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Supplementary Materials: Notation, Reproducibility, Target
Problems, and Experiments
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For a better understanding of this paper, in this section, we provide
more details of notations, reproducibility, target problems, and
experimental results.

1 IMPORTANT NOTATIONS
For the sake of better readability, we list the main notations of this
paper in Table 1.

Table 1: Important notations

Symbol Definition

𝐷𝑥 Domain 𝑥 , 𝑥 ∈ {0, 1, .., 𝑎 − 1},
𝑎 is the number of domains

𝑅 ∈ R𝑚×𝑛 the rating matrix
𝑟𝑖 𝑗 ∈ 𝑅 the rating of user 𝑢𝑖 on item 𝑣 𝑗

𝑘 the dimension of user/item embeddings
𝑚 the number of users
𝑛 the number of items

U = {𝑢1, ..., 𝑢𝑚} the set of users
𝑈 ∈ R𝑚×𝑘 the embedding matrix of users

V = {𝑣1, ..., 𝑣𝑛} the set of items
𝑉 ∈ R𝑛×𝑘 the embedding matrix of items

𝐺 = ({U,V}, 𝐸) the heterogeneous graph, 𝐸 is the set of
user-item interaction relationships (from 𝑅)

𝑈̃ /𝑉̃ the combined embeddings of common users/items
𝑦𝑖 𝑗 ∈ 𝑌 the interaction of user 𝑢𝑖 on item 𝑣 𝑗

𝑌 ∈ R𝑚×𝑛 the user-item interaction matrix

∗𝑥 , 𝑥 ∈ {0, 1, 2, ..., 𝑎 − 1}
the notations for domain 𝑥 , where 𝑎

is the total number of domains, e.g.,𝑚0

represents the number of users in domain 0

∗̂ the predicted notations, e.g., 𝑦𝑖 𝑗 represents the
predicted interaction of 𝑢𝑖 on item 𝑣 𝑗

2 REPRODUCIBILITY DETAILS
Apart from the observed user-item interaction samples as posi-
tive samples, denoted as 𝑌+, we tend to randomly select a certain
number of unobserved user-item interactions as negative samples,
denoted by 𝑌 −

𝑠 , to replace the whole negative sample set 𝑌 − , i.e., all
unobserved interactions. This is because we cannot observe users’
attitudes toward their unrated items. It could be that the users have
not been aware of these unrated items because of ranking position
or display style. This training strategy has been widely used in
the existing approaches [2, 9, 11]. Based on rating information, the
label of user-item interaction 𝑦𝑖 𝑗 between a user 𝑢𝑖 and an item 𝑣𝑖
can be represented as:

𝑦𝑖 𝑗 =


𝑟𝑖 𝑗 , if 𝑦𝑖 𝑗 ∈ 𝑌 +;
0, if 𝑦𝑖 𝑗 ∈ 𝑌 −

𝑠 ;
𝑛𝑢𝑙𝑙, otherwise.

(1)

Most of the existing CDR approaches [2, 7, 11], and our AMA-
CDR choose a normalised cross-entropy loss as follows.

ℓ (𝑦, 𝑦̂) = − 𝑦

𝑚𝑎𝑥 (𝑅) log 𝑦̂ − (1 − 𝑦

𝑚𝑎𝑥 (𝑅) ) log(1 − 𝑦̂), (2)

where𝑚𝑎𝑥 (𝑅) is the maximum rating in a domain.

3 SUPPLEMENTARY DETAILS OF THE
TARGET PROBLEMS

3.1 Many-to-Many CDR
We define our main task, i.e., many-to-many cross-domain rec-
ommendation, as follows. Many-to-many cross-domain rec-
ommendation: Given the multiple (many) domains 0 to 𝑎 − 1,
including user sets {U0, ...,U𝑎−1} and item sets {V0, ...,V𝑎−1},
many-to-many CDR is to improve the recommendation accuracy
in all domains simultaneously by leveraging their observed infor-
mation.

3.2 Transfer Paradigms in CDR
In the area of cross-domain recommendation, as introduced in [10],
the existing CDR approaches can be generally classified into three
groups, i.e., single-target, dual-target, and multi-target. However,
as more and more CDR methods emerge, according to their transfer
paradigms, the existing CDR approaches can be further divided
into four groups, i.e., single-target: one-to-one paradigm and many-
to-one paradigm, and dual/multi-target: one-to-many paradigm
and many-to-many paradigm, which serve different cross-domain
scenarios. For example, the many-to-many paradigm represents
that the CDR approach leverages the knowledge learned frommany
(multiple) domains to improve the recommendation accuracy in all
domains simultaneously. Compared with the first three paradigms,
the many-to-many paradigm is more challenging and meaningful.
This is because the many-to-many paradigm can almost serve all
CDR scenarios.

3.3 Objective Distortion
Many existing CDR approaches ignore the importance of their
training paradigms, i.e., two-step training and end-to-end training.
Some embedding-based transfer CDR approaches, e.g., EMCDR [3],
DCDCSR [8], GA-MTCDR [11] and PCRec [5], tend to first train the
embeddings of users/items (step 1) by some embedding generation
models, e.g., matrix factorization [3, 8] or graph embedding [5, 9, 11],
and then transfer/share the embeddings across domains (step 2).
This is a typical solution of two-step training, which may lead to
objective distortion between the two steps. The two-step training
paradigms of these CDR approaches can be generally classified
into two strategies (see the two strategies in Eq. (3)) and there are
respectively represented as follows.
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Step 1:



min
𝑈 1,𝑥 ,𝑉 1,𝑥 ,Θ1,𝑥

∑︁
𝑦∈𝑌𝑥+∪𝑌𝑥−

𝑠

ℓ (𝑦̂, 𝑦), 𝑦̂ = 𝜎 (𝑓 (𝑈 1,𝑥
𝑖

,𝑉
1,𝑥
𝑗

,Θ1,𝑥 ) ),

︸                                                                               ︷︷                                                                               ︸
Strategy 1

min
𝑈 1,𝑥 ,𝑉 1,𝑥 ,Θ1,𝑥

𝑜𝑏 𝑗 (𝑈 1,𝑥 ,𝑉 1,𝑥 ,Θ1,𝑥 ),︸                                         ︷︷                                         ︸
Strategy 2

(3)
where ℓ (∗) is the loss function, 𝑦 is the interaction prediction be-
tween the user 𝑢𝑖 and the item 𝑣 𝑗 , 𝜎 (∗) is the activation function,
𝑓 (∗) is the prediction function, e.g., matrix factorization(MF) and
multilayer perception (MLP), 𝑈 1,𝑥

𝑖
is the pre-trained user embed-

ding of 𝑢𝑖 in the domain 𝐷𝑥 in step 1, 𝑉 1,𝑥
𝑗

is the pre-trained item
embedding of 𝑣𝑖 in the domain 𝐷𝑥 in step 1, Θ𝑥

1 are the param-
eters for the prediction function 𝑓 (∗) in step 1, and 𝑜𝑏 𝑗 (∗) is an
independent objective function, e.g., the neighbourhood preserving
objective of graph embedding models (such as DeepWalk [4] and
Node2vec [1]).

Step 2:


min

𝑈 2,𝑥 ,𝑉 2,𝑥 ,Θ2,𝑥

∑︁
𝑦∈𝑌𝑥+∪𝑌𝑥−

𝑠

ℓ (𝑦̂, 𝑦), 𝑦̂ = 𝜎 (𝑓 (𝑈 2,𝑥 ,𝑉 2,𝑥 ,Θ2,𝑥 ) ),

𝑈 2,𝑥 = 𝑡 (𝑈 1,0, ...,𝑈 1,𝑎−1 ), 𝑉 2,𝑥 = 𝑡 (𝑉 1,0, ...,𝑉 1,𝑎−1 ),
(4)

where𝑈 2,𝑥 is the optimized user embedding set generated by the
transfer function 𝑡 (∗), e.g., non-linear mapping [3, 8] and embed-
ding combination [9], in step 2. Similarly,𝑉 2,𝑥 is the optimized item
embedding set generated by transfer strategies. Also, Θ2,𝑥 are the
parameters in step 2.

End-to-end:


min

𝑈 𝑥 ,𝑉 𝑥 ,Θ𝑥

∑︁
𝑦∈𝑌𝑥+∪𝑌𝑥−

𝑠

ℓ (𝑦̂, 𝑦), 𝑦̂ = 𝜎 (𝑓 (𝑈 𝑥 ,𝑉 𝑥 ,Θ𝑥 ) ),

𝑈 𝑥 = 𝑡 (𝑈 0, ...,𝑈 𝑎−1 ), 𝑉 𝑥 = 𝑡 (𝑉 0, ...,𝑉𝑎−1 ) .
(5)

Analysis The two steps do not share any parameters, i.e., Θ1,𝑥 and
Θ2,𝑥 are definitely different, and thus the training process of step 1
can not serve for step 2. Moreover, as for Strategy 2 in Step 1, there
are the independent objectives of embedding generation models,
which are totally different from the objectives of Step 2, i.e., rec-
ommendation models. These factors lead to a significant objective
distortion between the two steps. In contrast to the two-step train-
ing, the most outstanding advantage of end-to-end training is to
optimize only one objective, i.e., the direct objective for recommen-
dations.

3.4 Negative Transfer
The traditional definition of negative transfer is that transferring
knowledge from the source domain can have a negative impact
on the target learner [6], which focuses on the two domains, i.e.,
a source domain and a target domain. However, there are multi-
ple source and target domains in many-to-many CDR scenarios.
Therefore, we define the notion of negative transfer (caused by
undifferentiated knowledge transfer) in the many-to-many CDR
scenarios as follows.
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Figure 1: The impact of embedding dimension.
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Figure 2: The impact of top-𝑁 .

∑︁
𝑦∈𝑌𝑥+∪𝑌𝑥−

𝑠

ℓ (𝑦̂𝑛𝑒𝑤 , 𝑦) >
∑︁

𝑦∈𝑌𝑥+∪𝑌𝑥−
𝑠

ℓ (𝑦̂𝑝𝑟𝑒 , 𝑦),

𝑦̂𝑛𝑒𝑤 = 𝜎 (𝑓 (𝑡 (𝑈 0, ...,𝑈 𝑎−2,𝑈 𝑎−1 ), 𝑡 (𝑉 0, ...,𝑉𝑎−2,𝑉𝑎−1 ),Θ𝑥 ) ),
𝑦̂𝑝𝑟𝑒 = 𝜎 (𝑓 (𝑡 (𝑈 0, ...,𝑈 𝑎−2 ), 𝑡 (𝑉 0, ...,𝑉𝑎−2 ),Θ𝑥 ) ),

(6)

where ℓ (∗) is the loss function, 𝑦 is the interaction prediction, 𝜎 (∗)
is the activation function, 𝑓 (∗) is the prediction function, e.g., ma-
trix factorization(MF) and multilayer perception (MLP), and 𝑡 (∗)
is the transfer function, e.g., non-linear mapping [3, 8] and embed-
ding combination [9]. This definition represents that after adding a
new source domain, i.e., 𝐷𝑎−1 with the embeddings of users/items
𝑈 𝑎−1/𝑉𝑎−1, the training loss of transfer methods (the new one) in
the domain 𝐷𝑥 is larger than that of the previous one. In fact, in
our experiments, we directly choose recommendation performance
rather than training loss to judge whether the negative transfer
occurs or not.

4 EXPLORATORY EXPERIMENTS
To validate the impacts of the hyper-parameters, i.e., embedding
dimension 𝑘 and top-𝑁 , on the performance of our AMA-CDR
model, we additionally conduct the following two experiments.
Due to space limitations, we only report the experimental results
on the DoubanBook domain.

4.1 Impact of embedding dimension
To study the impact of embedding dimension on our proposed AMA-
CDR, we choose different dimensions, i.e., {4, 8, 16, 32, 64, 128}, for
performance comparison. The experimental results of HR@10 and
NDCG@10 on the DoubanBook domain in Figure 1. As observed
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from Figure 1, when the embedding dimension 𝑘 is 32, our AMA-
CDR achieves the best performance. From 32 to 128, the perfor-
mance decreases with 𝑘 mainly because a large dimension 𝑘 may
make the parameters of our AMA-CDR grow exponentially and
thus lead to the over-fitting problem.

4.2 Impact of top-𝑁 recommendation
To study the impact of top-𝑁 recommendation, we compare the
recommendation performance of our AMA-CDR in terms of HR@𝑁

and NDCG@𝑁 , where𝑁 ranges from 1 to 10. Since the performance
trends of all top-𝑁 experiments on all the seven domains, due to
space limitations, we only report the results on the DoubanBook
domain in Figure 2. As we can see from Figure 2, the recommenda-
tion metrics of our AMA-CDR increase with 𝑁 in the DoubanMusic
domain. However, this does not mean that in real applications, we
need to choose a large 𝑁 for recommendations because users can-
not really check a long recommendation list. We should achieve
a balance between good recommendation performance and good
user experience.
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