A Proof of Proposition 1

Proof:

First, it is straightforward to show that the IPW estimator of the ground truth treatment effect
STPW (T) can be re-written in terms of the population mean estimator, 0 (Equation 3):
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Similarly, we can derive a similar relationship for the IPW model treatment effect estimator ) /IVI[D WA(T):
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, Then under Assumption A, we arrive at the first conclusion of the proposition, that the estimation
error of 0TPW (T') and 645" (T') can be further decomposed as
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STPW(TY =6 + f(B) (10)
SEWA(T) = dpa + f(B) + g(v, B) (1)

Therefore, AP (M, T) and A(M, T) are now given by

APaTS (M, T) = dpg — 6 + g(v, B) (12)
AM,T) =bm — 06— f(B) (13)
, respectively. Their estimation error is then given by
e(APS (M, T)) = bpq — 0 + g(v, B) — A(M) (14)
e(A(M, T)) = dp — 0 — f(B) — AM) : (15)

According to delta method Casella and Berger [2021], both v/ Ne(AP%"s(M,T)) and

VNe(A(M, T)) are asymptotically normal with zero under Assumption B. However, their variances
will differ. We proceed to compute the variances of each estimator.

First, note that g(v, B) can be re-written as
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, where b; is the Bernoulli random variable with P(b; = 1) = p;, and b; = 1 if i € B. Without loss
of generality, here we additionally assume that v has zero mean to further simplify the notational
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complexity. The proof also holds for the non-zero mean case trivially. Therefore, note also that v is
independent from (Y7 (4), b;), we have

Cov(Y =" (i), vibi V(Y T="(i))) = E(vibi)Cov(Y =" (i), Vi(Y T="(i)))
=0

holds for all 7 and all treatments ¢,, and ¢,. Similarly, we have Cov(YT ta (i), vib Vs (YT=1 (7)) =
0.

Therefore, it is not hard to show that Cov(g(v, B), d4) = 0, and Cov(g(v, B),$) = 0, which implies
Cov(g(wv,B),dam — 0) = 0. Thus, we have:

Var[V'Ne(A%"s(M, T))] = Var[VN( 5M — 5)] + Var[VNg(v, B)]
= Var[YiZ"' - O pyT=t YT_O] + Var[V'Ng(v, B)]
Var[VNe(AM,T))] = Var[\/ﬁ(zSM - 5 + Var[\/N(f(B)
= Var[YE —YE + vy T=t - yT=0] +Var[\/J7(f(B))]
Since b;(1 — b;) = 0, we have
E[vibiVi(Y; =" vi(1 = b)) Vi(Y;" =) = 0
. Therefore
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Since v has zero mean and variance o2 and is independent of (Y, b;) as in Assumption A, this
expression be further simplified as, according to the rules of variance of the product of independent
variables:
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Where the third equality is due to the fact that o2E[(V;YT=1(3))?] < E[YT=!(i)?]. Therefore, we
finally conclude that the variances of the error estimators will satisfy

Var[V'Ne(AT4s(M,T))] < Var[VNe(A(M, T))]

B Additional details for experiment

B.1 Implementation details

Csuite dataset The csuite dataset used in Section 5.1 is an assortment of synthetic datasets
first developed by [Geffner et al., 2022], for the purpose of evaluating both causal inference and
discovery algorithms. They contain datasets ranging from small to medium scale (2-12 nodes),
generated through carefully constructed Bayesian networks with additive noise models. All dataset in
the collection includes a training set with 2,000 samples and 1 or 2 intervention or counterfactual
test sets. The intervention test sets consist of factual variables, factual values, treatment variable,
treatment value, reference treatment value, and an effect variable. More specifically, our three datasets
corresponds to the following datasets:
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l. nonlin_simpson (csuite_1): An example of Simpson’s Paradox [Blyth, 1972] using
a continuous SEM. The dataset is constructed so that Cov(X;, X5) has the opposite sign
to Cov(Xy, X2 | Xo). Estimating the treatment effects correctly in this SEM is highly
sensitive to accurate causal discovery.

The structural equations are

Xo ~ N(0,1) (17)
/3
X1 = S(]. - Xo) + %Zl (18)
X2 = tanh(2X1) + gXO -1+ tanh(ZQ) (19)
Xy —4 1
X3 =5tanh +34+—=Z 20
3 ( ) T2 (20)

where Z1, Zs ~ N(0,1) and Z3 ~ Laplace(1) are mutually independent and independent
of X, s(z) = log(1 + exp(z)) is the softplus function. Constants were chosen so that each
variable has a marginal variance of (approximately) 1.

2. chain_lingauss (csuite_2): Simulated from the graph Xy, — X7 — X)2 with linear
relationship. Ensure X, X; and X2 have same standard deviation (1), then this turns into
structural equations:

Xo ~N(0,1)

X = \/7X0+\/7/\/01
X, = \/;X1 + \ﬂg)/\f(o 1

3. fork_lingauss (csuite_3): Simulated from the graph Xy <~ X; — Xs with linear
relationship. Turns into structural equations:

XONNO:[

X = \/7X0+\/7N01
&:ﬁxwﬁmo,n

Causal model details for Section 5.2 In Section 5.2, We include a wide range of machine learning-
based causal inference methods to evaluate the performance of causal error estimators. They can be
roughly divided into 4 categories: double machine learning methods, doubly robust learning methods,
ensemble causal methods, and orthogonal methods. All methods are implemented using EconML
[Battocchi et al., 2019], as detailed below:

l. DML Linear: A linear double machine learning model [Chernozhukov et al., 2018], which
uses an un-regularized final stage linear model for heterogenous treatment effect. Given that
it is an unregularized low dimensional final model, this class also offers confidence intervals
via asymptotic normality arguments. Random forests with default settings are used for first
stage estimations.

2. DML Kernel: kernel DML with random Fourier feature approximations [Nie and Wager,
2021] and uns a ElasticNet regularized final model. Random forests with default settings
are also used for first stage estimations. Others configs are kept as default.

3. Causal Forest causal random forest (or forest DML) [Wager and Athey, 2018, Athey
et al., 2019]. We set the number of estimators to 100, number of minimum samples of leaf
to 10, The number of samples to use for each subsample that is used to train each tree as
0.5. The others are kept as default. For effect and outcome models, we use Lasso with
cross-validation.
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4. DR Linear doubly robust learning with a final linear model. Regression model for
E[Y|X, W, T] is set to random forest models. The propensity model is set to a logistic
regression model.

5. DR Forest doubly robust learning with subsampled honest forest regressor. Regression
model for E[Y| X, W, T] is set Gradient Boosting Regressor;and the propensity model is
set to a random forest classifier. For other hyperparameters we set the minimum number
of samples required to be at a leaf to be 10,and the minimum weighted fraction of the sum
total of weights required to be at a leaf node to be 0.1.

6. Ortho Forest: orthogonal forest learning, a combination of causal forests and double
machine learning that allow for controlling for a high-dimensional set of confounders, while
at the same time estimating non-parametrically the heterogeneous treatment effect on a
lower dimensional set of variables. We use Lasso with cross-validation as the estimator
for residualizing both the treatment and the outcome at each leaf; and switch to weighted
Lassos at prediction time. Readers may refer to the official documentation for more details,
as well as discussions on the difference between this method and causal forest.

7. DR Ortho Forest: doubly robust orthogonal forest, a variant of the Orthogonal Random
Forest that uses the doubly robust moments for estimation as opposed to the DML moments.
Similarly, we use logistic regression models for residualizing the treatment at each leaf for
both stages; and Lasso with cross-validation for the corresponding esimators for residualizing
the outcomes. At prediction time, we switch to weighted Lasso instead.

Evaluation metrics Throughout all experiments, We measure the performance of the estimators
by the following metrics: the variance, the bias, and the MSE of the causal error estimation. More

concretely, with a slight abuse of notation, let A(./\/l, T)) denote the estimated causal error (from any
estimation method). Then, the evaluation metrics are defined as:

Variance : = ET[A(M, T))? - ET[A(M, N
Bias : = ET[A(M, 7)) — A(M)],
MSE : = Er[(AM, T)) = A(M))?.

All expectations are taken over the treatment assignment plans 7. In practice, we draw 100 random
realizations of treatment assignments and estimate all three metrics.

B.2 Additional results

Full results for causal error estimator metrics including linearly-modified IPW
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Figure 6: Causal error estimator quality metrics for across common causal methods (full results
including linearly-modified IPW). Each row of the grid corresponds to a specific performance
metric (Variance/Bias/MSE), while each column represents different levels of treatment assignment
imbalance (O’%). In each plot, the x-axis represents different causal models. The y-axis displays
performance metrics. Different colors correspond to different estimators.
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