LLANGUAGE MODELS ARE HIDDEN REASONERS:
UNLOCKING LATENT REASONING CAPABILITIES VIA
SELF-REWARDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown impressive capabilities, but still strug-
gle with complex reasoning tasks requiring multiple steps. While prompt-based
methods like Chain-of-Thought (CoT) can improve LLM reasoning at inference
time, optimizing reasoning capabilities during training remains challenging. We
introduce LaTent Reasoning Optimization (LaTRO), a principled framework
that formulates reasoning as sampling from a latent distribution and optimizes it
via variational approaches. LaTRO enables LL.Ms to concurrently improve both
their reasoning process and ability to evaluate reasoning quality, without requiring
external feedback or reward models. We validate LaTRO through experiments
on GSM8K and ARC-Challenge datasets using multiple model architectures. On
GSMB8K, LaTRO improves zero-shot accuracy by an average of 12.5% over base
models and 9.6% over supervised fine-tuning across Phi-3.5-mini, Mistral-7B, and
Llama-3.1-8B. Our findings suggest that pre-trained LLMs possess latent reasoning
capabilities that can be unlocked and enhanced through our proposed optimization
approach in a self-improvement manner.

1 INTRODUCTION

The development of large language models (LLMs) with enhanced reasoning capabilities has emerged
as a crucial area of research. Despite their impressive advances, the inherent next-token prediction
mechanism of LLMs makes it challenging for these models to solve complex problems requiring
multiple reasoning steps (Wang et al., 2022; Huang et al., 2023). For instance, LLMs often struggle
to directly provide accurate solutions to mathematical problems or even simple puzzles like counting
specific letters in a word. Consequently, researchers have explored various prompting strategies
that guide LLMs to generate reasoning trajectories or rationales—sequences of tokens that build a
step-by-step progression toward an answer. Techniques such as Chain-of-Thought (CoT) (Wei et al.,
2022), Tree-of-Thought (ToT) (Yao et al., 2024), and Program-of-Thought (PoT) (Chen et al., 2023)
prompting methods exemplify this approach.

Recent progress has also focused on inference-time techniques to enhance the reasoning abilities of
LLMs (Wu et al., 2024; Brown et al., 2024), as observed in the OpenAl o1 model (OpenAl, 2024).
These methods have demonstrated remarkable performance in diverse reasoning tasks, including
mathematics (Cobbe et al., 2021b; Trinh et al., 2024; Luo et al., 2024), coding (Jimenez et al., 2023;
Guo et al., 2024; Zhang et al., 2024), and scientific problem-solving (Rein et al., 2023). Notable
inference-time methods, such as CoT with Self-Consistency (CoT-SC) (Wang et al., 2023) and
CoT-Decoding (Wang & Zhou, 2024), extend the CoT approach by generating multiple reasoning
paths and selecting the most consistent one. Additionally, techniques like ReAct (Yao et al., 2023a)
and Reflexion (Shinn et al., 2023) integrate reasoning into LLM agent loops, further enhancing their
problem-solving capabilities.

Despite the promising results at inference time, improving the reasoning abilities of LLMs during their
training phase remains a challenging problem. Several obstacles impede progress in this area. Firstly,
there is a scarcity of high-quality reasoning data for complex problems, limiting the applicability
of traditional supervised fine-tuning (SFT) approaches (Zelikman et al., 2022). Moreover, when
such data is available, SFT on deterministic reasoning paths may result in a lack of diversity in

v

- Language . Sampled Rationale . l?lfg;;gg;g;:ﬁcon;g zzt?;e Language
uestion z Model 7g Z1,22,...,2K 08 & update Model 7y

y after observing « and 2.

Groundtruth y

Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts does it take?
Groundtruth: The answer is 3.

Sampled Rationale 1 (correct ¥, higher likelihood): It takes 2/2 = 1 bolt of white fiber. 2 + 1 = 3. So, it
takes a total of 3 bolts of fiber.

Sampled Rationale 2 (incorrect X, lower likelihood): We need 2 bolts of blue and 2 bolts of white fiber. In
total, itis 2 + 2 = 4.

Figure 1: Overview of LaTRO with an example question from GSM8K (Cobbe et al., 2021b). LaTRO treats
reasoning trajectories as latent variables and optimizes the underlying distribution through self-rewarding. Given
a question, the language model generates multiple reasoning rationales, evaluates their likelihood of producing
the correct answer, and updates its parameters to favor high-quality rationales. This iterative process allows the
model to improve both its ability to generate good reasoning paths and to evaluate the quality of those paths.

problem-solving strategies, potentially causing over-confidence issues and performance degradation
(Cobbe et al., 2021b), especially in domains needing multiple valid approaches, such as mathematical
proofs and coding. Alternatively, improving reasoning through reinforcement learning from human
feedback (RLHF) presents its own challenges (Havrilla et al., 2024; Luo et al., 2024). Developing a
reward model that accurately evaluates the quality and validity of reasoning paths is a formidable
task, susceptible to distribution shifts and biased evaluations.

Self-improvement approaches like STaR (Self-Taught Reasoner) (Zelikman et al., 2022) and Quiet-
STaR (Zelikman et al., 2024) have shown promise in enhancing language models’ reasoning ca-
pabilities without external feedback. However, STaR relies on task-specific few-shot examples to
bootstrap its reasoning process, which can limit its generalizability across diverse tasks. While
Quiet-STaR attempts to overcome this by inferring implicit rationales across arbitrary text, it does not
directly optimize the reasoning process itself. Through these findings, we observe that pretrained
LLMs already possess innate reasoning capabilities but just have not been fully activated or utilized,
inspiring us to propose our approach.

Our proposed method, LaTent Reasoning Optimization (LaTRO), addresses the limitations of
previous approaches by formulating reasoning as sampling from a latent distribution and optimizing
it through a principled variational framework. As illustrated in Fig. 1, LaTRO enables language
models to concurrently improve both their reasoning process and ability to evaluate reasoning quality,
without requiring task-specific few-shot examples or external reward models. Key contributions of
LaTRO include:

1. A theoretical formulation connecting LLLM reasoning optimization to latent variable models;
2. A self-rewarding mechanism leveraging the model’s own probability estimates;

3. Significant performance gains across multiple model architectures and reasoning tasks, demon-
strating LaTRO’s effectiveness in unlocking latent reasoning capabilities of language models.

Our findings suggest that pre-trained LLMs are not only capable reasoners but also possess the
potential to act as explicit reward models for evaluating reasoning paths. We term this approach of
utilizing explicit reward functions induced by LLMs themselves as "self-rewarding." Empirically,
LaTRO outperforms both baseline models and supervised fine-tuning approaches on reasoning tasks
like GSM8K, while also demonstrating the capacity to compress reasoning processes and shift
computational burdens from inference to training time.

2 RELATED WORK

Prompt-based LLM Reasoning Prompt-based reasoning methods prove to be effective across
various domains, such as math problem-solving (Polu & Sutskever, 2020; Hendrycks et al., 2021;
Cobbe et al., 2021a), logical reasoning (Sprague et al., 2024) and agentic tasks (Yao et al., 2023a;
Shinn et al., 2023; Yao et al., 2023b). Chain-of-Thoughts or CoT (Wei et al., 2022) is the pioneering
work that prompts LLMs to decompose challenging tasks into smaller reasoning steps. After that, two
primary research directions further improved reasoning capabilities during inference. One direction
searched over the reasoning trajectories against a process-based verifier, or reward model (Yao et al.,
2024; Besta et al., 2024; Lightman et al., 2023). For example, tree-of-thoughts (Yao et al., 2024)
explored over thoughts by depth-first search (DFS), breadth-first search (BFS) or beam search. The
other approach used a critic model to provide verbal feedback, iteratively refining the responses with
that feedback (Saunders et al., 2022; Shinn et al., 2023; Yao et al., 2023b; Madaan et al., 2023).

Self-Rewarding for LLM Reasoning Reasoning capabilities in LLMs can be enhanced in post-
training through self-rewarding and reinforcement learning. The Self-Taught Reasoner, or STaR (Ze-
likman et al., 2022) introduced a bootstrapping technique that allows LLMs to generate rationales
and fine-tune itself with self-generated reasoning paths. Quiet-STaR (Zelikman et al., 2024) extended
this by training LLMs to infer implicit rationales across arbitrary text, enhancing both reasoning
and predictive abilities without task-specific fine-tuning. Reinforced Fine-Tuning, or ReFT (Trung
et al., 2024) took this further by leveraging reinforcement learning to improve generalization in
reasoning tasks like math problem-solving, enabling LLMs to learn from multiple reasoning paths.
Self-correction capabilities in LLMs can also be reinforced through self-generated data (Kumar et al.,
2024). Lastly, Hoffman et al. (2024); Hu et al. (2023) formulated the reasoning process as latent
variable models, aligning LLLMs towards more accurate reasoning with fewer annotated data.

3 BACKGROUND AND MOTIVATION

We start by briefly introducing reasoning techniques (e.g., chain-of-thought (Wei et al., 2022), ReAct
(Yao et al., 2023a), etc). Given a user query z, the standard procedure to sample the response y
is to leverage an autoregressive pretrained LLMs 7y (parameterized by 6): y ~ mg(- |). As for
prompt-based reasoning techniques such as chain-of-thought (Wei et al., 2022), the LLM 7y is firstly
asked to generate thoughts (a.k.a reasoning rationale) before generating the answers to the response:

z' := Reason(z) =z ® Prompt Template of Thought,
z~mp(- |2, y~me(-|2' @2),

where z is the thought or the reasoning rationale path, & indicates the concatenate operator, and
the prompt template of the thought can be some hint prompt such as “Let’s think s tep by
step” '.Empirically, people observe that there is a higher chance for the LLM 7, to generate the
desired answer y following the above procedure than directly sampling the response y ~ my(- |).
From a statistical perspective, we hypothesize that good reasoning rationales can significantly
improve the probability of generating good answers y: 3 z, s.t. m(y| z & 2) > wo(y|).

To validate the hypothesis, we check the probability of '® With Reasoning
the correct answers y on pretrained LLMs with or with- Without Reasoning
out reasoning rationales. In Figure 2, we visualize the
negative log probability of the correct answers on three ¢
different LLMs on GSMS8K dataset (Cobbe et al., 2021b).

We have observed that when the LLMs are conditioned "
on the reasoning rationales, the probability of the correct
answer is remarkably larger than without reasoning ratio-
nales. This suggests that good reasoning rationales help
the LLMs generate desired answers for complex tasks by
increasing their probability, giving them a higher chance Figure 2: Average negative log probabilities
of generating the correct answers. of LLMs to generate correct responses.

0 Mistral-7B-Instruct-v0.3 Meta-Llama-3.1-8B-Instruct Phi-3.5-mini-instruct

"We omit the difference between 2’ and z for convenience in the latter notation.

The above observation inspires us that we can potentially further improve the reasoning ability of
existing LLMs. One may find some surrogate objective to enhance the quality of the reasoning
rationales or improve the ability of LLMs to leverage good reasoning rationales. In the following
Proposition 1, we show that Self-Consistency Chain-of-Thought (CoT-SC) (Wang et al., 2023), which
takes a majority vote of multiple reasoning rationales to improve the reasoning ability, approximates
some surrogate objective.

Proposition 1. Denote the user query, model response, and reasoning rationale by x,y, 2, respec-
tively. The distribution of the majority vote answer of the K reasoning rationales obtained by CoT-SC
approximates pa; (Y|x) == Eyor, (| 2)[mo (Y| ® 2)], as K — oo.

Proof. Given a user query x, CoT-SC essentially follows the procedure: 1) Sample K i.i.d rea-
soning rationales together with model responses: (2x,yx) ~ mo(-jxz), 1 < k < K. 2) Take
the majority vote of (y1,...,yx). For a specific response ¥, its frequency can be calculated as

F(y) =+ Zszl 1{yx = y}, where 1 is the indicator function. Then the expectation of F'(y) is
1 1
Eyl,...,yKF(y) = E Z]Eyi]]'{yi = y} = ? Z]Py,;wwe(-\x@zi)[yi = y]
k=1 i=1

K
1 K—o00
- EE Toy|T ® 2;) " By (o) To (YT © 2).
=1

O

CoT-SC essentially leverages pys (y|x) := [mg(z|z) mo(-| & z)dz to obtain reasoning rationales
and produces final correct answers. Inspired by the conclusion, we could leverage surrogate objectives
like B, (.| 2)[@(mo (y| T © 2))] to further enhance the reasoning ability of LLMs, where ¢ is some
monotonic transform such as logarithm (log(+)). Further, we could also optimize the parameters of
LLMs to enhance the reasoning abilities of existing LLMs during the training, so we can obtain
LLMs with better reasoning abilities with the same inference time budget. In the following sections,
we introduce the idea of optimizing LLMs to improve reasoning abilities without external feedback,
by proposing a principled framework containing the surrogate objective.

4 OPTIMIZING THE REASONING PROCESS

In this section, we describe how to optimize the reasoning rationale without external feedback.
Specifically, we introduce the objective for optimizing the reasoning rationale in Section 4.1 from a
variational perspective of LLM training; we derive the gradient estimation for the new objective in
Section 4.2, and discuss the sampling procedure together with reward shaping in Section 4.3. We
summarize the proposed algorithm, LaTent Reasoning Optimization (LaTRO) in Algorithm 1, and
illustrate the overall procedure in Figure 1.

4.1 LATENT REASONING OPTIMIZATION: A VARIATIONAL APPROACH

Suppose we are given a golden dataset Dgoa := {(xi,¥;)}Y., consisting of N query and answer
pairs, where (z,y) denotes the query and the answer respectively. A standard finetuning procedure to
fit the LLM 7y to the dataset Dgqq is by likelihood maximization:

max Eg y)~pay [logmo(y [2)] , (1

where 6 are the parameters of the LLM 7y to optimize. Based on the discussion in Section 3, it is
more feasible to optimize my with additional reasoning rationale path z, compared with standard
finetuning objective in Equation (1). Hence, we can introduce another “reasoner” ¢(z|x) to sample
the latent reasoning rationales that can help the optimization procedure of 7. This is achievable by

optimizing the following lower bound:

log 79(y]z) = log / mo(y | = ® 2)mo(z |) dz

= log/m;(y |z ® z)mwo(dx)dz

> max Ey(zz) [log mo(y| & @ 2)] — Dila(z|z)||mo(2]2)] , 2
where 7 is a prior reference LLM that regularizes the “reasoner” ¢(z|z), and the lower bound
is achieved via Jensen’s inequality (Higgins et al., 2017). Based on the literature of variational
Bayes (Kingma, 2013), one can either learn and optimize ¢(z|z) via variational Expectation Maxi-
mization (EM) (Abdolmaleki et al., 2018; Liu et al., 2022), or introduce another parameterized LLM
g4 (z|x) and optimize ¢ to amortize the cost. Additionally, from the discussion in Section 3, we know
Ty itself can also serve as a naive “reasoner”, since 7y is an autoregressive LLM.

To simplify the learning procedure, we propose to use 7y as the “reasoner” g(z|z). As a result, we
can jointly learn one single LLM 7y, that is capable of generating good reasoning rationale together
with providing correct answers given the query and its own generated reasoning rationale. To be
more specific, we can define the learning objective as follows:

max J(0) 1= Bz y)~ Doy | Bz (o) [lo8 70 (4] ® 2) | = Dcw[mo(2|2)|[mo(2|2)] |, (3)
Ro(z,y,2)
where we specify the reference LLM 7y to be the original 7y before the optimization. Furthermore,
log my(y| @ 2z) in Equation (3) can be viewed as the reward function Ry(z,y,«) to evaluate the
quality of the rationale z given the pair (z,y), since the reasoning rationale z with higher likelihood
log mg(y| ¢ @ 2) indicates that it would provide a higher probability for the model to answer the
question correctly.

Remark By substituting log 7y (y| £ & 2) with Ry(z,y,z), Equation (3) exactly recovers the
standard optimization objective defined in offline RL (Levine et al., 2020), RLHF (Ouyang et al.,
2022; Rafailov et al., 2024) literature. Though Equation (3) unifies the learning procedure of the
“reasoner” 7y (2|z) and the “reward” function Ry(z,y,z) := log mp(y| & @ 2), we can break down
these two procedures to analyze them separately. When we fix Ry (z,y,) and optimize the “reasoner”
mo(2|z), the procedure can be interpreted as self-improvement learning, where we improve 7y (2|z)
on self-generated synthetic reasoning rationale. When we fix mg(z|z) and optimize Ry(2,y,z),
the procedure can be interpreted as self-reward learning, where we learn the self-reward function
log g (y| & @ z). The procedure can also be considered finetuning optimization given the learned
reasoning rationale and query. Fortunately, we can naturally enjoy the benefits of these two self-
learning procedures with the new reasoning finetuning objective.

4.2 GRADIENT ESTIMATION FOR LATRO

From previous RL literature, we know that estimating VJ(6) in Equation (3) involves the use of
policy gradient methods, which usually suffers from high variances with the naive REINFORCE
estimators (Williams, 1992). Inspired by the recent work on policy gradient for LLMs (Ahmadian
et al., 2024), we also leverage the REINFORCE Leave-One-Out (RLOO) (Kool et al., 2019) to
optimize the “reasoner” 7y (2|z), where we can achieve lower variances of gradient estimation by
sampling multiple rationales. We summarize the empirical gradient estimation for solving LaTRO in
Proposition 2.

Proposition 2. (LaTRO Gradient Estimation) Suppose we are given a set of training data D, :=

{z;,y:} Y, we sample K i.i.d reasoning rationales zgi),zgi), . ,zg? ~ mo(-|z;) for each query
and answer pair (x;,y;). The empirical gradient estimator for Vo J(0) is expressed as
N K
7 1 ONINO! (i)

Vol (0) = 5 ; kz_:l (ve logmo(zi | 2)) - AV + Vologme(y | 20 @)), @

(i) (i) Lm0y 0 (i) mo(®i | ;)
with A, =r(z,’) — -1 Zr(zj),r(z),) =logme(y; | xi ® 2,) — Blogiﬁ,),

Ak mo(i | Zy)

Algorithm 1: LaTent Reasoning Optimization (LaTRO)

Input: Language model 7y, learning rate 1, KL penalty factor 5, MC sample size K, maximum
generation length L, sample temperature 7', number of epochs M, training dataset Dgopq.

Output: An optimized language model 7y.

def generate(m,z, K, L, T):

Given an autoregressive language model 7, input x, sample K sequences of length L from
the distribution 7 (-|2) at temperature T'.

return K sampled sequences

Intialize reference language model 7 as 7y
or epoch in range(M):
for z;,y; in Dgoua:
zgz), e ,zg? + generate(my,x;, K, L, T)

A~

Estimate Vy.J(0) with Proposition 2

0 0 +nVeJ(0)
return 7y

ey

where 3 > 0 is the coefficient to control the KL penalty. The proof can be found in Appendix A. 1.

The first gradient term in Equation (4) serves as policy gradient to improve the ability of the LLM g
to generate high-quality reasoning rationales, and log 7y (y|2 @ z) can be viewed as the evaluator for
reasoning rationale, which is further used to calculate the advantages. The second gradient term in
Equation (4), which is the gradient of supervised finetuning loss, essentially helps the LLM g to
leverage the reasoning rationales to produce correct answers.

4.3 PRACTICAL CONSIDERATIONS

To reduce computation overhead and better control the sampling of reasoning rationales during
training, we limit their maximum token length to L. The rationale ends either at the EOS token or at
the start of a predefined answer template (e.g., "The answer is"). We then use the truncated rationale
z, along with the query z and the answer z, for further computation.

We also encourage the LLM to finish its reasoning process with L tokens. Inspired by the implementa-
tion of the RLOO trainer in the TRL library (von Werra et al., 2020) , we introduce a constant penalty
for rationales truncated by the maximum token length L. This penalty encourages the generation of
rationales that fit within the specified token limit.

5 EXPERIMENTS

5.1 SETUP
We evaluate the performance of the proposed method across two datasets: a mathematical reasoning

dataset (GSMS8K, Cobbe et al. (2021b)) and a logical reasoning dataset (ARC-Challenge, Talmor
et al. (2019)). The sizes of the datasets are listed in Table 1.

Training. For each dataset, we fine-tune three

base models: Phi-3.5-mini-instruct (Abdin et al., Table 1: Size of the datasets

2024), Mistral-7B-Instruct-v0.3 (Jiang et al., 2023),

and Meta-Llama-3.1-8B-Instruct (Dubey et al., Name \ Training Evaluation
2024), abbreviated as Phi-3.5, Mistral-7B, and GSMS8K 7473 1319
Llama-3.1-8B, respectively. We provide two base- ~ ARC-Challenge 1119 1172

line comparisons: the base model and the super-
vised fine-tuned (SFT) model. For GSM8K, LaTRO fine-tuning excludes golden rationales from
the solutions in the training set, while the SFT model is trained using golden rationales. For ARC-
Challenge, as suggested in (Zheng et al., 2024), the model is trained to generate answers to the text of

multiple-choice questions rather than selecting labels. Since no golden rationales are available for
ARC-Challenge, the SFT model is trained to directly generate answers.

Evaluation. For GSMS8K, we evaluate all models with CoT prompting, and for ARC-Challenge,
we evaluate the SFT baseline with direct answer generation, while the base model and the LaTRO
fine-tuned model with CoT prompting. All evaluations are conducted with zero-shot prompts. We
report both greedy decoding (GD) results and self-consistency (with temperature 7' = 1) results. We
choose a self-consistency sample size £k = 8 (maj@8) in Table 2 after observing that more than 8
samples did not bring further performance improvement (see Figure 3 (b) for details).

Implementation. LaTRO is implemented on the high level as in Algorithm 1, with additional engi-
neering techniques as discussed in section 4.3. LaTRO is implemented using the widely recognized
transformers (Wolf et al., 2020) and TRL (von Werra et al., 2020) libraries, with PyTorch (Ansel
et al., 2024) as backend. DeepSpeed ZeRO (Rasley et al., 2020) is used in stage 3, along with Flash
Attention 2 (Dao et al., 2022) to enhance training efficiency. The models were trained on a machine
equipped with 8xH100 80GB GPUs, using bfloat16 precision.

Hyperparameters. AdamW optimizer with a learning rate of 5 x 10~7, no warm-up steps, and a
linear decay strategy is used. The Monte Carlo (MC) sample size K = 16 and the batch size of the
data loader 3 are predetermined, resulting in an effective batch size of 48. Gradient accumulation
steps and training batch size are subsequently adjusted to prevent out-of-memory errors during
training. A temperature of 7' = 1 is used for MC sampling, and a penalty factor v = 2 is applied for
incomplete rationales. The KL penalty is set at 8 = 0.05 for GSM8K and 0.25 for ARC-Challenge.
Except for the results presented in Section 5.3, the maximum generation length is maintained at
L = 500. We train all models up to six epochs for GSM8K, and 12 epochs for ARC-Challenge. The
checkpoint with best test accuracy is chosen.

For the SFT baseline experiments, we use a batch size of 32 and adjust the learning rate to ensure
that the evaluation loss decreases and finally converges. All SFT baselines are trained for a maximum
of 12 epochs. The checkpoint with the best test accuracy is selected.

In addition to the main quantitative results, we conduct ablation studies on two factors: 1. The
maximum generation length L, where we study the effects of tuning L in both training and inference
times; 2. The self-consistency samples &, where we explore to what extent LaTRO can still benefit
from inference-time scaling.

The main quantitative results, qualitative analysis of sample responses, and results of the ablation
study are presented in Sections 5.2 to 5.4, respectively. Additional details on our prompt templates
and more samples can be found in Appendices B and C.

5.2 RESULTS

In this subsection, we present evaluation results that demonstrate how effectively LaTRO enhances
the reasoning abilities of LLMs on downstream datasets. The detailed results are provided inTable 2.

For the GSM8K dataset, LaTRO fine-tuned models outperform all base models by up to 19.5%
(Mistral-7B, 47.8% — 67.3%) and show an average improvement of 12.5% across the three models
examined with greedy decoding. The greatest improvement margin is observed for Mistral-7B,
while the smallest is seen for Llama-3.1-8B, consistent with our initial findings in Figure 2, where
Mistral-7B exhibited the lowest log probability for directly answering questions and Llama-3.1-
8B exhibited the highest. With self-consistency, the improvements are by up to 16.5% (Phi-3.5,
74.0% — 90.5%) and the average improvement is 13.1%. Furthermore, LaTRO models demonstrate
superior performance relative to SFT baselines, with an average improvement of 9.6% for greedy
decoding and 13.2% for self-consistency. It is worth noting that for the SFT baseline of Llama-3.1-8B,
overfitting on the test set is still observed after tuning the learning rate.

For ARC-Challenge, LaTRO fine-tuned models still outperform the baselines, though with a smaller
margin. When using greedy decoding, the improvements over the base models are up to 1.6% with
an average increase of 1%. We see more increment with self-consistency, where the improvement
margins are on average 2.4%. Comparing to SFT baslines, we find that all three models are very
sensitive when fine-tuning to directly generate the answer of ARC-Challenge questions. They perform

Table 2: Zero-shot accuracy (%) comparison between LaTRO and the baselines on GSM8K and
ARC-Challenge datasets. The models are fine-tuned on corresponding training datasets. The base
model are marked with “N/A” in the training method. GD stands for greedy decoding at inference
time and maj@8 stands for self-consistency with 8 samples. The models are evaluated by default
using CoT, except that { indicates the direct answer generation is applied during evaluation.

Base Model Training Method Inference Method GSMS8K ARC-Challenge

N/A GD 72.9 85.1

maj@38 74.0 86.0

T

Phi-3.5 SFT GD 75.8 81.0
maj@3 77.1 80.5T

LaTRO GD 87.6 86.4

maj @3 90.5 87.5

N/A GD 478 74.1

maj@3 58.2 74.1

!

Mistral-7B SFT GD 572 70.0
maj@8 59.9 70.61

LaTRO GD 67.3 74.3

maj @3 73.8 78.9

N/A GD 76.8 81.4

maj@3 79.7 84.4

A

Llama-3.1-8B SFT GD 732 77.0
maj@8 74.7 76.41

LaTRO GD 80.1 83.0

maj@3 87.0 85.3

even inferior to the unoptimized base models. When using greedy decoding, the improvements of
LaTRO fine-tuned models over the SFT baselines are on an average of 5.2%, and by up to 6%
(Llama-3.1-8B). In the case of self-consistency, LaTRO performs better than the base models by
an average of 2.4%, and surpasses the SFT models by an average of 8.1%. On the less surprising
results compared to GSM8K, we conjecture that for ARC-Challenge, the models are already good at
producing the answer either directly or through CoT prompting. Hence, further optimization of the
reasoning process did not yield significant improvement.

5.3 ABLATION STUDY

In this subsection, we present our ablation study on the effect of different parameters in LaTRO. For
consistency, we fix the base model to Phi-3.5 and the dataset to GSMS8K throughout the ablation
experiments.

How many tokens are enough? Liu et al. (2024) demonstrated that when the input length is n, a
transformer model with a hidden size of O(logn) can solve problems equivalent to Boolean circuits
of size m, using m CoT steps. However, the empirical determination of sufficient CoT tokens for
optimal performance remains underexplored. In this section, we report zero-shot accuracy with
generation length L ranging from 200 to 1000 tokens at inference time. Additionally, a Phi-3.5
model is fine-tuned with L = 200 for comparison. We distinguish two LaTRO fine-tuned models,
referred to as LaTRO and LaTROq¢o. As shown in Figure 3(a) accuracy gains plateau when L > 500,
suggesting 500 tokens might suffice for grade school math problems. In contrast, limiting L to
200 reduces accuracy, unless the model is trained accordingly. Interestingly, LaTRO significantly
improves performance under this constraint by training the model to generate more concise rationales.

0.90

0.80

LaTROgq
LaTRO
SET LaTRO

0.3 >
Base Model 070 Base Model

200 300 100 500 1000 2 1 8 16 32

(a) Zero-shot accuracy with different L. (b) Zero-shot maj@Fk accuracy with different k.

Figure 3: Ablation study results on GSM8K with base model Phi-3.5. In (a), the z-axis represents
various maximum token length L of reasoning rationales, y-axis is the accuracy, and the plot shows
the zero-shot performance v.s. various maximum token lengths for different methods. In (b), the
x-axis represents the # of sampled reasoning rationales, the y-axis is the accuracy, and the plot shows
the zero-shot performance v.s. the # of reasoning rationales used in the majority vote.

This finding implies LaTRO can also train LLMs to condense rationales for limited inference-time
compute. A sample from LaTRO»qg is provided in Appendix C for qualitative analysis.

Is inference-time scaling still beneficial? While LaTRO shifts much of the reasoning computation
to training time, it can still benefit from the inference-time scaling. To explore this, We evaluate
the models again using self-consistency with the number of samples & ranging from 1 to 32. As
shown in Figure 3 (b), with k£ = 8 rationales and majority voting, LaTRO achieves 90% accuracy on
GSMSK. This indicates that LaTRO equipped with self-consistency can further enhance performance,
even with LaTRO’s focus on training-time optimization.

Question: Frankie and Binkie went bowling together. Frankie’s score was 15 better more than
twice as high as Binkie’s. If Binkie bowled a score of 90, what was Frankie’s score? Let’s
think step by step.

Response (Base model): Let’s break this problem down into steps:

1. We know that the difference between Frankie’s score (F) and Binkie’s score (B) is 15. So
we can express Frankie’s score as F =B + 15

2. We also know that Frankie’s score is twice as high as Binkie’s score. So we can write
another equation: F = 2B

3. Now, we have two equations with two unknowns. Let’s solve for Frankie’s score (F) by
setting the two equations equal to each other: - 2B = B + 15 - Multiply both sides by 1 to get
rid of the fraction: 2B - B = 15 - Simplify: B = 15 (since subtracting B from 2B results in 15)
4. Now that we know Binkie’s score, we can find Frankie’s score using either of the equations
we created earlier. Let’s use the first one (F=B + 15): - F =15 + 15 - Frankie’s score is 30
more than Binkie’s score, which is 15 in this case. So Frankie’s score is 15+ 15=30+ 15 =
45

The final answer is that Frankie’s score was 45.

Reponse (SFT): Twice as many as Binkie’s 90 score is equal to 2*90= «2*%90=180»180.
Therefore, 180-(180-15)=165 was the number Frankie bowled. The answer is 165

Response (LaTRO): Here’s how to solve the problem: 1. We know that Binkie’s score is 90.
2. The problem states that Frankie’s score was 15 better more than twice as high as Binkie’s
score. This means that Frankie’s score is 15 + (2 * 90) = 15 + 180 = 195.

Figure 4: Sample responses of a GSM8K question from Mistral-7B models, the errors are highlighted
in red.

5.4 CASE STUDY

We take a closer look at the responses generated by the LaTRO fine-tuned models. We select a
question from GSM8K and compare the responses from the base, the SFT model, and the LaTRO
finetuned model. We choose the set of responses from the Mistral-7B models that we evaluated. As
can be seen in Figure 4, the base model not only generates a lengthy response, it also makes a logical
mistake at the first step, where the correct equation to establish here is “F = 2B + 15”. The SFT model
simplifies the answer and makes the first step correct. However, in the second step it first makes a
wrong equation, then makes an arithmetic error when evaluating this equation. Further, LaTRO can
give a concise and correct answer. We include more sample responses in Appendix C.

6 CONCLUSION

In conclusion, this work introduces LaTRO, a principled framework for optimizing language models’
reasoning capabilities without external feedback or reward models. By formulating reasoning as
sampling from a latent distribution and leveraging self-rewarding, LaTRO enables models to concur-
rently improve both their reasoning process and ability to evaluate reasoning quality. Our extensive
experiments across multiple model architectures and tasks demonstrate significant performance gains,
with LaTRO outperforming baseline models and supervised fine-tuning approaches. These findings
suggest that pre-trained LLMs possess latent reasoning capabilities that can be unlocked through our
proposed optimization approach, representing a significant step towards creating more intelligent
systems that can self-evolve their problem-solving capabilities.

While LaTRO shows promising results, there are some limitations to consider. The computational
cost of sampling multiple rationales during training could be prohibitive for very large models. Future
work could explore ways to reduce this computational overhead, such as using more efficient sampling
techniques or adaptive rationale generation. Other promising directions include investigating the
applicability of LaTRO to a wider range of reasoning tasks beyond math and science problems, and
exploring how to conduct multi-step reasoning learning to to enhance reasoning capabilities further.
Despite these limitations, our contributions advance both the state-of-the-art in LLM reasoning
capabilities and provide valuable insights into the nature of LLM alignment and its potential for
self-improvement.

REFERENCES

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider,
Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos
Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee,
Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid
Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli
Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma,
Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael
Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong
Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone.
CoRR, abs/2404.14219, 2024. doi: 10.48550/ARX1V.2404.14219. URL https://doi.org/
10.48550/arXiv.2404.14219.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Ustiin, and
Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

10

https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.48550/arXiv.2404.14219

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan,
Christian Puhrsch, Matthias Reso, Mark-Albert Saroufim, Marcos Yukio Siraichi, Helen Suk,
Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou,
Xiaodong Wang, Ajit Mathews, William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala.
Pytorch 2: Faster machine learning through dynamic python bytecode transformation and graph
compilation. Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, 2024. URL https://api.
semanticscholar.org/CorpusID:268794728.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of thoughts: Solving elaborate problems with large language models. In Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on
Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2014, February 20-27, 2024, Vancouver, Canada, pp. 17682—-17690. AAAI Press, 2024.
doi: 10.1609/AAAIL.V38116.29720. URL https://doi.org/10.1609/aaai.v38116.
29720.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Trans. Mach. Learn.
Res., 2023,2023. URL https://openreview.net/forum?id=Yfz2472Pt8zd.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021a. URL
https://arxiv.org/abs/2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021b.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20£d0a7a302cb81d36e40d5-Abstract-Conference.html.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet

11

https://api.semanticscholar.org/CorpusID:268794728
https://api.semanticscholar.org/CorpusID:268794728
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://openreview.net/forum?id=YfZ4ZPt8zd
https://arxiv.org/abs/2110.14168
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html

Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng
Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya
Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd
of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https:
//doi.org/10.48550/arXiv.2407.21783.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi- Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR (Poster), 3, 2017.

Matthew Douglas Hoffman, Du Phan, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi,
Pavel Sountsov, Charles Sutton, Sharad Vikram, and Rif A Saurous. Training chain-of-thought via
latent-variable inference. Advances in Neural Information Processing Systems, 36, 2024.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023. doi: 10.
48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arxXiv.2310.06825.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline
for free! In Deep Reinforcement Learning Meets Structured Prediction, ICLR 2019 Workshop,
New Orleans, Louisiana, United States, May 6, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=r11gTGL5DE.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Igbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

12

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2310.06825
https://openreview.net/forum?id=r1lgTGL5DE
https://openreview.net/forum?id=r1lgTGL5DE

Zhiyuan Liu, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=3EWTEy 9MTM.

Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Steven Wu, Bo Li, and Ding Zhao. Constrained
variational policy optimization for safe reinforcement learning. In International Conference on
Machine Learning, pp. 13644-13668. PMLR, 2022.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 46534-46594. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/91edff07232fblb55a505a9e9f6¢c0ff3-Paper-Conference.pdf.

OpenAl. Learning to reason with LLMs. https://openai.com/index/
learning-to-reason-with-11ms/, 2024. [Online].

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System op-
timizations enable training deep learning models with over 100 billion parameters. In Ra-
jesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (eds.), KDD ’20: The 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA,
August 23-27, 2020, pp. 3505-3506. ACM, 2020. doi: 10.1145/3394486.3406703. URL
https://doi.org/10.1145/3394486.3406703.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-
of-thought helps mainly on math and symbolic reasoning. CoRR, abs/2409.12183, 2024. URL
http://arxiv.org/abs/2409.12183.

13

https://openreview.net/forum?id=3EWTEy9MTM
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.1145/3394486.3406703
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://arxiv.org/abs/2409.12183

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4149—
4158. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1421. URL
https://doi.org/10.18653/v1/n19-1421.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476-482, 2024.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning
with reinforced fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7601-7614, 2024.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning. https://github.
com/huggingface/trl, 2020.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=1PLINIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecfd4flbafO0f7b3labcad—Abstract-Conference.html.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38—45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos. 6.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analy-
sis of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023a. URL https://openreview.net/forum?id=WE_v1uYUL-X.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

14

https://doi.org/10.18653/v1/n19-1421
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=WE_vluYUL-X

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy,
Zeyuan Chen, Jianguo Zhang, Devansh Arpit, et al. Retroformer: Retrospective large language
agents with policy gradient optimization. arXiv preprint arXiv:2308.02151, 2023b.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei Li,
Renze Lou, Jiacheng Xu, et al. Diversity empowers intelligence: Integrating expertise of software
engineering agents. arXiv preprint arXiv:2408.07060, 2024.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models
are not robust multiple choice selectors. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=shr9PXz7T0.

15

https://openreview.net/forum?id=shr9PXz7T0

A ADDITIONAL DETAILS ON OUR THEORETICAL FRAMEWORK

A.1 PROOF OF PROPOSITION 2

Proof. We restate the objective as follows:

J(0) := Ez y)~Deoa [Ez~w9(-z) [log mo(y| x ® 2)| — BDkL[me(2|2)||m0(2]2)] |,

= E(2.y)~Doua | Er (2]2) [l0g To (y|z © 2) — log Ty (2|z) + log mo(2]z)] |,

where 5 > 0 is a positive coefficient to control the regularization strength. We take the gradient w.r.¢
0 at each sample pair (z,y), and we get

VoJ(0;2,y) := Vg /(7r9(2|:1:))(10g mo(ylz @ 2) — Blog my(2|xz) + Blogmo(2z|x))dz

N

+ Eﬂe(z|m) [V@ log 7T9(y|$ (&) Z) — BV log W@(Z‘(L‘)] .

:i(:l‘;g’ and use the fact that

Eory(ale) (Vo log mo(2[2)] = [mo(2]2) VrelZ dz = Vy [7g(2[x)dz = 0. we obtain the final
gradient as

We further define 7(2) := logmy(ylz ® 2) — Blog

Vol (0;2,y) = Er(z)z) [Vologmo(2|x) - 7(2) + Vg log me(y|z,x)] .

And when we use RLOO estimator with empirical samples, we can replace above gradient estimation
with empirical samples, which gives us the following result:

i)
voJ(0): NK;;(valong) A0 + T logmo(ys |2 021)
| b & (i | 2,”)
with A = r(z?) = 2= 3 r(el?) r(el?) = log oy | 7, 0 2) — Blog UL EL).
s 7T0((L'i ‘ Z;.)
which completes the proof. O

B PROMPT TEMPLATES

In this section, we list all prompt templates used in our experiments. For the GSMS8K dataset, we
used a minimum prompt template. For the ARC-Challenge dataset, we use a CoT template for the
base model and LaTRO fine-tuning, and another template direct answer generation in SFT.

{question} Let’s think step by step.

Figure 5: CoT template for GSM8K

Question: {question}
Options: {choices["text"]}
Let’s think step by step first then print your answer like *The answer is (one of the options)’.

s nmnn

Figure 6: CoT template for ARC-Challenge

16

The output MUST strictly follow the structure and format described below:
1. The answer should be strictly one of the options given in the question

2. Do not include any text after you choose an option.

Example:

Question: (question here)

Options: [optionl, option2, option3]

The answer is: (one of the options).

Question: {question}

Options: {choices["text"]}

Figure 7: Direct answer generation template for ARC-Challenge

C SAMPLE RESPONSES

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5,
but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much
does he need to pay for them? Let’s think step by step.

Response (Base model):

Step 1: Determine the cost of one regular glass and one discounted glass. One regular glass
costs $5. Every second glass costs 60% of the price of a regular glass, so: 60% of 5 = 0.60x5
=$3

Step 2: Calculate the total number of regular and discounted glasses. Kylar wants to buy 16
glasses in total. Since every second glass is discounted, we can divide the total number of
glasses by 2 to find the number of discounted glasses: 16 glasses / 2 = 8 discounted glasses
Now, subtract the number of discounted glasses from the total number of glasses to find the
number of regular glasses: 16 glasses - 8 discounted glasses = 8 regular glasses Step (did not
finish)

Response (LaTRO5): Let’s break it down:

1. Kylar needs to buy 16 glasses.

2. Every second glass costs 60% of the original price ($5), which is $3.

3. So, for every pair of glasses (one full price and one discounted), Kylar pays $5 + $3 = $8.
4. Since he needs 16 glasses, he buys 8 pairs. 5. Therefore, Kylar needs to pay 8 pairs * $8
per pair = $64. So, Kylar needs to pay $64 for the 16 glasses. The answer is 64.

Figure 8: Sample responses of a GSM8K question, from Phi-3.5 models, maximum generation length
L = 200. The base model does not finish the generation, while the LaTRO model generates a short
and correct answer.

17

Question: Water, ice, and steam all have different temperatures. What is the order from
coldest to hottest?

Options: [’ice, water, steam’, ’ice, steam, water’,’steam, ice, water’,’steam, water, ice’]
Response (Base model): To determine the order from coldest to hottest, let’s evaluate each
option.

- Ice: It is the solid form of water and is typically around 0°C (32°F).

- Water: It is the liquid form of water and is usually around 100°C (212°F) or 0°C (32°F) at
standard pressure and temperature conditions, respectively.

- Steam: It is the gaseous form of water and is typically at a temperature equal to or greater
than 100°C (212°F) at standard pressure conditions, depending on the pressure and other
factors.

Option 1: ’ice, water, steam’ - This order seems incorrect since steam is typically hotter than
water at standard conditions.

Option 2: ’ice, steam, water’ - This order is incorrect because ice is the coldest, but the relative
order of water and steam is opposite of what we know.

Option 3:’steam, ice, water’ - This order is incorrect since ice is colder than steam.

Option 4:’steam, water, ice’ - This order seems the most plausible, considering that steam is
hotter than water and water is hotter than ice.

The answer is ’steam, water, ice’.

Response (SFT): water, ice, steam

Response (LaTRO): To determine the order from coldest to hottest, let’s analyze each option:
1. Ice has a solid form and a fixed temperature, which is typically around 0°C (32°F) at
standard pressure.

2. Water is liquid and exists at a temperature of 0°C (32°F) at standard pressure, melting point
of ice.

3. Steam is the gaseous state of water and is typically around 100°C (212°F) at standard
pressure.

Based on this information, we can now order them from coldest to hottest:

First, we have ice, as it is the coldest. Then, we have water at 0°C, which is the middle
temperature. Lastly, we have steam, which is the hottest.

So, the order from coldest to hottest is ’ice, water, steam’.

The answer is [’ice, water, steam’].

Figure 9: Sample responses of an ARC-Challenge question, from Llama-3.1 models, the errors are
highlighted in red. The base model shows knowledge about basic physics but makes a logical error
on the order.

18

	Introduction
	Related work
	Background and Motivation
	Optimizing the reasoning process
	Latent Reasoning Optimization: A Variational Approach
	Gradient estimation for LaTRO
	Practical Considerations

	Experiments
	Setup
	Results
	Ablation Study
	Case Study

	Conclusion
	Additional Details on Our Theoretical Framework
	Proof of prop:ge

	Prompt Templates
	Sample Responses

