 4.4 68.4 52.7 47.7
TernaryBERT Ter Ter 40.3/40.0 63.1 50.0 80.7 0.0 12.4 68.3 54.5 45.5
BinaryBERT 1 1 62.7/63.9 79.9 52.6 82.5 14.6 6.5 68.3 52.7 53.7
BiBERT 1 1 66.1/67.5 84.8 72.6 88.7 25.4 33.6 72.5 57.4 63.2
BiT 1 1 77.1/77.5 82.9 85.7 87.7 25.1 71.1 79.7 58.8 71.0
BiPFT 1 1 69.5/70.6 83.7 81.7 86.2 22.9 80.2 76.2 66.1 70.8

SpikingFormer 32 1 67.8/68.6 83.8 74.6 82.7 16.7 72.3 74.0 58.8 66.6
SpikeLM 32 Ter 76.0/76.9 87.9 84.9 86.5 37.9 84.3 78.7 65.3 75.4
SpikeLM 1 Ter 74.9/75.1 87.2 84.5 86.6 36.0 83.9 78.9 65.7 74.8

Table 5. Energy consumption of the ANN-based BERT, LIF-BERT,
and SpikeLM. We evaluate energy with both the FP16 and FP32
Multiply-ACcumulate (MAC) or ACcumulate (AC) operations.

Model BERTbase LIF-BERT SpikeLM SpikeLM

Steps 1 4 1 4
FP16 (mJ) 15.21 3.55 1.77 6.10
FP32 (mJ) 51.41 7.98 3.98 13.74

the LIF-BERT baseline. We compare SpikeLM with Spike-
BERT (Lv et al., 2023), which is distilled from ANN-based
BERT. SpikeLM exceeds 16.8% average performance with-
out any distillation, indicating the overall improvements
in stand-alone learning capabilities of SNNs. Compared
with original LIF-BERT∗ and PSN-BERT∗, SpikeLM dra-
matically improves 41.9% and 41.8% respectively. Results
show that previous {0,1} spikes can not successfully model
standard discriminative tasks. By leveraging elastic bi-spike

Figure 4. SNN scaling law of SpikeLM (T=1,4).

encoding, their performance drop is effectively addressed.

As shown in Table 4, we also compare SpikeLMs with ultra-
low bit quantization BERTs including Q2BERT (Zhang
et al., 2020a), TernaryBERT (Qin et al., 2022; Zhang et al.,
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Firing Rate Before Training Firing Rate After Training Firing Rate After Training

(a) Learnable Threshold (b) Frequency Encoding, k=2 (c) Frequency Encoding, k=3 (d) Frequency Encoding, k=4

Figure 5. Spiking firing rate in linear layers under 2 settings: the learnable thresholds α(t) (a) and spike frequency encoding (b, c, d).

Table 6. Ablation study on bidirectional spike encoding and spike
frequency/amplitude encoding.

Method Spikes GLUE Avg.

LIF-BERT∗ (T=4) {0, 1} 34.6

LIF-BERT (T=4) {0, 1} 54.9
+ Bidirect. encoding {−1, 0, 1} 55.7
+ Freq./Amp. encoding {−α, 0, α} 76.5

LIF-BERT (T=4) {0, 1} 54.9
+ Freq./Amp. encoding {0, α} 71.8
+ Bidirect. encoding {−α, 0, α} 76.5

2020a), BinaryBERT (Qin et al., 2022; Bai et al., 2020),
BiBERT (Qin et al., 2022), BiT (Liu et al., 2022), and
BiPFT (Xing et al., 2024). Because of the sparse encoding
in SpikeLM, the 1-bit weight SpikeLM (T=1) has similar op-
erations to BERTs with both binary weights and activations.
Specifically, we view the sparsity of BNNs as 0.5 according
to Fig. 2, because value levels are able to map to {0,1} in
inference. Compared with binary BERTs, SpikeLM also
achieves higher performance.

Energy efficiency. As Table 3, compared with BERTbase,
SpikeLM saves 12.9× and 3.7× energy consumption with
spike time steps 1 and 4 respectively. Compared with Spike-
BERT (Lv et al., 2023), SpikeLM (T=1) exceeds 16.0%
average performance and also saves 3.6× energy. In Table
5, it is shown that FP16 and FP32 operations have a similar
tendency.

SNN scaling law. As shown in Fig. 4, we explore the
scalability of language-oriented SNNs by adjusting the pa-
rameter number with different model widths. We pretrain
SpikeLMs from 6.9M to 194M parameters and use pretrain-
ing loss, including the mask language modeling and next
sentence prediction, as the evaluation metric. For larger
models, Wikipedia and BooksCorpus may be insufficient
for pretraining, and larger-scale datasets are needed. The
experiments show that the elastic bi-spiking mechanism fol-
lows the scaling law, supporting SpikeLM’s scalability to

Table 7. Trade-off between performance and efficiency. N/A indi-
cates directly setting spike thresholds as -1 and +1 as Eq.8.

Settings N/A Learnable k=2 k=3 k=4

GLUE Avg. (%) 55.7 76.8 76.5 75.1 60.8
Erengy (mJ) 17.3 23.8 13.7 10.4 7.4

some extent.

Ablation study. The improvements of SpikeLM are at-
tributed to elastic bi-spiking mechanisms, by encoding the
direction, frequency, and amplitude of spikes. Notably,
the frequency and amplitude encoding are coupled in Eq.
12. Therefore, we analyze the individual contributions of
bidirectional and frequency/amplitude encoding in Table 6.
When implementing backpropagation by Straight-Through
Estimator (STE), adding spike frequency/amplitude encod-
ing and bidirectional spike encoding improves the GLUE
performance by 16.9% and 4.7%, demonstrating the en-
hanced modeling capacity of elastic bi-spiking mechanism.
As a result, our visualization in Appendix A.4 demonstrates
the extended bidirectional and amplitude information in
spikes, and a proper firing rate is maintained.

Controllable spike firing rate. As Section 3.2, a key is-
sue with existing SNNs is the trade-off between energy and
performance. Spike frequency encoding can achieve a con-
trollable firing rate, thereby enabling a manageable balance
between performance and energy consumption. To estimate
this, we compare two settings: (i) setting α(t) as learnable
parameters in each spike layer, as shown in Fig.5(a), and (ii)
setting α(t) as Eq.10 with k = 2, 3, 4, as shown in Fig.5(b,
c, d). In Fig.5, we compare the distributions of spike firing
rate in each linear layer of SpikeLM BERT models. We
have the following results: (i) In Fig.5(a), the freely train-
able α(t) leads to excessively high spike firing rates due
to maximizing the entropy of the multinomial distribution.
(ii) Spike frequency can be effiectively controlled by hy-
perparameter k in Eq.12. By increasing k from 2 to 4, the
average firing rate changes from 33% to 17%. (iii) Spike
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Table 8. Comparisons between SpikeLM and ANNs or LIF-BARTs on generative tasks. We evaluate text summarization on XSUM and
CNN-DailyMail with rouge-{1,2,L} metrics; and evaluate translation on the WMT16 En-Ro dataset with the BLEU metric. For XSUM
and CNN-DailyMail, we use the base BART architecture; for WMT16, we use the large mBART architecture. We evaluate average energy
consumption on the XSUM dataset for the base-sized BART, LIF-BART, and SpikeLM. Following other SNN works (Zhou et al., 2023;
Yao et al., 2023a), we also apply FP32 operations for energy evaluation.

XSUM XSUM CNN-DailyMail WMT16

Model Energy (mJ) Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L BLEU

BARTbase/mBARTlarge 378.22 42.75 19.80 34.72 44.88 22.24 31.75 26.82
BERTSUMABS – 38.76 16.33 31.15 41.72 19.39 38.76 –
PTGEN – 29.70 9.21 23.24 36.44 15.66 33.42 –
GPT-2 – – – – 29.34 8.27 26.58 –

LIF-BART (T=1) 6.59 33.17 12.30 26.56 39.88 16.77 26.15 14.72
LIF-BART (T=4) 28.92 35.47 13.84 28.32 41.39 18.33 28.05 19.04

SpikeLM (T=1) 25.68 39.40 17.13 31.97 41.56 18.74 28.51 20.93
SpikeLM (T=4) 115.79 40.63 17.97 32.92 42.19 19.27 29.06 22.95

frequency encoding controls the firing rates without much
performance drop. Compared to learnable thresholds, the
frequency encoding at k = 2 has almost the same perfor-
mance and saves 42.4% of energy in Table 7. (iv) The firing
rate remains similar before and after training with spike
frequency encoding, allowing to predict firing rate at the
beginning of training.

5.3. Generative Tasks

We evaluate fully spike-driven language models in gen-
erative tasks for the first time. Generation tasks require
extended input and output sequence lengths, which neces-
sitates advanced language modeling capabilities in SNNs.
Therefore, we introduce the distillation strategy, which in-
volves initializing and employing knowledge distillation
from a pretrained ANN teacher. In detail, we select the
pretrained BART-base and mBART-large models as ANN
teachers for summarization and translation. Training details
are shown in Appendix A.2.

Results of summarization. In Table 8, we compare
SpikeLM with both ANN and SNN baselines. Compared
with the BART base model, the ROUGE-L of SpikeLM
(T=4) only drops 1.80% and 2.69% on XSUM and CNN-
DailyMail, despite replacing all the matrix multiplications
as spikes-driven. Compared with GPT-2 and other ANNs,
SpikeLMs can be also competitive. This is the first time to
verify fully spike-driven models achieve competitive perfor-
mance with ANNs in challenging generative tasks.

Compared with LIF-BARTs on XSUM, SpikeLMs exceed
5.41% with one-step spikes and 4.60% with 4-step spikes.
Similar results are also shown on CNN-DailyMail. This in-
dicates the omnidirectionally improved bidirectional spikes
with levels {−α, 0, α} achieve much more capabilities in
language modeling than previous {0, 1} spikes.

Results of translation. In Table 8, we go further to evaluate

SpikeLMs on multilingual tasks and large-sized mBART
architecture. We observe that, even with the large-sized
model, the performance of LIF-BART (T=4) remains infe-
rior to SpikeLM (T=1). Therefore, improving spike capacity
by generalized encodings is more effective than increasing
spike time steps in previous SNNs.

6. Conclusion
This work proposes a fully spiking mechanism for general
language tasks, demonstrating the potential generalization
capacity of SNNs at a higher level. Unlike previous binary
spikes, spike capabilities are significantly extended from
bi-direction, amplitude, and frequency encodings, while
maintaining the addition nature of SNNs. Inspired by ad-
vanced neuroscience, it would be great potential to develop
efficient and environmentally friendly large language mod-
els with spike-driven methods in the future.

Limitations
The limitations of this work include the activation spik-
ing in traditional SNNs and the model scale. Compared
with weight quantization, activation quantization in SNNs is
more challenging. Moreover, recent large language models
are memory-bounded, and leveraging spiking neuronal dy-
namics to quantize weights may achieve higher performance
and efficiency in the future.
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A. Appendix
A.1. Implementation Details of the LIF-based Transformers

For comparison, we implement Leaky integrate-and-fire (LIF) neurons (Gerstner et al., 2014) with 2 backpropagation
algorithms:

• the original arctangent-like surrogate gradient function. We implement LIF-BERT∗ by Spikingjelly (Fang et al., 2023a),
which is a popular open-source SNN framework with previous spike neurons.

• To make a strict comparison with our method in Section 4, we also propose a straight-through estimator (STE) (Bengio
et al., 2013) based backpropagation for LIF neurons. We implement our LIF-BERT/BART baselines in this way by
PyTorch.

Forward propagation. The same as Eq.2, the membrane potential is binarized by Eq.16, the θl is 1 in usual:

sl(t) =

{
0, ifml(t) < θl

1, ifml(t) ≥ θl
. (16)

Both of our and the original implementations are the same in forward propagation. The difference is how to relax this
non-differentiable function for gradient calculation.

Backward propagation. In the original LIF neurons, a gradient surrogate function is used:

sl(t) ≈ 1

π
arctan(

π

2
αml(t)) +

1

2
, (17)

which is arctangent-like to simulate Eq.16. The following gradient estimation is used accordingly:

∂sl(t)

∂ml(t)
=
α

2

1

(1 + (π2αm
l(t))2)

. (18)

To make a comparison with our method in Section 4, we also implement a similar STE-based backpropagation and evaluate
the performance. Similar to Section 4.1, we relax the LIF neuron output as stochastic variables s̃(t):

s̃(t)
def
=

{
0, p0 = clip(1−m(t), 0, 1)

1, p+ = clip(m(t), 0, 1)
, (19)

where p+ and p0 indicate the probability of 1 and 0. We define the p+ and p0 according to their distance to 1 and 0, and the
clip(.) operation confirms the probability in [0,1]. As a result, we can use the gradient expectation of the stochastic variable
s̃(t) for backpropagation, similar to Eq.7:

Es̃(t)[
∂s̃(t)

∂m(t)
] =

∂

∂m(t)
E[s̃(t)]

=
∂

∂m(t)
(0× p0 + 1× p+)

=
∂

∂m(t)
clip(m(t), 0, 1)

. (20)

In our LIF-BERT/BART baselines, we use Eq.20 in backward to compare the elastic bi-spiking mechanisms with Eq.7.
For the spike neurons in linear layers, both our LIF-BERT/BART baseline and SpikeLM set β in Eq.3 as 0.25 the same
as other works; for the spike neurons in the key-value cache of self-attention, the β is set to 0, leading to not considering
the results of last time step. This would confirm the parallelism of self-attention operations. For the original LIF-BERT∗

implementation, we apply the same hyperparameters of spiking neurons as the previous SpikeBERT (Lv et al., 2023). As
shown in Table 9, our implemented LIF-BERT baseline has higher accuracy.
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Table 9. Comparisons between our implemented baseline LIF-BERT and the original LIF-BERT∗.

Model Time MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.
LIF-BERT∗ (Original) 4 35.4/35.2 0.0 50.5 50.9 0.0 0.0 81.2 52.7 34.6
LIF-BERT (Ours) 4 56.8/55.2 70.0 60.6 80.6 14.6 20.0 82.3 53.8 54.9

A.2. Experiment Details

A.2.1. GLUE BENCHMARK

In the pretraining phase, we keep the settings of the SNN baselines and SpikeLM similar to BERTs. As shown in Table
3, our trained baselines include the original LIF-BERT∗, PSN-BERT∗, and our implemented LIF-BERT. We utilize the
BooksCorpus (Zhu et al., 2015) and English Wikipedia (Devlin et al., 2018) as our training datasets, which include 800M
and 2500M words respectively. The same as the approach taken in BERT (Devlin et al., 2018), lists, tables, and headers are
ignored in Wikipedia. In the preprocessing stage, our approach aligns with BERT’s methodology, employing the WordPiece
tokenizer (Devlin et al., 2018) with a 30522 vocabulary size. We set the maximum length of each sentence as 128 tokens.
The batch size is set to 512 in training. The entire pretraining encompasses a total of 105 steps. The same as ANN conditions,
we train SNNs with an AdamW optimizer with a 2× 10−4 peak learning rate and 0.01 weight decay. We adapt the learning
rate by a linear schedule with 5000 warm-up steps. Our experiments show the commonly used pretraining hyperparameters
for ANN-based BERTs are general and robust enough for SNNs.

We apply the standard GLUE benchmark (Wang et al., 2018) to evaluate the natural language understanding performance of
LIF-BERT and SpikeLM. We follow previous works and use the 8 subsets, including CoLA, STS-B, MRPC, RTE, QQP,
MNLI, and QNLI for classification or regression in different scenes. For evaluation, we follow BERT (Devlin et al., 2018)
and report F1 scores for QQP and MRPC datasets; Spearman correlations for the STS-B dataset; and accuracy scores for
other datasets. In the finetuning phase, we maintain commonly used hyperparameters for ANN-based BERTs. Specifically,
we maintain a constant learning rate of 2× 10−5 and a batch size of 32 for all subsets. We keep the same training epochs as
previous BiPFTs (Xing et al., 2024) for different datasets. It’s important to note that we do not adapt to the best learning rate
or batchsize for GLUE subsets. This can improve performance a lot but may potentially overestimate performance when
applied to new tasks.

A.2.2. GENERATIVE BENCHMARKS

For generative tasks, we use the XSUM and CNN-DailyMail summarization benchmarks, and the WMT16 En-Ro dataset as
a translation benchmark. XSUM is sampled from the BBC news website, including 226k documents and their one-sentence
summarizations. CNN-DailyMail has longer documents and multi-sentence summarizations, and there are 300k data pairs.

For XSUM, CNN-DailyMail, and WMT16 datasets, we use the AdamW optimizer and train 20 epochs with a 128 batch
size, and a peak learning rate of 3.5 × 10−4, 7 × 10−4, or 1 × 10−4 respectively. We adapt the learning rate by a linear
schedular with 0.05× total steps’ warm-up. All SNN models are trained on a single node with 8 A800 GPUs.

We distill the SNN-based BART models following the model compression methods (Li et al., 2022). As training objectives,
we jointly use the cross-entropy loss and additionally the distillation loss including K-L divergence for the last-layer logits,
and L2 loss for the hidden states and attention map in each layer.

A.3. Energy Consumption Metric

Following previous works, we evaluate the overall energy consumption of a neural network by the energy consumption of
accumulate operations EAC and multiply-accumulate operations EMAC . Under the 45nm process technology, the 32-bit
floating point has an energy consumption of EAC = 0.9pJ and EMAC = 4.6pJ (Horowitz, 2014; Zhang et al., 2022).
Moreover, for FP16 operations, we apply the energy consumption of EAC = 0.4pJ and EMAC = 1.5pJ respectively.

For ANNs, the overall energy consumption can be directly evaluated by their MACs. For example, given a linear layer with
input dimension m and output dimension n, its energy consumption can be:

ELinear = m× n× EMAC . (21)
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For SNNs, the energy consumption is also determined by the spike firing rate r in a certain layer, and also the time step T of
the whole SNN. Given the same example as the ANN case, the energy consumption of the linear layer can be:

ELinear = m× n× EAC × T × r, (22)

because of the r times sparsity in this spike neuron and T times calculation of the SNN. Different from multiply-accumulate
operations (MACs) in ANNs, SNNs convert matrix multiplications to pure accumulate operations (ACs). In Table 3, 5, we
evaluate energy by sampling the same 64 pretraining datas from the first batch. In Table 8, we evaluate energy on the XSUM
test set.

A.4. Visualization of Spike Neurons

We compare three settings of spike neurons and visualize their input distillations, membrane potentials, and generated spikes
in every SNN time step. For comparison, we select the first feed-forward linear layer in the first transformer block. We
randomly sample 64 pretraining data of the BERT-architectured models and acquire the input, membrane potential, and
output spike of the selected spike neurons.

• As shown in Fig. 6, we visualize the previous LIF neuron with binary spike levels {0, 1}.

• As shown in Fig. 7, we visualize the LIF neuron with the bidirectional spike encoding proposed in Section 4.1. So that,
the generated spikes have the ternary spike levels {−1, 0, 1}. However, this setting leads to a much higher spike firing
rate, causing the energy consumption problem.

• As shown in Fig. 8, we visualize the elastic bi-spiking mechanism in SpikeLMs, which includes bidirectional spiking
encoding, spike frequency encoding, and spike amplitude encoding. It is shown that the spikes not only have ternary
levels {−α, 0, α}, but also have the amplitude α. In the frequency aspect, compared with Fig. 7, the elastic bi-spiking
mechanism achieves a lower spiking firing rate, demonstrating the effectiveness of spike frequency encoding.

Membrane PotentialSpike Neuron Input Output Spike

T = 1 T = 2 T = 3 T = 4

Figure 6. Visualization of the Leaky Integrate-and-Fire (LIF) neuron with {0, 1} spike levels.
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Membrane PotentialSpike Neuron Input Output Spike

T = 1 T = 2 T = 3 T = 4

Figure 7. Visualization of the bidirectional spike encoding with {−1, 0, 1} spike levels.

Membrane PotentialSpike Neuron Input Output Spike

T = 1 T = 2 T = 3 T = 4

Figure 8. Visualization of the elastic bi-spiking mechanism with {−α, 0, α} spike levels.
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