
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LANGUAGE MODELS ARE HIDDEN REASONERS:
UNLOCKING LATENT REASONING CAPABILITIES VIA
SELF-REWARDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown impressive capabilities, but still strug-
gle with complex reasoning tasks requiring multiple steps. While prompt-based
methods like Chain-of-Thought (CoT) can improve LLM reasoning at inference
time, optimizing reasoning capabilities during training remains challenging. We
introduce LaTent Reasoning Optimization (LaTRO), a principled framework
that formulates reasoning as sampling from a latent distribution and optimizes it
via variational approaches. LaTRO enables LLMs to concurrently improve both
their reasoning process and ability to evaluate reasoning quality, without requiring
external feedback or reward models. We validate LaTRO through experiments
on GSM8K and ARC-Challenge datasets using multiple model architectures. On
GSM8K, LaTRO improves zero-shot accuracy by an average of 12.5% over base
models and 9.6% over supervised fine-tuning across Phi-3.5-mini, Mistral-7B, and
Llama-3.1-8B. Our findings suggest that pre-trained LLMs possess latent reasoning
capabilities that can be unlocked and enhanced through our proposed optimization
approach in a self-improvement manner.

1 INTRODUCTION

The development of large language models (LLMs) with enhanced reasoning capabilities has emerged
as a crucial area of research. Despite their impressive advances, the inherent next-token prediction
mechanism of LLMs makes it challenging for these models to solve complex problems requiring
multiple reasoning steps (Wang et al., 2022; Huang et al., 2023). For instance, LLMs often struggle
to directly provide accurate solutions to mathematical problems or even simple puzzles like counting
specific letters in a word. Consequently, researchers have explored various prompting strategies
that guide LLMs to generate reasoning trajectories or rationales—sequences of tokens that build a
step-by-step progression toward an answer. Techniques such as Chain-of-Thought (CoT) (Wei et al.,
2022), Tree-of-Thought (ToT) (Yao et al., 2024), and Program-of-Thought (PoT) (Chen et al., 2023)
prompting methods exemplify this approach.

Recent progress has also focused on inference-time techniques to enhance the reasoning abilities of
LLMs (Wu et al., 2024; Brown et al., 2024), as observed in the OpenAI o1 model (OpenAI, 2024).
These methods have demonstrated remarkable performance in diverse reasoning tasks, including
mathematics (Cobbe et al., 2021b; Trinh et al., 2024; Luo et al., 2024), coding (Jimenez et al., 2023;
Guo et al., 2024; Zhang et al., 2024), and scientific problem-solving (Rein et al., 2023). Notable
inference-time methods, such as CoT with Self-Consistency (CoT-SC) (Wang et al., 2023) and
CoT-Decoding (Wang & Zhou, 2024), extend the CoT approach by generating multiple reasoning
paths and selecting the most consistent one. Additionally, techniques like ReAct (Yao et al., 2023a)
and Reflexion (Shinn et al., 2023) integrate reasoning into LLM agent loops, further enhancing their
problem-solving capabilities.

Despite the promising results at inference time, improving the reasoning abilities of LLMs during their
training phase remains a challenging problem. Several obstacles impede progress in this area. Firstly,
there is a scarcity of high-quality reasoning data for complex problems, limiting the applicability
of traditional supervised fine-tuning (SFT) approaches (Zelikman et al., 2022). Moreover, when
such data is available, SFT on deterministic reasoning paths may result in a lack of diversity in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Question xxx
Language
Model πθ

Sampled Rationale
zzz1, zzz2, . . . , zzzK

Self-reward: Compute the
likelihood of πθ generating
yyy after observing xxx and zzz.

Groundtruth yyy

Language
Model πθupdate

Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts does it take?
Groundtruth: The answer is 3.
Sampled Rationale 1 (correct , higher likelihood): It takes 2/2 = 1 bolt of white fiber. 2 + 1 = 3. So, it
takes a total of 3 bolts of fiber.
Sampled Rationale 2 (incorrect , lower likelihood): We need 2 bolts of blue and 2 bolts of white fiber. In
total, it is 2 + 2 = 4.

Figure 1: Overview of LaTRO with an example question from GSM8K (Cobbe et al., 2021b). LaTRO treats
reasoning trajectories as latent variables and optimizes the underlying distribution through self-rewarding. Given
a question, the language model generates multiple reasoning rationales, evaluates their likelihood of producing
the correct answer, and updates its parameters to favor high-quality rationales. This iterative process allows the
model to improve both its ability to generate good reasoning paths and to evaluate the quality of those paths.

problem-solving strategies, potentially causing over-confidence issues and performance degradation
(Cobbe et al., 2021b), especially in domains needing multiple valid approaches, such as mathematical
proofs and coding. Alternatively, improving reasoning through reinforcement learning from human
feedback (RLHF) presents its own challenges (Havrilla et al., 2024; Luo et al., 2024). Developing a
reward model that accurately evaluates the quality and validity of reasoning paths is a formidable
task, susceptible to distribution shifts and biased evaluations.

Self-improvement approaches like STaR (Self-Taught Reasoner) (Zelikman et al., 2022) and Quiet-
STaR (Zelikman et al., 2024) have shown promise in enhancing language models’ reasoning ca-
pabilities without external feedback. However, STaR relies on task-specific few-shot examples to
bootstrap its reasoning process, which can limit its generalizability across diverse tasks. While
Quiet-STaR attempts to overcome this by inferring implicit rationales across arbitrary text, it does not
directly optimize the reasoning process itself. Through these findings, we observe that pretrained
LLMs already possess innate reasoning capabilities but just have not been fully activated or utilized,
inspiring us to propose our approach.

Our proposed method, LaTent Reasoning Optimization (LaTRO), addresses the limitations of
previous approaches by formulating reasoning as sampling from a latent distribution and optimizing
it through a principled variational framework. As illustrated in Fig. 1, LaTRO enables language
models to concurrently improve both their reasoning process and ability to evaluate reasoning quality,
without requiring task-specific few-shot examples or external reward models. Key contributions of
LaTRO include:

1. A theoretical formulation connecting LLM reasoning optimization to latent variable models;

2. A self-rewarding mechanism leveraging the model’s own probability estimates;

3. Significant performance gains across multiple model architectures and reasoning tasks, demon-
strating LaTRO’s effectiveness in unlocking latent reasoning capabilities of language models.

Our findings suggest that pre-trained LLMs are not only capable reasoners but also possess the
potential to act as explicit reward models for evaluating reasoning paths. We term this approach of
utilizing explicit reward functions induced by LLMs themselves as "self-rewarding." Empirically,
LaTRO outperforms both baseline models and supervised fine-tuning approaches on reasoning tasks
like GSM8K, while also demonstrating the capacity to compress reasoning processes and shift
computational burdens from inference to training time.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 RELATED WORK

Prompt-based LLM Reasoning Prompt-based reasoning methods prove to be effective across
various domains, such as math problem-solving (Polu & Sutskever, 2020; Hendrycks et al., 2021;
Cobbe et al., 2021a), logical reasoning (Sprague et al., 2024) and agentic tasks (Yao et al., 2023a;
Shinn et al., 2023; Yao et al., 2023b). Chain-of-Thoughts or CoT (Wei et al., 2022) is the pioneering
work that prompts LLMs to decompose challenging tasks into smaller reasoning steps. After that, two
primary research directions further improved reasoning capabilities during inference. One direction
searched over the reasoning trajectories against a process-based verifier, or reward model (Yao et al.,
2024; Besta et al., 2024; Lightman et al., 2023). For example, tree-of-thoughts (Yao et al., 2024)
explored over thoughts by depth-first search (DFS), breadth-first search (BFS) or beam search. The
other approach used a critic model to provide verbal feedback, iteratively refining the responses with
that feedback (Saunders et al., 2022; Shinn et al., 2023; Yao et al., 2023b; Madaan et al., 2023).

Self-Rewarding for LLM Reasoning Reasoning capabilities in LLMs can be enhanced in post-
training through self-rewarding and reinforcement learning. The Self-Taught Reasoner, or STaR (Ze-
likman et al., 2022) introduced a bootstrapping technique that allows LLMs to generate rationales
and fine-tune itself with self-generated reasoning paths. Quiet-STaR (Zelikman et al., 2024) extended
this by training LLMs to infer implicit rationales across arbitrary text, enhancing both reasoning
and predictive abilities without task-specific fine-tuning. Reinforced Fine-Tuning, or ReFT (Trung
et al., 2024) took this further by leveraging reinforcement learning to improve generalization in
reasoning tasks like math problem-solving, enabling LLMs to learn from multiple reasoning paths.
Self-correction capabilities in LLMs can also be reinforced through self-generated data (Kumar et al.,
2024). Lastly, Hoffman et al. (2024); Hu et al. (2023) formulated the reasoning process as latent
variable models, aligning LLMs towards more accurate reasoning with fewer annotated data.

3 BACKGROUND AND MOTIVATION

We start by briefly introducing reasoning techniques (e.g., chain-of-thought (Wei et al., 2022), ReAct
(Yao et al., 2023a), etc). Given a user query xxx, the standard procedure to sample the response yyy
is to leverage an autoregressive pretrained LLMs πθ (parameterized by θ): yyy ∼ πθ(· | xxx). As for
prompt-based reasoning techniques such as chain-of-thought (Wei et al., 2022), the LLM πθ is firstly
asked to generate thoughts (a.k.a reasoning rationale) before generating the answers to the response:

xxx′ := Reason(xxx) = xxx⊕ Prompt Template of Thought,

zzz ∼ πθ(· | xxx′), yyy ∼ πθ(· | xxx′ ⊕ zzz) ,

where zzz is the thought or the reasoning rationale path, ⊕ indicates the concatenate operator, and
the prompt template of the thought can be some hint prompt such as “Let’s think s tep by
step” 1.Empirically, people observe that there is a higher chance for the LLM πθ to generate the
desired answer yyy following the above procedure than directly sampling the response yyy ∼ πθ(· | xxx).
From a statistical perspective, we hypothesize that good reasoning rationales can significantly
improve the probability of generating good answers yyy: ∃ zzz, s.t. πθ(yyy| xxx ⊕ zzz) ≫ πθ(yyy| xxx).

Mistral-7B-Instruct-v0.3 Meta-Llama-3.1-8B-Instruct Phi-3.5-mini-instruct
0

20

40

60

80

100 With Reasoning

Without Reasoning

Figure 2: Average negative log probabilities
of LLMs to generate correct responses.

To validate the hypothesis, we check the probability of
the correct answers yyy on pretrained LLMs with or with-
out reasoning rationales. In Figure 2, we visualize the
negative log probability of the correct answers on three
different LLMs on GSM8K dataset (Cobbe et al., 2021b).
We have observed that when the LLMs are conditioned
on the reasoning rationales, the probability of the correct
answer is remarkably larger than without reasoning ratio-
nales. This suggests that good reasoning rationales help
the LLMs generate desired answers for complex tasks by
increasing their probability, giving them a higher chance
of generating the correct answers.

1We omit the difference between x′ and x for convenience in the latter notation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

The above observation inspires us that we can potentially further improve the reasoning ability of
existing LLMs. One may find some surrogate objective to enhance the quality of the reasoning
rationales or improve the ability of LLMs to leverage good reasoning rationales. In the following
Proposition 1, we show that Self-Consistency Chain-of-Thought (CoT-SC) (Wang et al., 2023), which
takes a majority vote of multiple reasoning rationales to improve the reasoning ability, approximates
some surrogate objective.

Proposition 1. Denote the user query, model response, and reasoning rationale by xxx,yyy,zzz, respec-
tively. The distribution of the majority vote answer of the K reasoning rationales obtained by CoT-SC
approximates pM (yyy|xxx) := Ezzz∼πθ(·| xxx)[πθ(yyy| xxx⊕ zzz)], as K →∞.

Proof. Given a user query xxx, CoT-SC essentially follows the procedure: 1) Sample K i.i.d rea-
soning rationales together with model responses: (zzzk, yyyk) ∼ πθ(·|xxx), 1 ≤ k ≤ K. 2) Take
the majority vote of (yyy1, . . . , yyyK). For a specific response yyy, its frequency can be calculated as
F (yyy) := 1

K

∑K
k=1 1{yyyk = yyy}, where 1 is the indicator function. Then the expectation of F (yyy) is

Eyyy1,...,yyyK
F (yyy) =

1

K

K∑
k=1

Eyyyi
1{yyyi = y} = 1

K

K∑
i=1

Pyyyi∼πθ(·|xxx⊕zzzi)[yyyi = yyy]

=
1

K

K∑
i=1

πθ(yyy|xxx⊕ zzzi)
K→∞−→ Ezzz∼πθ(·|xxx) πθ(yyy|xxx⊕ zzz).

CoT-SC essentially leverages pM (yyy|xxx) :=
∫
πθ(zzz|xxx)πθ(·| xxx⊕ zzz)dzzz to obtain reasoning rationales

and produces final correct answers. Inspired by the conclusion, we could leverage surrogate objectives
like Ezzz∼πθ(·| xxx)[ϕ(πθ(yyy| xxx⊕ zzz))] to further enhance the reasoning ability of LLMs, where ϕ is some
monotonic transform such as logarithm (log(·)). Further, we could also optimize the parameters of
LLMs to enhance the reasoning abilities of existing LLMs during the training, so we can obtain
LLMs with better reasoning abilities with the same inference time budget. In the following sections,
we introduce the idea of optimizing LLMs to improve reasoning abilities without external feedback,
by proposing a principled framework containing the surrogate objective.

4 OPTIMIZING THE REASONING PROCESS

In this section, we describe how to optimize the reasoning rationale without external feedback.
Specifically, we introduce the objective for optimizing the reasoning rationale in Section 4.1 from a
variational perspective of LLM training; we derive the gradient estimation for the new objective in
Section 4.2, and discuss the sampling procedure together with reward shaping in Section 4.3. We
summarize the proposed algorithm, LaTent Reasoning Optimization (LaTRO) in Algorithm 1, and
illustrate the overall procedure in Figure 1.

4.1 LATENT REASONING OPTIMIZATION: A VARIATIONAL APPROACH

Suppose we are given a golden dataset DGold := {(xxxi, yyyi)}Ni=1 consisting of N query and answer
pairs, where (xxx,yyy) denotes the query and the answer respectively. A standard finetuning procedure to
fit the LLM πθ to the dataset DGold is by likelihood maximization:

max
θ

E(xxx,yyy)∼DGold [log πθ(yyy | xxx)] , (1)

where θ are the parameters of the LLM πθ to optimize. Based on the discussion in Section 3, it is
more feasible to optimize πθ with additional reasoning rationale path zzz, compared with standard
finetuning objective in Equation (1). Hence, we can introduce another “reasoner” q(zzz|xxx) to sample
the latent reasoning rationales that can help the optimization procedure of πθ. This is achievable by

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

optimizing the following lower bound:

log πθ(yyy|xxx) = log

∫
πθ(yyy | xxx⊕ zzz)π0(zzz | xxx)dzzz

= log

∫
πθ(yyy | xxx⊕ zzz)

q(zzz|xxx)
q(zzz|xxx)

π0(zzz|xxx)dzzz

≥ max
q(zzz|xxx)

Eq(zzz|xxx)
[
log πθ(yyy| xxx⊕ zzz)

]
−DKL[q(zzz|xxx)||π0(zzz|xxx)] , (2)

where π0 is a prior reference LLM that regularizes the “reasoner” q(zzz|xxx), and the lower bound
is achieved via Jensen’s inequality (Higgins et al., 2017). Based on the literature of variational
Bayes (Kingma, 2013), one can either learn and optimize q(zzz|xxx) via variational Expectation Maxi-
mization (EM) (Abdolmaleki et al., 2018; Liu et al., 2022), or introduce another parameterized LLM
qϕ(zzz|xxx) and optimize ϕ to amortize the cost. Additionally, from the discussion in Section 3, we know
πθ itself can also serve as a naive “reasoner”, since πθ is an autoregressive LLM.

To simplify the learning procedure, we propose to use πθ as the “reasoner” q(zzz|xxx). As a result, we
can jointly learn one single LLM πθ, that is capable of generating good reasoning rationale together
with providing correct answers given the query and its own generated reasoning rationale. To be
more specific, we can define the learning objective as follows:

max
θ

J(θ) := E(xxx,yyy)∼DGold

[
Ezzz∼πθ(·|xxx)

[
log πθ(yyy| xxx⊕ zzz)︸ ︷︷ ︸

Rθ(zzz,yyy,xxx)

]
−DKL[πθ(zzz|xxx)||π0(zzz|xxx)]

]
, (3)

where we specify the reference LLM π0 to be the original πθ before the optimization. Furthermore,
log πθ(yyy| xxx ⊕ zzz) in Equation (3) can be viewed as the reward function Rθ(zzz,yyy,xxx) to evaluate the
quality of the rationale zzz given the pair (xxx,yyy), since the reasoning rationale zzz with higher likelihood
log πθ(yyy| xxx ⊕ zzz) indicates that it would provide a higher probability for the model to answer the
question correctly.

Remark By substituting log πθ(yyy| xxx ⊕ zzz) with Rθ(zzz,yyy,xxx), Equation (3) exactly recovers the
standard optimization objective defined in offline RL (Levine et al., 2020), RLHF (Ouyang et al.,
2022; Rafailov et al., 2024) literature. Though Equation (3) unifies the learning procedure of the
“reasoner” πθ(zzz|xxx) and the “reward” function Rθ(zzz,yyy,xxx) := log πθ(yyy| xxx⊕ zzz), we can break down
these two procedures to analyze them separately. When we fix Rθ(zzz,yyy,xxx) and optimize the “reasoner”
πθ(zzz|xxx), the procedure can be interpreted as self-improvement learning, where we improve πθ(zzz|xxx)
on self-generated synthetic reasoning rationale. When we fix πθ(zzz|xxx) and optimize Rθ(zzz,yyy,xxx),
the procedure can be interpreted as self-reward learning, where we learn the self-reward function
log πθ(yyy| xxx⊕ zzz). The procedure can also be considered finetuning optimization given the learned
reasoning rationale and query. Fortunately, we can naturally enjoy the benefits of these two self-
learning procedures with the new reasoning finetuning objective.

4.2 GRADIENT ESTIMATION FOR LATRO

From previous RL literature, we know that estimating ∇θJ(θ) in Equation (3) involves the use of
policy gradient methods, which usually suffers from high variances with the naive REINFORCE
estimators (Williams, 1992). Inspired by the recent work on policy gradient for LLMs (Ahmadian
et al., 2024), we also leverage the REINFORCE Leave-One-Out (RLOO) (Kool et al., 2019) to
optimize the “reasoner” πθ(zzz|xxx), where we can achieve lower variances of gradient estimation by
sampling multiple rationales. We summarize the empirical gradient estimation for solving LaTRO in
Proposition 2.
Proposition 2. (LaTRO Gradient Estimation) Suppose we are given a set of training data DGold :=

{xxxi, yyyi}Ni=1, we sample K i.i.d reasoning rationales zzz(i)1 , zzz
(i)
2 , . . . , zzz

(i)
K ∼ πθ(·|xxxi) for each query

and answer pair (xxxi, yyyi). The empirical gradient estimator for∇θJ(θ) is expressed as

∇θĴ(θ) :=
1

NK

N∑
i=1

K∑
k=1

(
∇θ log πθ(xxxi | zzz(i)k) ·A(i)

k +∇θ log πθ(yyyi | zzz(i)k ⊕ xxxi)

)
, (4)

with A
(i)
k = r(zzz

(i)
k)− 1

K − 1

K∑
j ̸=k

r(zzz
(i)
j) , r(zzz

(i)
k) := log πθ(yyyi | xxxi ⊕ zzz

(i)
k)− β log

πθ(xxxi | zzz(i)k)

π0(xxxi | zzz(i)k)
,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 1: LaTent Reasoning Optimization (LaTRO)
Input: Language model πθ, learning rate η, KL penalty factor β, MC sample size K, maximum

generation length L, sample temperature T , number of epochs M , training dataset DGold.
Output: An optimized language model πθ.

def generate(π,xxx,K,L, T):
Given an autoregressive language model π, input x, sample K sequences of length L from
the distribution π(·|xxx) at temperature T .
return K sampled sequences

Intialize reference language model π0 as πθ

for epoch in range(M):
for xxxi, yyyi in DGold:

zzz
(i)
1 , . . . , zzz

(i)
K ← generate(πθ,xxxi,K, L, T)

Estimate ∇θĴ(θ) with Proposition 2
θ ← θ + η∇θĴ(θ)

return πθ

where β ≥ 0 is the coefficient to control the KL penalty. The proof can be found in Appendix A.1.

The first gradient term in Equation (4) serves as policy gradient to improve the ability of the LLM πθ

to generate high-quality reasoning rationales, and log πθ(yyy|xxx⊕ zzz) can be viewed as the evaluator for
reasoning rationale, which is further used to calculate the advantages. The second gradient term in
Equation (4), which is the gradient of supervised finetuning loss, essentially helps the LLM πθ to
leverage the reasoning rationales to produce correct answers.

4.3 PRACTICAL CONSIDERATIONS

To reduce computation overhead and better control the sampling of reasoning rationales during
training, we limit their maximum token length to L. The rationale ends either at the EOS token or at
the start of a predefined answer template (e.g., "The answer is"). We then use the truncated rationale
zzz, along with the query xxx and the answer zzz, for further computation.

We also encourage the LLM to finish its reasoning process with L tokens. Inspired by the implementa-
tion of the RLOO trainer in the TRL library (von Werra et al., 2020) , we introduce a constant penalty
for rationales truncated by the maximum token length L. This penalty encourages the generation of
rationales that fit within the specified token limit.

5 EXPERIMENTS

5.1 SETUP

We evaluate the performance of the proposed method across two datasets: a mathematical reasoning
dataset (GSM8K, Cobbe et al. (2021b)) and a logical reasoning dataset (ARC-Challenge, Talmor
et al. (2019)). The sizes of the datasets are listed in Table 1.

Table 1: Size of the datasets

Name Training Evaluation
GSM8K 7473 1319

ARC-Challenge 1119 1172

Training. For each dataset, we fine-tune three
base models: Phi-3.5-mini-instruct (Abdin et al.,
2024), Mistral-7B-Instruct-v0.3 (Jiang et al., 2023),
and Meta-Llama-3.1-8B-Instruct (Dubey et al.,
2024), abbreviated as Phi-3.5, Mistral-7B, and
Llama-3.1-8B, respectively. We provide two base-
line comparisons: the base model and the super-
vised fine-tuned (SFT) model. For GSM8K, LaTRO fine-tuning excludes golden rationales from
the solutions in the training set, while the SFT model is trained using golden rationales. For ARC-
Challenge, as suggested in (Zheng et al., 2024), the model is trained to generate answers to the text of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

multiple-choice questions rather than selecting labels. Since no golden rationales are available for
ARC-Challenge, the SFT model is trained to directly generate answers.

Evaluation. For GSM8K, we evaluate all models with CoT prompting, and for ARC-Challenge,
we evaluate the SFT baseline with direct answer generation, while the base model and the LaTRO
fine-tuned model with CoT prompting. All evaluations are conducted with zero-shot prompts. We
report both greedy decoding (GD) results and self-consistency (with temperature T = 1) results. We
choose a self-consistency sample size k = 8 (maj@8) in Table 2 after observing that more than 8
samples did not bring further performance improvement (see Figure 3 (b) for details).

Implementation. LaTRO is implemented on the high level as in Algorithm 1, with additional engi-
neering techniques as discussed in section 4.3. LaTRO is implemented using the widely recognized
transformers (Wolf et al., 2020) and TRL (von Werra et al., 2020) libraries, with PyTorch (Ansel
et al., 2024) as backend. DeepSpeed ZeRO (Rasley et al., 2020) is used in stage 3, along with Flash
Attention 2 (Dao et al., 2022) to enhance training efficiency. The models were trained on a machine
equipped with 8xH100 80GB GPUs, using bfloat16 precision.

Hyperparameters. AdamW optimizer with a learning rate of 5× 10−7, no warm-up steps, and a
linear decay strategy is used. The Monte Carlo (MC) sample size K = 16 and the batch size of the
data loader 3 are predetermined, resulting in an effective batch size of 48. Gradient accumulation
steps and training batch size are subsequently adjusted to prevent out-of-memory errors during
training. A temperature of T = 1 is used for MC sampling, and a penalty factor γ = 2 is applied for
incomplete rationales. The KL penalty is set at β = 0.05 for GSM8K and 0.25 for ARC-Challenge.
Except for the results presented in Section 5.3, the maximum generation length is maintained at
L = 500. We train all models up to six epochs for GSM8K, and 12 epochs for ARC-Challenge. The
checkpoint with best test accuracy is chosen.

For the SFT baseline experiments, we use a batch size of 32 and adjust the learning rate to ensure
that the evaluation loss decreases and finally converges. All SFT baselines are trained for a maximum
of 12 epochs. The checkpoint with the best test accuracy is selected.

In addition to the main quantitative results, we conduct ablation studies on two factors: 1. The
maximum generation length L, where we study the effects of tuning L in both training and inference
times; 2. The self-consistency samples k, where we explore to what extent LaTRO can still benefit
from inference-time scaling.

The main quantitative results, qualitative analysis of sample responses, and results of the ablation
study are presented in Sections 5.2 to 5.4, respectively. Additional details on our prompt templates
and more samples can be found in Appendices B and C.

5.2 RESULTS

In this subsection, we present evaluation results that demonstrate how effectively LaTRO enhances
the reasoning abilities of LLMs on downstream datasets. The detailed results are provided inTable 2.

For the GSM8K dataset, LaTRO fine-tuned models outperform all base models by up to 19.5%
(Mistral-7B, 47.8%→ 67.3%) and show an average improvement of 12.5% across the three models
examined with greedy decoding. The greatest improvement margin is observed for Mistral-7B,
while the smallest is seen for Llama-3.1-8B, consistent with our initial findings in Figure 2, where
Mistral-7B exhibited the lowest log probability for directly answering questions and Llama-3.1-
8B exhibited the highest. With self-consistency, the improvements are by up to 16.5% (Phi-3.5,
74.0%→ 90.5%) and the average improvement is 13.1%. Furthermore, LaTRO models demonstrate
superior performance relative to SFT baselines, with an average improvement of 9.6% for greedy
decoding and 13.2% for self-consistency. It is worth noting that for the SFT baseline of Llama-3.1-8B,
overfitting on the test set is still observed after tuning the learning rate.

For ARC-Challenge, LaTRO fine-tuned models still outperform the baselines, though with a smaller
margin. When using greedy decoding, the improvements over the base models are up to 1.6% with
an average increase of 1%. We see more increment with self-consistency, where the improvement
margins are on average 2.4%. Comparing to SFT baslines, we find that all three models are very
sensitive when fine-tuning to directly generate the answer of ARC-Challenge questions. They perform

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Zero-shot accuracy (%) comparison between LaTRO and the baselines on GSM8K and
ARC-Challenge datasets. The models are fine-tuned on corresponding training datasets. The base
model are marked with “N/A” in the training method. GD stands for greedy decoding at inference
time and maj@8 stands for self-consistency with 8 samples. The models are evaluated by default
using CoT, except that † indicates the direct answer generation is applied during evaluation.

Base Model Training Method Inference Method GSM8K ARC-Challenge

Phi-3.5

N/A
GD 72.9 85.1
maj@8 74.0 86.0

SFT
GD 75.8 81.0†

maj@8 77.1 80.5†

LaTRO
GD 87.6 86.4
maj@8 90.5 87.5

Mistral-7B

N/A
GD 47.8 74.1
maj@8 58.2 74.1

SFT
GD 57.2 70.0†

maj@8 59.9 70.6†

LaTRO
GD 67.3 74.3
maj@8 73.8 78.9

Llama-3.1-8B

N/A GD 76.8 81.4
maj@8 79.7 84.4

SFT
GD 73.2 77.0†

maj@8 74.7 76.4†

LaTRO
GD 80.1 83.0
maj@8 87.0 85.3

even inferior to the unoptimized base models. When using greedy decoding, the improvements of
LaTRO fine-tuned models over the SFT baselines are on an average of 5.2%, and by up to 6%
(Llama-3.1-8B). In the case of self-consistency, LaTRO performs better than the base models by
an average of 2.4%, and surpasses the SFT models by an average of 8.1%. On the less surprising
results compared to GSM8K, we conjecture that for ARC-Challenge, the models are already good at
producing the answer either directly or through CoT prompting. Hence, further optimization of the
reasoning process did not yield significant improvement.

5.3 ABLATION STUDY

In this subsection, we present our ablation study on the effect of different parameters in LaTRO. For
consistency, we fix the base model to Phi-3.5 and the dataset to GSM8K throughout the ablation
experiments.

How many tokens are enough? Liu et al. (2024) demonstrated that when the input length is n, a
transformer model with a hidden size of O(log n) can solve problems equivalent to Boolean circuits
of size m, using m CoT steps. However, the empirical determination of sufficient CoT tokens for
optimal performance remains underexplored. In this section, we report zero-shot accuracy with
generation length L ranging from 200 to 1000 tokens at inference time. Additionally, a Phi-3.5
model is fine-tuned with L = 200 for comparison. We distinguish two LaTRO fine-tuned models,
referred to as LaTRO and LaTRO200. As shown in Figure 3(a) accuracy gains plateau when L ≥ 500,
suggesting 500 tokens might suffice for grade school math problems. In contrast, limiting L to
200 reduces accuracy, unless the model is trained accordingly. Interestingly, LaTRO significantly
improves performance under this constraint by training the model to generate more concise rationales.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

200 300 400 500 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LaTRO200

LaTRO

SFT

Base Model

2 4 8 16 32

0.70

0.75

0.80

0.85

0.90

LaTRO

SFT

Base Model

(a) Zero-shot accuracy with different L. (b) Zero-shot maj@k accuracy with different k.

Figure 3: Ablation study results on GSM8K with base model Phi-3.5. In (a), the x-axis represents
various maximum token length L of reasoning rationales, y-axis is the accuracy, and the plot shows
the zero-shot performance v.s. various maximum token lengths for different methods. In (b), the
x-axis represents the # of sampled reasoning rationales, the y-axis is the accuracy, and the plot shows
the zero-shot performance v.s. the # of reasoning rationales used in the majority vote.

This finding implies LaTRO can also train LLMs to condense rationales for limited inference-time
compute. A sample from LaTRO200 is provided in Appendix C for qualitative analysis.

Is inference-time scaling still beneficial? While LaTRO shifts much of the reasoning computation
to training time, it can still benefit from the inference-time scaling. To explore this, We evaluate
the models again using self-consistency with the number of samples k ranging from 1 to 32. As
shown in Figure 3 (b), with k = 8 rationales and majority voting, LaTRO achieves 90% accuracy on
GSM8K. This indicates that LaTRO equipped with self-consistency can further enhance performance,
even with LaTRO’s focus on training-time optimization.

Question: Frankie and Binkie went bowling together. Frankie’s score was 15 better more than
twice as high as Binkie’s. If Binkie bowled a score of 90, what was Frankie’s score? Let’s
think step by step.
Response (Base model): Let’s break this problem down into steps:
1. We know that the difference between Frankie’s score (F) and Binkie’s score (B) is 15. So
we can express Frankie’s score as F = B + 15
2. We also know that Frankie’s score is twice as high as Binkie’s score. So we can write
another equation: F = 2B
3. Now, we have two equations with two unknowns. Let’s solve for Frankie’s score (F) by
setting the two equations equal to each other: - 2B = B + 15 - Multiply both sides by 1 to get
rid of the fraction: 2B - B = 15 - Simplify: B = 15 (since subtracting B from 2B results in 15)
4. Now that we know Binkie’s score, we can find Frankie’s score using either of the equations
we created earlier. Let’s use the first one (F = B + 15): - F = 15 + 15 - Frankie’s score is 30
more than Binkie’s score, which is 15 in this case. So Frankie’s score is 15 + 15 = 30 + 15 =
45
The final answer is that Frankie’s score was 45.
Reponse (SFT): Twice as many as Binkie’s 90 score is equal to 2*90= «2*90=180»180.
Therefore, 180-(180-15)=165 was the number Frankie bowled. The answer is 165
Response (LaTRO): Here’s how to solve the problem: 1. We know that Binkie’s score is 90.
2. The problem states that Frankie’s score was 15 better more than twice as high as Binkie’s
score. This means that Frankie’s score is 15 + (2 * 90) = 15 + 180 = 195.

Figure 4: Sample responses of a GSM8K question from Mistral-7B models, the errors are highlighted
in red.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

5.4 CASE STUDY

We take a closer look at the responses generated by the LaTRO fine-tuned models. We select a
question from GSM8K and compare the responses from the base, the SFT model, and the LaTRO
finetuned model. We choose the set of responses from the Mistral-7B models that we evaluated. As
can be seen in Figure 4, the base model not only generates a lengthy response, it also makes a logical
mistake at the first step, where the correct equation to establish here is “F = 2B + 15”. The SFT model
simplifies the answer and makes the first step correct. However, in the second step it first makes a
wrong equation, then makes an arithmetic error when evaluating this equation. Further, LaTRO can
give a concise and correct answer. We include more sample responses in Appendix C.

6 CONCLUSION

In conclusion, this work introduces LaTRO, a principled framework for optimizing language models’
reasoning capabilities without external feedback or reward models. By formulating reasoning as
sampling from a latent distribution and leveraging self-rewarding, LaTRO enables models to concur-
rently improve both their reasoning process and ability to evaluate reasoning quality. Our extensive
experiments across multiple model architectures and tasks demonstrate significant performance gains,
with LaTRO outperforming baseline models and supervised fine-tuning approaches. These findings
suggest that pre-trained LLMs possess latent reasoning capabilities that can be unlocked through our
proposed optimization approach, representing a significant step towards creating more intelligent
systems that can self-evolve their problem-solving capabilities.

While LaTRO shows promising results, there are some limitations to consider. The computational
cost of sampling multiple rationales during training could be prohibitive for very large models. Future
work could explore ways to reduce this computational overhead, such as using more efficient sampling
techniques or adaptive rationale generation. Other promising directions include investigating the
applicability of LaTRO to a wider range of reasoning tasks beyond math and science problems, and
exploring how to conduct multi-step reasoning learning to to enhance reasoning capabilities further.
Despite these limitations, our contributions advance both the state-of-the-art in LLM reasoning
capabilities and provide valuable insights into the nature of LLM alignment and its potential for
self-improvement.

REFERENCES

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider,
Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos
Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee,
Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid
Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli
Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma,
Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael
Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong
Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone.
CoRR, abs/2404.14219, 2024. doi: 10.48550/ARXIV.2404.14219. URL https://doi.org/
10.48550/arXiv.2404.14219.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and
Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

10

https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.48550/arXiv.2404.14219

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan,
Christian Puhrsch, Matthias Reso, Mark-Albert Saroufim, Marcos Yukio Siraichi, Helen Suk,
Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou,
Xiaodong Wang, Ajit Mathews, William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala.
Pytorch 2: Faster machine learning through dynamic python bytecode transformation and graph
compilation. Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, 2024. URL https://api.
semanticscholar.org/CorpusID:268794728.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of thoughts: Solving elaborate problems with large language models. In Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on
Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2014, February 20-27, 2024, Vancouver, Canada, pp. 17682–17690. AAAI Press, 2024.
doi: 10.1609/AAAI.V38I16.29720. URL https://doi.org/10.1609/aaai.v38i16.
29720.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Trans. Mach. Learn.
Res., 2023, 2023. URL https://openreview.net/forum?id=YfZ4ZPt8zd.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021a. URL
https://arxiv.org/abs/2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021b.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet

11

https://api.semanticscholar.org/CorpusID:268794728
https://api.semanticscholar.org/CorpusID:268794728
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://openreview.net/forum?id=YfZ4ZPt8zd
https://arxiv.org/abs/2110.14168
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng
Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya
Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd
of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https:
//doi.org/10.48550/arXiv.2407.21783.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR (Poster), 3, 2017.

Matthew Douglas Hoffman, Du Phan, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi,
Pavel Sountsov, Charles Sutton, Sharad Vikram, and Rif A Saurous. Training chain-of-thought via
latent-variable inference. Advances in Neural Information Processing Systems, 36, 2024.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023. doi: 10.
48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arXiv.2310.06825.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline
for free! In Deep Reinforcement Learning Meets Structured Prediction, ICLR 2019 Workshop,
New Orleans, Louisiana, United States, May 6, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=r1lgTGL5DE.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

12

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2310.06825
https://openreview.net/forum?id=r1lgTGL5DE
https://openreview.net/forum?id=r1lgTGL5DE

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Zhiyuan Liu, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=3EWTEy9MTM.

Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Steven Wu, Bo Li, and Ding Zhao. Constrained
variational policy optimization for safe reinforcement learning. In International Conference on
Machine Learning, pp. 13644–13668. PMLR, 2022.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 46534–46594. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf.

OpenAI. Learning to reason with LLMs. https://openai.com/index/
learning-to-reason-with-llms/, 2024. [Online].

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System op-
timizations enable training deep learning models with over 100 billion parameters. In Ra-
jesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (eds.), KDD ’20: The 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA,
August 23-27, 2020, pp. 3505–3506. ACM, 2020. doi: 10.1145/3394486.3406703. URL
https://doi.org/10.1145/3394486.3406703.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-
of-thought helps mainly on math and symbolic reasoning. CoRR, abs/2409.12183, 2024. URL
http://arxiv.org/abs/2409.12183.

13

https://openreview.net/forum?id=3EWTEy9MTM
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.1145/3394486.3406703
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://arxiv.org/abs/2409.12183

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4149–
4158. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1421. URL
https://doi.org/10.18653/v1/n19-1421.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning
with reinforced fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7601–7614, 2024.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning. https://github.
com/huggingface/trl, 2020.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analy-
sis of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023a. URL https://openreview.net/forum?id=WE_vluYUL-X.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

14

https://doi.org/10.18653/v1/n19-1421
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=WE_vluYUL-X

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy,
Zeyuan Chen, Jianguo Zhang, Devansh Arpit, et al. Retroformer: Retrospective large language
agents with policy gradient optimization. arXiv preprint arXiv:2308.02151, 2023b.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei Li,
Renze Lou, Jiacheng Xu, et al. Diversity empowers intelligence: Integrating expertise of software
engineering agents. arXiv preprint arXiv:2408.07060, 2024.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models
are not robust multiple choice selectors. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=shr9PXz7T0.

15

https://openreview.net/forum?id=shr9PXz7T0

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A ADDITIONAL DETAILS ON OUR THEORETICAL FRAMEWORK

A.1 PROOF OF PROPOSITION 2

Proof. We restate the objective as follows:

J(θ) := E(xxx,yyy)∼DGold

[
Ezzz∼πθ(·|xxx)

[
log πθ(yyy| xxx⊕ zzz)

]
− βDKL[πθ(zzz|xxx)||π0(zzz|xxx)]

]
,

= E(xxx,yyy)∼DGold

[
Eπθ(zzz|xxx)[log πθ(yyy|xxx⊕ zzz)− log πθ(zzz|xxx) + log π0(zzz|xxx)]

]
,

where β > 0 is a positive coefficient to control the regularization strength. We take the gradient w.r.t
θ at each sample pair (xxx,yyy), and we get

∇θJ(θ;xxx,yyy) := ∇θ

∫
(πθ(zzz|xxx))(log πθ(yyy|xxx⊕ zzz)− β log πθ(zzz|xxx) + β log π0(zzz|xxx))dzzz

= Eπθ(zzz|xxx)

[
∇θ log πθ(zzz|xxx)

(
log πθ(yyy|xxx⊕ zzz)− β log

πθ(zzz|xxx)
π0(zzz|xxx)

)]
+ Eπθ(zzz|xxx) [∇θ log πθ(yyy|xxx⊕ zzz)− β∇θ log πθ(zzz|xxx)] .

We further define r(zzz) := log πθ(yyy|xxx ⊕ zzz) − β log πθ(xxx|zzz)
π0(xxx|zzz) , and use the fact that

Eπθ(zzz|xxx)[∇θ log πθ(zzz|xxx)] =
∫
πθ(zzz|xxx)∇θπθ(zzz|xxx)

πθ(zzz|xxx) dzzz = ∇θ

∫
πθ(zzz|xxx)dzzz = 0. we obtain the final

gradient as

∇θJ(θ;xxx,yyy) = Eπ(zzz|xxx) [∇θ log πθ(zzz|xxx) · r(zzz) +∇θ log πθ(yyy|zzz,xxx)] .

And when we use RLOO estimator with empirical samples, we can replace above gradient estimation
with empirical samples, which gives us the following result:

∇θĴ(θ) :=
1

NK

N∑
i=1

K∑
k=1

(
∇θ log πθ(xxxi | zzz(i)k) ·A(i)

k +∇θ log πθ(yyyi | zzz(i)k ⊕ xxxi)

)
,

with A
(i)
k = r(zzz

(i)
k)− 1

K − 1

K∑
j ̸=k

r(zzz
(i)
j) , r(zzz

(i)
k) := log πθ(yyyi | xxxi ⊕ zzz

(i)
k)− β log

πθ(xxxi | zzz(i)k)

π0(xxxi | zzz(i)k)
,

which completes the proof.

B PROMPT TEMPLATES

In this section, we list all prompt templates used in our experiments. For the GSM8K dataset, we
used a minimum prompt template. For the ARC-Challenge dataset, we use a CoT template for the
base model and LaTRO fine-tuning, and another template direct answer generation in SFT.

{question} Let’s think step by step.

Figure 5: CoT template for GSM8K

Question: {question}
Options: {choices["text"]}
Let’s think step by step first then print your answer like ’The answer is (one of the options)’.""",

Figure 6: CoT template for ARC-Challenge

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

The output MUST strictly follow the structure and format described below:
1. The answer should be strictly one of the options given in the question
2. Do not include any text after you choose an option.
Example:
Question: (question here)
Options: [option1, option2, option3]
The answer is: (one of the options).
Question: {question}
Options: {choices["text"]}

Figure 7: Direct answer generation template for ARC-Challenge

C SAMPLE RESPONSES

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5,
but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much
does he need to pay for them? Let’s think step by step.
Response (Base model):
Step 1: Determine the cost of one regular glass and one discounted glass. One regular glass
costs $5. Every second glass costs 60% of the price of a regular glass, so: 60% of 5 = 0.60∗5
= $3
Step 2: Calculate the total number of regular and discounted glasses. Kylar wants to buy 16
glasses in total. Since every second glass is discounted, we can divide the total number of
glasses by 2 to find the number of discounted glasses: 16 glasses / 2 = 8 discounted glasses
Now, subtract the number of discounted glasses from the total number of glasses to find the
number of regular glasses: 16 glasses - 8 discounted glasses = 8 regular glasses Step (did not
finish)
Response (LaTRO200): Let’s break it down:
1. Kylar needs to buy 16 glasses.
2. Every second glass costs 60% of the original price ($5), which is $3.
3. So, for every pair of glasses (one full price and one discounted), Kylar pays $5 + $3 = $8.
4. Since he needs 16 glasses, he buys 8 pairs. 5. Therefore, Kylar needs to pay 8 pairs * $8
per pair = $64. So, Kylar needs to pay $64 for the 16 glasses. The answer is 64.

Figure 8: Sample responses of a GSM8K question, from Phi-3.5 models, maximum generation length
L = 200. The base model does not finish the generation, while the LaTRO model generates a short
and correct answer.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Question: Water, ice, and steam all have different temperatures. What is the order from
coldest to hottest?
Options: [’ice, water, steam’, ’ice, steam, water’,’steam, ice, water’,’steam, water, ice’]
Response (Base model): To determine the order from coldest to hottest, let’s evaluate each
option.
- Ice: It is the solid form of water and is typically around 0°C (32°F).
- Water: It is the liquid form of water and is usually around 100°C (212°F) or 0°C (32°F) at
standard pressure and temperature conditions, respectively.
- Steam: It is the gaseous form of water and is typically at a temperature equal to or greater
than 100°C (212°F) at standard pressure conditions, depending on the pressure and other
factors.
Option 1: ’ice, water, steam’ - This order seems incorrect since steam is typically hotter than
water at standard conditions.
Option 2: ’ice, steam, water’ - This order is incorrect because ice is the coldest, but the relative
order of water and steam is opposite of what we know.
Option 3:’steam, ice, water’ - This order is incorrect since ice is colder than steam.
Option 4:’steam, water, ice’ - This order seems the most plausible, considering that steam is
hotter than water and water is hotter than ice.
The answer is ’steam, water, ice’.
Response (SFT): water, ice, steam
Response (LaTRO): To determine the order from coldest to hottest, let’s analyze each option:
1. Ice has a solid form and a fixed temperature, which is typically around 0°C (32°F) at
standard pressure.
2. Water is liquid and exists at a temperature of 0°C (32°F) at standard pressure, melting point
of ice.
3. Steam is the gaseous state of water and is typically around 100°C (212°F) at standard
pressure.
Based on this information, we can now order them from coldest to hottest:
First, we have ice, as it is the coldest. Then, we have water at 0°C, which is the middle
temperature. Lastly, we have steam, which is the hottest.
So, the order from coldest to hottest is ’ice, water, steam’.
The answer is [’ice, water, steam’].

Figure 9: Sample responses of an ARC-Challenge question, from Llama-3.1 models, the errors are
highlighted in red. The base model shows knowledge about basic physics but makes a logical error
on the order.

18

	Introduction
	Related work
	Background and Motivation
	Optimizing the reasoning process
	Latent Reasoning Optimization: A Variational Approach
	Gradient estimation for LaTRO
	Practical Considerations

	Experiments
	Setup
	Results
	Ablation Study
	Case Study

	Conclusion
	Additional Details on Our Theoretical Framework
	Proof of prop:ge

	Prompt Templates
	Sample Responses

