
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SELF-EVOLVING MULTI-AGENT COLLABORATION NET-
WORKS FOR SOFTWARE DEVELOPMENT

Anonymous authors
Paper under double-blind review

APPENDIX

1 BENCHMARK DETAILS

Table 1: Basic statistics for website and game do-
mains, including the amount of samples, prompt
length (mean/max), and number of test cases at
both Basic and Advanced levels.

Benchmark Software Test Case
Amount Length Basic Advanced

Website 45 1011/1553 292 247
Game 8 507/788 46 31

Logic 42.9

Operation
35.1

Log

7.8

Executability

7.8

Initialization

6.5

Game Category (%)

Page Display

46.3

User
Manage17.5

Browsing

14.9

Content Manage

8.0
Set Up

8.4Community
4.9

Website Category (%)

Figure 1: Statistics of Game and Website tasks.

Step 1: Software requirement generation. Each task instance begins with the generation of
clear, measurable software requirements. Given the inherent differences across various types of
software, we adopt distinct approaches for their formulation. For game-related software, we focuses
on common real-world games, capturing detailed task requirements such as GUI layout initialization,
interaction methods, and game rules. To align more closely with actual game development practices,
we also include game state logging as part of the software requirements. Due to the complexity
of logic in game software, these requirements are manually crafted by human. In contrast, for
website-related software, we begin with a concise website name, and then leverage the large language
model (gpt-4o-mini) to enrich the requirements according to predefined patterns. This approach
ensures both efficiency and scalability in the creation of benchmarks for websites. By tailoring the
process to the distinct characteristics of each software domain, we maintain precision in requirement
formulation while addressing the unique challenges posed by each context.

Step 2: Requirement-based test cases generation.

As illustrated in Fig 2 and Fig 3, unit tests offer a precise evaluation of software completion. Each
task instance includes black-box unit test cases that correspond directly to the software requirements,
allowing for a quantitative assessment of requirement fulfillment. To further assess the model’s code
generation capabilities, we categorize test cases into two levels of difficulty—basic and advanced,
as outlined in Tab. 1. We also provide an overview of all websites and games in Tab. 2 and
Tab. 3 respectively. As shown in Fig. 1, test cases for website and game software exhibit structural
differences, reflecting the distinct nature of each software type. They enable more targeted evaluation
of code generation capabilities. Thus, similar to software requirements, the test cases are constructed
differently based on the software type. For game-related tests, we manually create test cases,
akin to the HumanEval Chen et al. (2021) benchmark, which tracks state changes in response to
specific inputs. In the game environment, we assess how game states evolve in response to GUI
interactions. For website-related tests, large language model (gpt-4o-mini) generates Selenium-
based test cases aligned with the software requirements, followed by manual corrections to resolve any
ambiguities. This structured approach ensures rigorous evaluation across diverse software domains.

Basic and advanced requirements definition. For the games, basic requirements involve straightfor-
ward user interactions that do not require complex logic, such as character movement or interacting
with simple GUI elements. Advanced requirements incorporate more intricate logic, such as manag-
ing game state transitions based on user actions or handling conditional game events. These cases
focus on ensuring the correct execution of basic actions. In contrast, advanced cases incorporate
more intricate logic, such as managing game state transitions based on user actions or handling

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 2: Overview of Websites in rSDE-Bench.

Websites
CharitableGivingPlatform DailyHealthTips DailyJournalApp
EcoFriendlyLivingTips ElderCareResources EventPlanner
FitnessEquipmentRental FitnessTracker FreelancerMarketplace
GreenLivingGuide HealthConsultationPlatform MotivationalQuotesApp
MusicFestivalDirectory NoteTakingApp NutritionInformationHub
OnlineLibraryManagementSystem OnlineTherapeuticJournaling OnlineThriftStore
PeerTutoringNetwork PersonalBlog PersonalFinanceBlog
RecipeHub RemoteInternshipMarketplace RemoteJobBoard
TravelDiary VirtualBookPublishing VirtualWellnessRetreats
DigitalArtworkGallery DigitalStorytellingPlatform ExpenseTracker
FitnessChallenges GardeningForBeginners GourmetFoodSubscription
MovieRecommendationSystem MusicCollaborator OnlineCulturalExchange
OnlineCulturalFestivals OnlineVintageMarket ParentingAdviceForum
PetCareCommunity PortfolioSite SkillShare
TaskManager VolunteerMatch OnlineShoppingCenter

Table 3: Overview of Games in rSDE-Bench.

Games
Balls Tank Racing Ghostly
Mario Bomberman Sokoban Brick

Task: Develop a simple Sokoban game. You must design a GUI.
Requirements:
1. The game board should be divided into grid squares.
2. Players will control the game using the arrow keys on the keyboard.
3. As the game starts, a log file named 'game.log' should be created to record the game's progress. The content of the
game.log file should be appended with a new entry after each player action.The content of the game.log file should be
cleared (if any) at the start of each game session.
Each log entry should follow this format:
{
"timestamp": timestamp,
"EVENT_TYPE": "MOVE_RIGHT" | "MOVE_LEFT" | "MOVE_UP" | "MOVE_DOWN" | "INVALID_MOVE",
"player_position": [x, y],
"box_positions": [[x1, y1], [x2, y2], ...],
"game_status": "ONGOING" | "COMPLETE"
}
4. The victory conditions for the game is: All boxes are pushed onto their corresponding coordinate point.
5. The initial positions of each element are required as follows:
player_position = [1, 1]
box_positions = [[3, 3], [4, 2]]
goal_positions = [[5, 5], [6, 3]]
([3, 3] is the initial position of the first box whose target position is [5, 5]. [4, 2] is the initial position of
the second box whose target position is [6, 3].)
wall_positions = [[0, 4], [1, 4], [2, 4],[3, 4],[4, 4]]
(the first numnber in each pair is the x-coordinate and the second number is the y-coordinate)

check_Excutablity check_log check_move_right check_move_left check_move_box
check_move_wall check_seqbox check_end check_wrong_end

Software description

Evaluation functions

Figure 2: Test cases of Game in rSDE-Bench.

conditional game events. These cases challenge the model’s ability to generate code that integrates
dynamic decision-making and interaction within the game environment. For websites, basic cases
focus on ensuring that the necessary page elements—such as input fields, buttons, and layouts—are
present correctly. These cases assess the completeness of the webpage’s structure. On the other hand,
advanced cases evaluate more complex functionality, such as handling user authentication, managing
dynamic content, or executing specific operations within a content management system. These cases
require the model to generate code that performs backend logic and manages user interactions at a
deeper level.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Requirement Document for DailyHealthTips Web Application

1. Objective
Develop a web application named 'DailyHealthTips' that provides users with daily health tips, allowing them to receive
advice and information about maintaining a healthy lifestyle, using Python as the development language. Note that the
website should start from the login page.

2. Language
The required development language for the DailyHealthTips web application is Python.

3. Page Design

Page 1: Login Page
- **Page Title**: User Login
- **Overview**: This page allows users to log in to their accounts.
- **Elements**:

- **Username Field**:
- **ID**: `username_field`

- **Password Field**:
- **ID**: `password_field`

- **Login Button**:
- **ID**: `login_button`

…………

test_login_page_elements test_login_page_functionality test_daily_tips_page_elements
test_daily_tips_page_functionality test_tips_archive_page_elements test_tips_archive_page_functionality

Software description

Evaluation functions

Figure 3: Test cases of Website in rSDE-Bench.

Algorithm 1 Self-Evolving Paradigm

Require: X ▷ Task input
Require: A(0)

g ▷ Initialized MAC network: agent prompts and pipeline
Require: At ▷ Designed MAC network to generate target proxy
Require: G ▷ Agent-based gradient function
Require: U ▷ Agent-based update function
Require: E ▷ Environment tool to generate loss

1: Define K as the number of self-evolving iterations, Φ as MACN generation process
2: # Target Proxy
3: T = Φ(X,At)
4: # Self-Evolving Procedure
5: for k = 0, 1, . . . ,K − 1 do
6: # Forward Pass
7: G(k) = Φ(X,A(k)

g)
8: # Loss Computation
9: L(k) = ⟨G(k),T⟩E ▷ Use environment feedback as textual loss

10: # Textual Backpropagation
11: ∇L(k) = G(L(k),A(k)

g) ▷ Summarize textual gradient
12: A(k+1)

g = U(A(k)
g ,∇L(k)) ▷ Update agent prompts and pipeline

13: end for
14: return A(K)

g ,G(K)

2 ALGORITHM

In this section, we present the algorithm of EvoMAC in Alg. 1. For more details, please refer to
Section 3.

3 CASE STUDY

3.1 COMPLETE EVOMAC PROCESS

In this section, we show a complete process of EvoMAC on RSD-Bench. Please refer to Tab. 4.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 4: A complete iteration process of EvoMAC on RSD-Bench

Notation Meaning Example Real example
X Textual description of the

task to be completed.
A coding task such as: "Im-
plement a code that sim-
ulates keyboard input pro-
cessing via Python."

See Tab. 5

Ag MAC network representing
the team responsible for
generating the code.

The coding team consists
of coding agents completing
subtasks in sequence.

See Tab. 6

G = Φ(X,Ag) Generated output produced
by the coding team as a
result of the feed-forward
pass.

The generated
code: ‘...def pro-
cess_input(keyboard_input):
...‘

See Tab. 7

At MAC network representing
the team responsible for
generating the target proxy
(unit tests).

The testing team generates
unit tests for the task.

See Tab. 8

T = Φ(X,At) Target proxy (unit tests)
generated by the testing
team based on the task de-
scription.

Unit tests like: ‘...def
test_press_input(): assert
process_input(’Enter’) ==
’Processed Enter’‘

See Tab. 9

< G,T >E Environmental feedback
comparing the generated
output G with the target
proxy T using an objective
environment (e.g., compiler
or test results).

The environment executes
the generated code against
the unit tests, providing
feedback like: ‘Failure:
test_press_input‘

The execution
outcome of
the unit test
from the
terminal. If
the execution
is successful,
the outcome is
’The software
run success-
fully without
errors.’

min < G,T >E The optimization objective
aiming to minimize the dif-
ference between the gen-
erated output and the tar-
get proxy using the environ-
mental feedback.

Based on feedback, the sys-
tem iteratively refines the
coding team to generate
code that better meets the
task.

See Tab. 10

3.2 UNIT TEST CASE

In this section, we show more unit test cases written by coder on RSD-Bench, please refer to Tab. 11
and Tab. 14.

3.3 UPDATING PROCESS

In this section, we show additional examples of the updating process on RSD-Bench and HumanEval
dataset. Please refer to Tab. 17 and Tab. 20 respectively. For RSD-Bench, due to the code length, we
only show the texture updating process(codes are available at Sec. 3.1). We can see that the updating
agent will adjust the job of each coder dynamically according to the result of test team.

4 SOFTWARE PRESENTATION

In this section, we show some games and websites written by EvoMAC. Fig. 4 and Fig. 5 present the
games and websites respectively. We see that: i) EvoMAC outputs games with well-written GUI and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 5: Textual description of the task to be completed.

Task: Design a Single-Player Tank Battle Game
Requirements:
1. The interface should be divided into a 20x20 grid, though grid lines are not necessary. Each tank
occupies one grid space, while obstacles may occupy multiple grid spaces. The background should be
black, obstacles should be brown, enemy tanks should be silver, and the player’s tank should be yellow.
2. The player can control the tank’s movement using the arrow keys on the keyboard, allowing for
movement one grid space at a time. The ’enter’ key is used to fire bullets.
3. In the game, there are two enemies fixed at a certain position on the game interface, constantly firing
bullets in four directions: up, down, left, and right. Two enemies and players cannot be initialized in the
same row.
4. Both the player and the enemies have their own health points, which are initialized to 200. When hit
by a bullet, the player’s health decreases by 10 and the enemy’s health decreases by 100. When health
points drop to zero, the corresponding tank is destroyed. But the log still records information about the
destroyed tank, with health points of 0.
5. Destroying an enemy tank earns the player 200 points. The game ends when the player’s tank is
destroyed or all enemy tanks are destroyed, at which point the player’s score will be displayed on the
screen.
6. As the game start, a new log file named ’game.log’ should be created to record the game’s progress.
The first log entry should capture the initial state of the game. Each time a new event occurs to the
player, a new log entry should be written in real-time. The logs should follow the format below.
The EVENT_TYPE can only be one of the following: "INIT", "MOVE_LEFT", "MOVE_RIGHT",
"MOVE_UP", "MOVE_DOWN", "FIRE" or "INJURED". The game_state should capture the current
state of the game. In this setup, the position coordinates are defined with the top-left grid as [0, 0], where
the x-coordinate increases by one unit for each grid space moved to the right, and the y-coordinate
increases by one unit for each grid space moved downward. The player is initialized at position [0,0].

{
"timestamp": timestamp,
"EVENT_TYPE": "INIT" | "MOVE_LEFT" | "MOVE_RIGHT" | "MOVE_UP"
| "MOVE_DOWN" | "FIRE" | "INJURED",
"game_state": {

"player": {
"position": [xp, yp],
"health": health_player,
"score": score

},
"enemies": [

{
"position": [xe1, ye1],
"health": health_enemy1

},
{

"position": [xe2, ye2],
"health": health_enemy2

}
],
"obstacle_position": [(xo1, yo1), ..., (xon, yon)]

},
}

game rules. It can handle different kinds of GUI and game rule requirements from diverse games. ii)
EvoMAC outputs websites with beautified, user-friendly web pages and correct transition logic. It
can handle the requirements of different websites.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 6: MAC network representing the team responsible for generating the code.

{
"composition": {

"Programmer 1": "Implement bullet firing logic that decreases
health points for both the player and enemies when hit. This
includes creating a function to handle bullet movement and
collision detection, updating health points accordingly, and
logging the events in the game.log file.",
"Programmer 2": "Implement health management to check for
health points dropping to zero and handle tank destruction.
This includes creating a function to check health status
after each hit, updating the game state, and logging the
destruction event in the game.log file.",
"Programmer 3": "Implement scoring logic to update the player's
score when an enemy tank is destroyed and display the final
score when the game ends. This includes creating a function
to manage scoring and game-over conditions, and logging the
final score in the game.log file."

},
"workflow": {

"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
],
"Programmer 3": [

"Programmer 2"
]

}
}

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 7: Generated output produced by the coding team as a result of the feed-forward pass.
Due to the limit of page length, we only show partial of the codes.

'''
This is the main file for the Single-Player Tank Battle Game.
It initializes the game, sets up the GUI, and manages the game
loop, including player movement, enemy behavior, and logging
events.
'''
import pygame
import json
import time
Constants
GRID_SIZE = 20
CELL_SIZE = 30
WINDOW_SIZE = GRID_SIZE * CELL_SIZE
PLAYER_COLOR = (255, 255, 0) # Yellow
ENEMY_COLOR = (192, 192, 192) # Silver
OBSTACLE_COLOR = (139, 69, 19) # Brown
BACKGROUND_COLOR = (0, 0, 0) # Black
FPS = 60
Game state
player_position = [0, 0]
player_health = 200
player_score = 0
enemies = [

{"position": [5, 5], "health": 200},
{"position": [10, 10], "health": 200}

]
obstacles = [(3, 3), (7, 7), (12, 12)]
Log file
log_file = open('game.log', 'w')
initial_state = {

"timestamp": time.time(),
"EVENT_TYPE": "INIT",
"game_state": {

"player": {
"position": player_position,
"health": player_health,
"score": player_score

},
"enemies": enemies,
"obstacle_position": obstacles

}
}
log_file.write(json.dumps(initial_state) + '\n')
Initialize Pygame
pygame.init()
screen = pygame.display.set_mode((WINDOW_SIZE, WINDOW_SIZE))
pygame.display.set_caption("Tank Battle Game")
clock = pygame.time.Clock()
class Bullet:

'''
This class represents a bullet fired by the player.
'''
def __init__(self, position, direction):

self.position = position
self.direction = direction

def move(self):
if self.direction == 'UP':

self.position[1] -= 1
elif self.direction == 'DOWN':

self.position[1] += 1
elif self.direction == 'LEFT':

self.position[0] -= 1
elif self.direction == 'RIGHT':

self.position[0] += 1 7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 8: MAC network representing the team responsible for generating the target proxy (unit
tests).

{
"composition": {

"Programmer 1": "Carefully test the logging mechanism
according to the task requirements. Ensure that logs
happen immediately after an action is taken, recording
the most recent state. Verify the logging order, ensuring
basic operations are recorded first, followed by subsequent
events. Check that the data format, keys, and values are
accurate, paying attention to the nested data types and
carefully checking each element.",
"Programmer 2": "Test the logging mechanism for special
triggered conditions, such as when the player's health drops
to zero or when an enemy tank is destroyed. Ensure that these
events are logged correctly and that the game state reflects
the changes accurately.",
"Programmer 3": "Test the value initialization required by
the task to ensure they are correctly achieved. Pay attention
to the coordinates of the player and enemies, ensuring they
are initialized in the correct positions and that no two tanks
occupy the same row.",
"Programmer 4": "Test the function inputs and the global
variables imported in each function. Ensure that the input
values and global variables used in the functions are valid
and involved when the function is called.",
"Programmer 5": "Test that each event in the task is
implemented correctly and that the logic triggered matches
the conditions described in the task. This includes movement,
firing bullets, and health reduction for both the player
and enemy tanks."

},
"workflow": {

"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
],
"Programmer 3": [

"Programmer 1",
"Programmer 2"

],
"Programmer 4": [

"Programmer 1",
"Programmer 2",
"Programmer 3"

],
"Programmer 5": [

"Programmer 1",
"Programmer 2",
"Programmer 3",
"Programmer 4"

]
}

}

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 9: Target proxy (unit tests) generated by the testing team based on the task description.
Due to the limit of page length, we only show one test case written by one of the five test coders.

import unittest
import json
import time
from main import player_position, player_health, player_score,
enemies, log_file, log_event, fire_bullet, check_health
class TestTankBattleGame(unittest.TestCase):

def setUp(self):
global player_position, player_health, player_score, enemies
player_position = [0, 0]
player_health = 200
player_score = 0
enemies = [

{"position": [5, 5], "health": 200},
{"position": [10, 10], "health": 200}

]
log_file = open('game.log', 'w')

def tearDown(self):
log_file.close()

def test_move_left(self):
global player_position
player_position[0] = 1 # Move to the right first
log_event("MOVE_LEFT")
player_position[0] -= 1
self.assertEqual(player_position, [0, 0])

def test_move_right(self):
global player_position
log_event("MOVE_RIGHT")
player_position[0] += 1
self.assertEqual(player_position, [1, 0])

def test_move_up(self):
global player_position
player_position[1] = 1 # Move down first
log_event("MOVE_UP")
player_position[1] -= 1
self.assertEqual(player_position, [0, 0])

def test_move_down(self):
global player_position
log_event("MOVE_DOWN")
player_position[1] += 1
self.assertEqual(player_position, [0, 1])

def test_fire_bullet_hit_enemy(self):
global player_score
initial_health = enemies[0]["health"]
fire_bullet()
self.assertEqual(enemies[0]["health"], initial_health - 100)
self.assertEqual(player_score, 200)

def test_fire_bullet_miss_enemy(self):
global player_position
player_position = [0, 0]
fire_bullet()
self.assertEqual(enemies[0]["health"], 200)

def test_player_injury(self):
global player_health
player_health -= 10
log_event("INJURED")
check_health()
self.assertEqual(player_health, 190)

def test_enemy_destruction(self):
global enemies
enemies[0]["health"] = 0
check_health()
self.assertEqual(enemies[0]["health"], 0)

if __name__ == '__main__':
unittest.main() 9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 10: The optimization objective aiming to minimize the difference between the generated
output and the target proxy using the environmental feedback. According to the unit test
results, Updating agent add more notes for the sub-task for Programmer 2 and Programmer 3.
To see a complete updating process, please refer to Sec. 3.3

{
"composition": {

"Programmer 1": "Implement bullet firing logic that decreases
health points for both the player and enemies when hit. This
includes creating a function to handle bullet movement and
collision detection, updating health points accordingly, and
logging the events in the game.log file.",
"Programmer 2": "Implement health management to check for
health points dropping to zero and handle tank destruction.
This includes creating a function to check health status after
each hit, updating the game state, and logging the destruction
event in the game.log file. Additionally, ensure the game loop
terminates properly when the player's tank is destroyed.",
"Programmer 3": "Implement scoring logic to update the player's
score when an enemy tank is destroyed and display the final
score when the game ends. This includes creating a function to
manage scoring and game-over conditions, and logging the final
score in the game.log file. Ensure the final score is
displayed correctly when the game ends."

},
"workflow": {

"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
],
"Programmer 3": [

"Programmer 2"
]

}
}

Table 11: Unit test case: Game

Example 1 Game Ghostly
Requirement(partial) 3. If the ghost controlled by the player eats a

superpellet (the big pellets), it gains the ability
to eat other ghosts.

Subtask given by Test Organizer(partial) "Programmer 5": "Test that each event in the
task is implemented and that the logic triggered
matches the conditions in the task description."

Generated test case(partial) please see Tab. 12
Evaluation test case(partial) please see Tab. 13

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Table 12: The partial generated test case for Game Ghostly.

def test_eat_other_ghost(self):
main.superpellet_active = True # Activate superpellet
main.move_ghost("up") # Move to [1, 0]
more move_ghost function call omitted here
with open('game.log', 'r') as log_file:

logs = log_file.readlines()
last_log = json.loads(logs[-1])
self.assertEqual(last_log["event_type"], "eat_other_ghost")
self.assertEqual(last_log["ghost_position"], [6, 5])
self.assertNotIn([0, 5], main.other_ghost_positions)

Table 13: The partial evaluation test case for Game Ghostly.

def check_eat_other(self): # Check if Character can eat others
with superpellet

try:
print("==============Test eat other=============")
process = self.start_game()
time.sleep(0.1)
pg.press('right',presses=1,interval=0)
time.sleep(0.1)
more press omitted here
process.terminate()
print("terminated")
Read the log
logs = self.read_log()
print(logs)
cnt=0
for log in logs:

if log["event_type"]=="eat_other_ghost":
cnt+=1

if cnt==2:
print("Character can eat other with superpellet\n\n")
return 1

print("Character can eat other with superpellet\n\n")
return 0

except:
print("eat_other error")
return 0

Table 14: Unit test case: Website

Example 2 Website DailyHealthTips
Requirement(partial) please see Fig. 3
Subtask given by Test Organizer(partial) "Programmer 2": "Test whether the first page

of the website is the login page and whether it
can log in correctly based on the example data
provided in the Task."

Generated test case(partial) please see Tab. 15
Evaluation test case(partial) please see Tab. 16

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Table 15: The partial generated test case for Website DailyHealthTips.

'''
Test whether the first page of the website is the login page and
whether it can log in correctly based on the example data
provided in the Task.
'''
import unittest
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
import time
class TestDailyHealthTipsLogin(unittest.TestCase):

def setUp(self):
self.driver = webdriver.Chrome()
self.driver.get("http://localhost:5000")

def test_login_page(self):
driver = self.driver
Check if the current page is the login page
self.assertIn("User Login", driver.title)
print("Login page title is correct.")
Locate username and password fields
username_field = driver.find_element(By.ID, "username_field")
password_field = driver.find_element(By.ID, "password_field")
login_button = driver.find_element(By.ID, "login_button")
Input example data
username_field.send_keys("john_doe")
password_field.send_keys("securepassword")
login_button.click()
Wait for the page to load
time.sleep(2)
Check if redirected to Daily Health Tips page
self.assertIn("Daily Health Tips", driver.title)
print("Successfully logged in and redirected to
Daily Health Tips page.")

def tearDown(self):
self.driver.quit()

if __name__ == "__main__":
unittest.main()

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 16: The partial evaluation test case for Website DailyHealthTips.

class TestCase(unittest.TestCase):
def setUp(self):

"""Set up the Selenium WebDriver before each test."""
self.driver = webdriver.Chrome()
self.driver.get("http://localhost:5000")

def tearDown(self):
"""Tear down the WebDriver after each test."""
self.driver.quit()

def login(self):
self.driver.delete_all_cookies()
username = "john_doe"
password = "securepassword"
Performing login
self.driver.get("http://localhost:5000")
self.driver.find_element(By.ID, "username_field")
.send_keys(username)
self.driver.find_element(By.ID, "password_field")
.send_keys(password)
self.driver.find_element(By.ID, "login_button").click()

===== Login Page Tests =====
def test_login_page_elements(self):

Go back to the login page and check elements
self.assertTrue(self.driver.find_element
(By.ID, 'username_field').is_displayed())
self.assertTrue(self.driver.find_element
(By.ID, 'password_field').is_displayed())
self.assertTrue(self.driver.find_element
(By.ID, 'login_button').is_displayed())

def test_login_page_functionality(self):
Assume user login is verified by the presence
of daily tips page elements
self.assertIn("User Login", self.driver.title)
username = "john_doe"
password = "securepassword"
self.driver.find_element(By.ID, 'username_field')
.send_keys(username)
self.driver.find_element(By.ID, 'password_field')
.send_keys(password)
self.driver.find_element(By.ID, 'login_button').click()

Check if we are redirected to the daily tips page
self.assertIn("Daily Health Tips", self.driver.title)

more test case omitted

Table 17: Updating process on RSD-Bench

RSD-Bench Game Tank Example
Requirement(partial) please see Tab. 5
Initial Code Organizer(iteration 0) please see Tab. 6
Updating agent(iteration 1) please see Tab. 10
Updating agent(iteration 2) please see Tab. 18
Updating agent(iteration 3) please see Tab. 19

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 18: Updating process on RSD-Bench Game Tank, iteration 2

{
"composition": {

"Programmer 1": "Fix the health management logic to ensure
that when the player's health drops to zero, the destruction
event is logged correctly, and the game loop terminates
properly. This includes modifying the `check_health` function
to accurately log destruction events for both the player and
enemies.",
"Programmer 2": "Implement the game-over conditions to ensure
that the game ends when the player's tank is destroyed or all
enemy tanks are destroyed. This includes creating a function
to manage the game-over state and logging the final score
in the game.log file."

},
"workflow": {

"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
]

}
}

Table 19: Updating process on RSD-Bench Game Tank, iteration 3

{
"composition": {

"Programmer 1": "Implement constant firing behavior for enemy
tanks in four directions. This includes creating a mechanism
for enemies to fire bullets at the player and logging the
corresponding events.",
"Programmer 2": "Implement the display of the player's score
at the end of the game when the game is over. This includes
modifying the game-over logic to ensure the final score is
logged and displayed correctly.",
"Programmer 3": "Fix the logging mechanism to ensure that
the log file remains open during gameplay and logs events
in real-time without closing prematurely. This includes
reviewing the log_event function and ensuring it is called
correctly throughout the game loop."

},
"workflow": {

"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
],
"Programmer 3": [

"Programmer 1",
"Programmer 2"

]
}

}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 20: Updating process on HumanEval

HumanEval Example
Requirement Write a function that takes a message, and en-

codes in such a way that it swaps case of all
letters, replaces all vowels in the message with
the letter that appears 2 places ahead of that
vowel in the english alphabet. Assume only
letters.

Initial Code Organizer(iteration 0) "Programmer 1": "Identify and implement the
logic to swap the case of all letters in the mes-
sage.", "Programmer 2": "Implement the logic
to replace all vowels with the letter that appears
2 places ahead in the English alphabet."

Generated test case(iteration 0) please see Tab. 21
Main code(iteration 0) please see Tab. 22
Updating agent(iteration 1) "Programmer 1": AssertionError: en-

code(’test’) != ’TGST’. The actual output is:
’TgST’., "Programmer 2": AssertionError:
encode(’This is a message’) != ’tHKS KS C
MGSSCGG’. The actual output is: ’tHkS kS c
MgSScGg’.

Final code(iteration 1) please see Tab. 23

Table 21: Updating process on HumanEval, Generated test case. iteration 0

'''
Write a simple test case to verify the logic of the encode function.
'''
import unittest
from encode_function import encode
class TestEncodeFunction(unittest.TestCase):

def test_example_case_1(self):
self.assertEqual(encode('test'), 'TGST')

def test_example_case_2(self):
self.assertEqual(encode('This is a message'),
'tHKS KS C MGSSCGG')

if __name__ == '__main__':
unittest.main()

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 22: Updating process on HumanEval, Main code, iteration 0

'''
def encode(message):

vowels = 'aeiouAEIOU'
encoded_message = []
for char in message:

if char.isalpha():
Swap case
if char in vowels:

Replace vowel with the letter 2 places ahead
if char.islower():

new_char = chr(((ord(char) - ord('a') + 2) % 26)
+ ord('a'))

else:
new_char = chr(((ord(char) - ord('A') + 2) % 26)
+ ord('A'))

encoded_message.append(new_char)
else:

Just swap case for consonants
encoded_message.append(char.swapcase())

else:
If it's not a letter, we can just append it as is
encoded_message.append(char)

return ''.join(encoded_message)

Table 23: Updating process on HumanEval, Final code, iteration 1

'''
def encode(message):

vowels = 'aeiouAEIOU'
encoded_message = []
for char in message:

if char.isalpha():
Swap case
if char in vowels:

Replace vowel with the letter 2 places ahead
and swap case
if char.islower():

new_char = chr(((ord(char) - ord('a') + 2) % 26)
+ ord('a')).upper()

else:
new_char = chr(((ord(char) - ord('A') + 2) % 26)
+ ord('A')).lower()

encoded_message.append(new_char)
else:

Just swap case for consonants
encoded_message.append(char.swapcase())

else:
Preserve spaces
encoded_message.append(char)

return ''.join(encoded_message)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Balls (b) Bomberman

(c) Mario (d) Tank

(e) Brick (f) Ghostly

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(g) Racing (h) Sokoban

Figure 4: Games generated by EvoMAC.

(a) CharitableGivingPlatform (b) GardeningForBeginners

(c) PersonalBlog

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(d) GourmetFoodSubscription (e) OnlineTherapeuticJournaling

(f) MusicFestivalDirectory

Figure 5: Websites generated by EvoMAC.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

REFERENCES

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code. 2021.

20

	Benchmark details
	Algorithm
	Case Study
	Complete EvoMAC process
	Unit test case
	Updating process

	Software Presentation

