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We proceed to prove theorem by stating convergence properties for HMC as follows. In the initial433

sampling stage, starting from the initial position Markov chain converges towards to the typical434

set. In the next stage Markov chain quickly traverse the typical set and improves the estimate by435

removing the bias. In the last stage Markov chain refine the exploration of typical the typical set436

provide improved estimates. The number of samples taken during the last stage is referred as effective437

sample size.438

A.1 Proof of Theorem 1439

Theorem 1. Let T be an optimality operator under HMC given as (TQ)(s0, a0) = r(s0, a0) +440
�

|H|

P
s2H

maxa Q(s, a), 8(s0, a0) 2 S ⇥A, where H is a subset of next states sampled using HMC441

from the target distribution given in (6). Then, under update rule (4) and for any given ✏ � 0, there442

exists nH, t0 > 0 such that kQt
�Q⇤

k1  ✏ 8t � t0.443

Proof of Theorem 1. Let Q̄t(s, a) = 1
nH

maxa Qt(s, a), 8(s, a) 2 S ⇥A. Here we consider nH to444

be the effective number of samples. Let EPQt,VarPQt be the expectation and covariance of Qt445

with respect to the target distribution. From Central Limit Theorem for HMC we have446
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⇠ N
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t,

s
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nH

!
.

Since Q function does not decay fast we provide a proof for the case where Qt is C-Lipschitz. From447

Theorem 6.5 in [41] we have that, there exists a c0 > 0 such that448

||Q̄t
� EPQ

t
||  c0. (S.1)

Recall that Bellman optimality operator T is a contraction mapping. Thus from triangle inequality449

we have450 ���
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Let |H1| = |H2| = nH. Then using triangle inequality we have451
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Since Q function almost surely converge under exhaustive sampling we have452
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From (S.1) and (S.2) we have after t time steps453 ���
���TQ1 � TQ2
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Let Rmax and Rmin be the maximum and minimum reward values. Then we have that454 ���
���Q1 �Q2
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1� �
Rmax �Rmin.

Thus for any ✏ � by choosing a � such there exists a t0 such that 8t � t0455

kQt
�Q⇤

k1  ✏

This concludes the proof of Theorem 1.456
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A.2 Proof of Theorem 2457

Theorem 2. Let Qt+1
E

(st, at) = r(st, at) + �
P

s2S
P(s|st, at)maxa Qt

E
(s, a), 8(st, at) 2 S ⇥A458

be the update rule under exhaustive sampling, and Qt be the Q function updated according to459

Hamiltonian Q-Learning, i.e. by (9)-(10). Then, for any given ✏̃ � 0, there exists nH, t0 > 0, such460

that kQt
�Qt

E
k1  ✏̃ 8t � t0.461

Proof of Theorem 2. Note that at each time step we attempt to recover the matrix Qt

E
, i.e., Q462

function time t under exhaustive sampling though a matrix completion method starting from bQt,463

which is the Q updated function at time t using Hamiltonian Q-Learning. From Theorem 4 in [24]464

we have that 8t � t0 there exists some constant � > 0 such that when the updated Q function a bQt465

satisfy466
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where c is some positive constant then reconstructed (completed) matrix Qt satiesfies467
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for some � > 0. This implies that when the initial matrix used for matrix completion is sufficiently468

close to the matrix we are trying to recover matrix completion iterations converge to a global optimum.469

From the result of Theorem 1 we have for any given ✏ � 0, there exists nH, t0 > 0 such that 8t � t0470
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Recall that under the update equation Qt+1
E

(st, at) = r(st, at)+�
P

s2S
maxa Qt

E
(s, a), 8(st, at) 2471

S ⇥A we have that QE almost surely converge to the optimal Q⇤. Thus there exists a t† such that472

8t � t†473
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Let t‡ = max{t†, t0}. Then from triangle inequality we have that474
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Thus from (S.3) we have that475
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This concludes the proof of Theorem 2.476

B Sampling Complexity477

In this section we provide theoretical results on sampling complexity of Hamiltonian Q-Learning. For478

brevity of notation we define MQ(s) = maxa Q(s, a). Note that we have the following regularity479

conditions on the MDP studied in this paper.480

Regularity Conditions481

1. Spaces S and A (state space and action space) are compact subsets of RDs and RDa482

respectively.483

2. All the rewards are bounded such that r(s, a) 2 [Rmin, Rmax], for all (s, a) 2 S ⇥A.484

3. The optimal Q⇤ is C-Lipschitz such that485

���Q⇤(s, a)�Q⇤(s0, a0)
���  C (||s� s0||F + ||a� a0||F )

Now we prove some useful lemmas for proving sampling complexity of Hamiltonian Q-Learning486
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Lemma 1. For some constant c1, if487

|⌦t| � c1
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2
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Proof of Lemma 1. Recall that in order to complete a low rank matrix using matrix estimation489

methods, the matrix can not be sparse. This condition can be formulated using the notion of490

incoherence. Let Q be a matrix of rank rQ with the singular value decomposition Q = U⌃V T . Let491

TQ be the orthogonal projection of Q 2 R|S|⇥|A| to its column space. Then incoherence parameter492

of �(Q) can be give as493
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where ei are the standard basis vectors. Recall that Qt is the matrix generated in matrix completion494

phase from bQ. From Theorem 4 in [24] we have that for some constant C1 if a fraction of p elements495

are observed from the matrix such that496

p � C1

�2
t
r2
Q
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where �t is the coherence parameter of Qt then with probability at least 1 � C2(Ds + Da)�1 for497

some constant C2 with
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This concludes the proof of Lemma 1.502

Lemma 2. Let 1 � ⇠ be the spectral gap of Markov chain under Hamiltonian sampling where503

⇠ 2 [0, 1]. Let �R = Rmax �Rmin be the maximum reward gap. Then 8(s0, a0) 2 S ⇥A we have504

that505
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with at least probability 1� �.506
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Proof of Lemma 2. Let bQ(s0, a0) = r(s0, a0) + �

|H|

P
s2H

maxa Q(s, a). Recall that MQ(s) =507

maxa Q(s, a). Then we have that bQ(s0, a0) = r(s0, a0) + �

|H|

P
s2H

MQ(s). Then it follows that508
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Recall that all the rewards are bounded such that r(s, a) 2 [Rmin, Rmax], for all (s, a) 2 S ⇥ A.509

Thus for all s, a we have that MQ(s)  �
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Let ⇠ 2 [0, 1] be a constant such that 1� ⇠ is the spectral gap of the Markov chain under Hamiltonian511

sampling. Then from [42] we have that512

P

0

@ 1

|H|

|H|X

i=1

MQ⇤(si)� EPMQ⇤(s) � #

1

A  exp

 
�
1� ⇠

1 + ⇠

|H|#2

2R2
max

✓
1� �

�

◆2
!

Let � = exp

✓
�

1�⇠

1+⇠

|H|#
2

2R2
max

⇣
1��

�

⌘2◆
. Then we have that513

# =

s
1 + ⇠

1� ⇠

2

|H|

✓
�Rmax

1� �

◆2

log

✓
2

�

◆
.

Thus we see that514
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with at least probability 1� �. Thus it follows from equations (S.5), (S.6) and (S.7) that515
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with at least probability 1� �. This concludes the proof of Lemma 2.516

Lemma 3. For all (s, a) 2 S ⇥A we have that517
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Proof of Lemma 3. From Lemma 2 and [14] we have that for all (s, a) 2 ⌦t519

| bQt(s, a)�Q⇤(s, a)
��� 

�2

1� �
�R+

s
1 + ⇠

1� ⇠

2

|Ht|

✓
�Rmax

1� �

◆2

log

✓
2|⌦t|T

�

◆
. (S.8)

with probability at least 1� �

T
. Thus we have that520
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with probability at least 1� �

T
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Thus we have,523

|Qt(s, a)�Q⇤(s, a)
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with probability at least 1 � �. Recall that 8(s, a) 2 S ⇥A we have MQ(s, a)  ��R

1��
. Thus this524

also proves that525
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This concludes the proof of Lemma 3.526

Now we proceed to prove the main theorem for sampling complexity as follows.527

Theorem 3. Let Ds,Da be the dimension of state space and action space respectively. Consider the528

Hamiltonian Q-Learning algorithm presented in Algorithm 1. Under a suitable matrix completion529

method sampling complexity of the algorithm, Q function converge to the family of ✏-optimal Q530

functions with eO
�
✏�(Ds+Da+2)

�
number of samples.531

Proof of Theorem 3. Note that sample complexity of Hamiltonian Q-Learning can be given as532

T✏X

t=1

|⌦t||Ht|  T✏|⌦T✏ ||HT✏ |

Let �t be the discretization parameter at time t and T✏ =
log( �Rmax

(1��)✏ )
log

⇣
1

2�c1

⌘ . Then from Lemmas 1, 2 and 3533

it follows that534

T✏X

t=1

|⌦t||Ht| = eO
✓

1

✏Ds+Da+2

◆

This concludes the proof of Theorem 3.535

C Additional Experimental Details for Benchmark Control Tasks536

In this section we provide additional details related to the experimental results presented in this paper.537

C.1 Experimental Setup538

We consider the case that state transition is stochastic due to system noise arise from model uncer-539

tainties. Following the conventional approach we model these parameter uncertainties and external540

disturbances using a multivariate Gaussian perturbation [43, 44, 45]. For all the control tasks we541

consider the dynamic equations given in [14]. For all simulations we take 100 HMC samples during542

the update phase. We use trajectory length L = 100 and step size �l = 0.02. We randomly initialize543

the Q matrix using values between 0 and 1.544

Inverted Pendulum Let ✓, ✓̇ be the angle of the pendulum, respectively. Then, by letting a denote545

the input torque applied to the pendulum, its dynamics can be expressed as546

✓̈ � sin ✓ + ✓̇ � a = 0. (S.9)
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The state space associated with the pendulum is 2-dimensional (Ds = 2) and any state s 2 S is547

given by s = (✓, ✓̇). We define the range of state space as ✓ 2 [�⇡,⇡] and ✓̇ 2 [�10, 10]. We548

consider action space to be a 1-dimensional (Da = 1) space such that a 2 [�1, 1]. We discretize549

each dimension in state space into 25 values and the action space into 10 values. This forms a Q550

matrix of dimension 625⇥ 10.551

Also, we consider the noise co-variance of the Gaussian perturbation to be ⌃ = diag[0.868, 1.550].552

Let st = (✓t, ✓̇t) and at be the state and the action at time t. Then the state transition probability553

kernel and corresponding target distribution can be given using (7) and (8), respectively, with mean554

µ(st, at) = (✓t + ✓̇t⌧, ✓̇t + ✓̈t⌧), where ⌧ is the discretizated time interval and ✓̈t can be obtained555

from (S.9) by substituting ✓t, ✓̇t, at, and co-variance ⌃(st, at) = ⌃.556

As our goal is to stabilize the pendulum to the upright position (i.e. to ✓ = 0) while minimizing the557

amount of applied torque, we consider the reward function as follows558

r(✓, ✓̇, a) = �0.1a2 + exp(cos ✓ � 1).

Double Integrator By letting x, ẋ, and a denote the position, velocity, and input torque, respec-559

tively, we can express the system dynamics as560

ẍ = a. (S.10)

State space of the double integrator is 2-dimensional (Ds = 2) and any state s 2 S is given as561

s = (x, ẋ). We define the range of state space as x 2 [�3, 3] and ✓̇ 2 [�3, 3]. We consider action562

space to be a 1-dimensional (Da = 1) space such that a 2 [�1, 1]. We discretize each dimension563

in state space into 25 values and action space into 10 values. This forms a Q matrix of dimension564

625⇥ 10.565

Here we consider the noise co-variance of the Gaussian perturbation to be ⌃ = diag[0.848, 0.848].566

Let st = (xt, ẋt) and at be the state and the action at time t. Then the state transition probability567

kernel and corresponding target distribution can be given using (7) and (8), respectively, with mean568

µ(st, at) = (xt + ẋt⌧, ẋt + ẍt⌧), where ⌧ is the discretizated time interval and ẍt can be obtained569

from (S.10) by substituting xt, ẋt, at, and co-variance ⌃(st, at) = ⌃.570

We define the reward function as the quadratic cost571

r(x, ẋ, a) = �
1

2

�
x2 + ẋ2

�
.

Cartpole Let ✓, ✓̇ be the angle and angular velocity of the pole, respectively. Similarly, let x, ẋ be572

the position and linear velocity of the cart, respectively. Then, by letting a denote the control force573

applied to the cart, the dynamics of cart-pole system [?] can be expressed as574

l

✓
4

3
(m+M)�m cos2 ✓

◆
✓̈ + (a+ml✓̇2 sin ✓) cos ✓ � (m+M)g sin ✓ = 0

(m+M)ẍ�ml
⇣
✓̇2 sin ✓ � ✓̈ cos ✓

⌘
� a = 0

(S.11)

where, m, M , l and g represent the mass of the pole, mass of the cart, length of the pole and the575

gravitational acceleration, respectively.576

State space of the cart-pole system is 4-dimensional (Ds = 4) and any state s 2 S is given by s =577

(✓, ✓̇, x, ẋ). We define the range of state space as ✓ 2 [�pi/2,⇡/2], ✓̇ 2 [�3.0, 3.0], x 2 [�2.4, 2.4]578

and ẋ 2 [�3.5, 3.5]. We consider action space to be a 1-dimensional (Da = 1) space such that579

a 2 [�10, 10]. We discretize each dimension in state space into 5 values and action space into 10580

values. This forms a Q matrix of dimensions 625⇥ 10.581

Although the differential equations (S.11) governing the dynamics of the pendulum on a cart system582

are deterministic, uncertainty of the parameters and external disturbances to the system causes the cart583

pole to deviate from the defined dynamics leading to a stochastic state transition. Here we consider584

the co-variance of the Gaussian perturbation to be ⌃ = diag[0.641, 0.848, 0.759, 0.917].585
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Let st = (✓t, ✓̇t, xt, ẋt) and at be the state and the action at time t. Then the state transition probability586

kernel and corresponding target distribution can be given using (7) and (8), respectively, with mean587

µ(st, at) = (✓t + ✓̇t⌧, ✓̇t + ✓̈t⌧, xt + ẋt⌧, ẋt + ẍt⌧), where ⌧ is the discretizated time interval and588

✓̈t, ẍt can be obtained from (S.11) by substituting ✓t, ✓̇t, at, and co-variance ⌃(st, at) = ⌃.589

Our simulation results use the following value for the system parameters - m = 0.1kg, M = 1kg,590

l = 0.5m and g = 9.8ms�2. The goal is stabilizing the pole in upright position. Thus we consider591

the reward function592

r(✓, ✓̇, x, ẋ, a) = cos4(15✓)

Acrobot Let ✓1, ✓̇1 be the angle and angular velocity of the first pole, respectively. Similarly, let593

✓2, ✓̇2 be the angle and angular velocity of the first pole, respectively. Then, by letting a denote the594

control torque applied to the second joint, dynamics of the acrobot can be expressed as595

✓̈2 =
a+ D2

D1
�1 �m2l1lc2✓̇21 sin ✓2 � �2

m2(l22 + l2
c2)�

D
2
2

D1

✓̈1 = �
D2✓̈2 + �1

D1
,

(S.12)

where,596

D1 = m1(l
2
1 + l2

c1) +m2(l
2
1 + l22 + l2

c2 + 2l1lc2 cos ✓2)

D2 = m2(l
2
2 + l2

c2 + l1lc2 cos ✓2)

�2 = m2lc2g sin(✓1 + ✓2)

�1 = �m2lc2✓̇2(✓̇2 + 2✓̇1) sin ✓2 + (m1lc1 +m2l1)g sin ✓1 + phi2,

and m1, m2, l1 l2 and g represent the mass of the poles, length of the poles, and the gravitational597

acceleration, respectively. We have used lc1 = l1/2 and lc2 = l2/2. Moreover, our simulation598

results use the following value for the system parameters: m1 = m2 = 0.1kg, l1 = l2 = 0.1m and599

g = 9.8ms�2.600

State space of the acrobot is 4-dimensional (Ds = 4) and any state s 2 S is given by s =601

(✓1, ✓̇1, ✓2, ✓̇2). We define the range of state space as ✓i 2 [�⇡,⇡] and ✓̇i 2 [�10.0, 10.0], i = 1, 2.602

We consider action space to be a 1-dimensional (Da = 1) space such that a 2 [�1, 1]. We discretize603

each dimension in state space into 5 values and action space into 10 values. This forms a Q matrix of604

dimensions 625⇥ 10.605

To incorporate the effects from uncertainty in the parameters and external disturbances to606

the system, we consider the co-variance of the Gaussian perturbation to the system be ⌃ =607

diag[0.686, 1.550, 0.686, 1.550].608

Let st = (✓1t, ✓̇1t, ✓2t, ✓̇2t) and at be the state and the action at time t. Then the state transition609

probability kernel and corresponding target distribution can be given by (7) and (8), respectively,610

with mean µ(st, at) = (✓1t + ✓̇1t⌧, ✓̇1t + ✓̈1t⌧, ✓2t + ✓̇2t⌧, ✓̇2t + ✓̈2t⌧, ), where ⌧ is the discretizated611

time interval and ✓̈1t, ✓̈2t can be obtained from (S.12) by substituting ✓t, ✓̇t, at, and co-variance612

⌃(st, at) = ⌃.613

As the objective is to stabilize the acrobot to the upright position, we define the reward function as614

r(✓1, ✓̇1, ✓2, ✓̇2, a) = exp(� cos ✓1 � 1) + exp(� cos(✓1 + ✓2)� 1).

C.2 Comparison with Deep RL Algorithms615

We provided results combining HMC sampling with benchmark Deep RL algorithms DQN and616

DDPG. We used the same network architecture of DQN and DDPG presented in the original papers617

[1, 46]. To train the networks, we used the Adam optimizer [47] with learning rate 1e�5, discount618

coefficient � = 0.99, and batchsize 32. For all results provided in this paper we used following hyper619

parameters. Also, we set the number of steps between target network update to 10,000.620
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