Under review as a conference paper at ICLR 2025

SELF-EVOLVING MULTI-AGENT COLLABORATION NET-
WORKS FOR SOFTWARE DEVELOPMENT

Anonymous authors
Paper under double-blind review

APPENDIX

1 BENCHMARK DETAILS

Table 1: Basic statistics for website and game do- Game category (%) Website Category (%)

mains, including the amount of samples, prompt ~"teizatiozgxecutabiiity Content Manage
09

length (mean/max), and number of test cases at

both Basic and Advanced levels.

Browsing

User
Manage

Logic

Benchmark Software Test Case Operation
Amount Length Basic Advanced
. Page Display
Website 45 1011/1553 292 247 _ o .
Game 8 507/788 46 31 Figure 1: Statistics of Game and Website tasks.

Step 1: Software requirement generation. Each task instance begins with the generation of
clear, measurable software requirements. Given the inherent differences across various types of
software, we adopt distinct approaches for their formulation. For game-related software, we focuses
on common real-world games, capturing detailed task requirements such as GUI layout initialization,
interaction methods, and game rules. To align more closely with actual game development practices,
we also include game state logging as part of the software requirements. Due to the complexity
of logic in game software, these requirements are manually crafted by human. In contrast, for
website-related software, we begin with a concise website name, and then leverage the large language
model (gpt-4o0-mini) to enrich the requirements according to predefined patterns. This approach
ensures both efficiency and scalability in the creation of benchmarks for websites. By tailoring the
process to the distinct characteristics of each software domain, we maintain precision in requirement
formulation while addressing the unique challenges posed by each context.

Step 2: Requirement-based test cases generation.

As illustrated in Fig[2]and Fig[3] unit tests offer a precise evaluation of software completion. Each
task instance includes black-box unit test cases that correspond directly to the software requirements,
allowing for a quantitative assessment of requirement fulfillment. To further assess the model’s code
generation capabilities, we categorize test cases into two levels of difficulty—basic and advanced,
as outlined in Tab. [} We also provide an overview of all websites and games in Tab. 2] and
Tab. B|respectively. As shown in Fig.[] test cases for website and game software exhibit structural
differences, reflecting the distinct nature of each software type. They enable more targeted evaluation
of code generation capabilities. Thus, similar to software requirements, the test cases are constructed
differently based on the software type. For game-related tests, we manually create test cases,
akin to the HumanEval |Chen et al.| (2021) benchmark, which tracks state changes in response to
specific inputs. In the game environment, we assess how game states evolve in response to GUI
interactions. For website-related tests, large language model (gpt —40-mini) generates Selenium-
based test cases aligned with the software requirements, followed by manual corrections to resolve any
ambiguities. This structured approach ensures rigorous evaluation across diverse software domains.

Basic and advanced requirements definition. For the games, basic requirements involve straightfor-
ward user interactions that do not require complex logic, such as character movement or interacting
with simple GUI elements. Advanced requirements incorporate more intricate logic, such as manag-
ing game state transitions based on user actions or handling conditional game events. These cases
focus on ensuring the correct execution of basic actions. In contrast, advanced cases incorporate
more intricate logic, such as managing game state transitions based on user actions or handling

Under review as a conference paper at ICLR 2025

Table 2: Overview of Websites in rSDE-Bench.

Websites
CharitableGivingPlatform DailyHealthTips DailyJournal App
EcoFriendlyLivingTips ElderCareResources EventPlanner
FitnessEquipmentRental FitnessTracker FreelancerMarketplace
GreenLivingGuide HealthConsultationPlatform MotivationalQuotesApp
MusicFestivalDirectory NoteTakingApp NutritionInformationHub

OnlineLibraryManagementSystem
PeerTutoringNetwork

RecipeHub

TravelDiary

Digital ArtworkGallery
FitnessChallenges
MovieRecommendationSystem
OnlineCulturalFestivals
PetCareCommunity

TaskManager

OnlineTherapeuticJournaling
PersonalBlog
RemotelnternshipMarketplace
VirtualBookPublishing
DigitalStorytellingPlatform
GardeningForBeginners
MusicCollaborator
OnlineVintageMarket
PortfolioSite

VolunteerMatch

OnlineThriftStore
PersonalFinanceBlog
RemoteJobBoard
VirtualWellnessRetreats
ExpenseTracker
GourmetFoodSubscription
OnlineCulturalExchange
ParentingAdviceForum
SkillShare
OnlineShoppingCenter

Table 3: Overview of Games in rSDE-Bench.

Games
Balls Tank Racing Ghostly
Mario Bomberman Sokoban Brick

Software description

Task: Develop a simple Sokoban game. You must design a GUI.

Requirements:

1. The game board should be divided into grid squares.

2. Players will control the game using the arrow keys on the keyboard.

3. As the game starts, a log file named 'game.log' should be created to record the game's progress. The content of the
game.log file should be appended with a new entry after each player action.The content of the game.log file should be
cleared (if any) at the start of each game session.

Each log entry should follow this format:

"timestamp": timestamp,

“EVENT_TYPE": "MOVE_RIGHT" | "MOVE_LEFT" | "MOVE_UP" | "MOVE_DOWN" | "INVALID_MOVE",
"player_position": [x, y],

"box_positions": [[x1, y1], [x2, y2], ...],

"game_status": "ONGOING" | "COMPLETE"

4. The victory conditions for the game is: All boxes are pushed onto their corresponding coordinate point.
5. The initial positions of each element are required as follows:

player_position = [1, 1]

box_positions = [[3, 3], [4, 2]]

goal_positions = [[5, 5], [6, 3]]

([3, 3] is the initial position of the first box whose target position is [5, 5].
the second box whose target position is [6, 3].)

wall positions = [[e, 4], [1, 4], [2, 4],[3, 4],[4, 4]]

(the first numnber in each pair is the x-coordinate and the second number is the y-coordinate)

[4, 2] is the initial position of

Evaluation functions

check_Excutablity
check_move_wall

check_log
check_segbox

check_move_right
check_end

check_move_left
check_wrong_end

check_move_box

Figure 2: Test cases of Game in rSDE-Bench.

conditional game events. These cases challenge the model’s ability to generate code that integrates
dynamic decision-making and interaction within the game environment. For websites, basic cases
focus on ensuring that the necessary page elements—such as input fields, buttons, and layouts—are
present correctly. These cases assess the completeness of the webpage’s structure. On the other hand,
advanced cases evaluate more complex functionality, such as handling user authentication, managing
dynamic content, or executing specific operations within a content management system. These cases
require the model to generate code that performs backend logic and manages user interactions at a
deeper level.

Under review as a conference paper at ICLR 2025

Software description

Requirement Document for DailyHealthTips Web Application

1. Objective

Develop a web application named 'DailyHealthTips' that provides users with daily health tips, allowing them to receive
advice and information about maintaining a healthy lifestyle, using Python as the development language. Note that the
website should start from the login page.

2. Language
The required development language for the DailyHealthTips web application is Python.

3. Page Design

Page 1: Login Page
- **page Title**: User Login
- **Qverview**: This page allows users to log in to their accounts.
- **Elements**:
- **Username Field**:
- *¥*¥ID**: “username_field"
password Field:
- **ID**: “password_field"
Login Button:
- **ID**: “login_button”

Evaluation functions

test_login_page_elements test_login_page_functionality test_daily_tips_page_elements
test_daily_tips_page_functionality test_tips_archive_page_elements test_tips_archive_page_functionality

Figure 3: Test cases of Website in rSDE-Bench.

Algorithm 1 Self-Evolving Paradigm

Require: X > Task input
Require: Ago) > Initialized MAC network: agent prompts and pipeline
Require: A; > Designed MAC network to generate target proxy
Require: G > Agent-based gradient function
Require: U/ > Agent-based update function
Require: F > Environment tool to generate loss

1: Define K as the number of self-evolving iterations, ® as MACN generation process

2: # Target Proxy

3:T= Q@(}(, J4t)

4: # Self-Evolving Procedure

5. fork=0,1,..., K — 1do

6: # Forward Pass

7: Gk = @(X,Aék))

8: # Loss Computation

9: L® =(G® T)p > Use environment feedback as textual loss
10: # Textual Backpropagation
11: VLK*) = G(L®*), Agk)) > Summarize textual gradient
12: Agﬂ_l) =U (Agk), VL®*)) > Update agent prompts and pipeline
13: end for

14: return A, GUO

2 ALGORITHM

In this section, we present the algorithm of EvoMAC in Alg.[I] For more details, please refer to

Section 3.

3 CASE STUDY

3.1 COMPLETE EVOMAC PROCESS

In this section, we show a complete process of EvoMAC on RSD-Bench. Please refer to Tab. 4]

Under review as a conference paper at ICLR 2025

Table 4: A complete iteration process of EvoMAC on RSD-Bench

Notation Meaning Example Real example
X Textual description of the | A coding task such as: "Im- | See Tab.
task to be completed. plement a code that sim-
ulates keyboard input pro-
cessing via Python."
Ay MAC network representing | The coding team consists | See Tab.@
the team responsible for | of coding agents completing
generating the code. subtasks in sequence.
G=2(X,A,) Generated output produced | The generated | See Tab.
by the coding team as a | code: ‘.def pro-
result of the feed-forward | cess_input(keyboard_input):
pass. o
Ay MAC network representing | The testing team generates | See Tab.
the team responsible for | unit tests for the task.
generating the target proxy
(unit tests).
T = 9(X, A4) Target proxy (unit tests) | Unit tests like: “..def | See Tab.|9|
generated by the testing | test_press_input(): assert
team based on the task de- | process_input(’Enter’) ==
scription. ’Processed Enter’*
<G, T>g Environmental feedback | The environment executes | The execution

comparing the generated
output G with the target
proxy T using an objective
environment (e.g., compiler
or test results).

the generated code against
the unit tests, providing
feedback like: ‘Failure:
test_press_input®

outcome of
the unit test
from the
terminal. If
the execution
is successful,
the outcome is
’The software
run success-
fully without
errors.’

min < G, T >g

The optimization objective
aiming to minimize the dif-
ference between the gen-
erated output and the tar-
get proxy using the environ-
mental feedback.

Based on feedback, the sys-
tem iteratively refines the
coding team to generate
code that better meets the
task.

See Tab.

3.2 UNIT TEST CASE

In this section, we show more unit test cases written by coder on RSD-Bench, please refer to Tab.
and Tab.[T4l

3.3 UPDATING PROCESS

In this section, we show additional examples of the updating process on RSD-Bench and HumanEval
dataset. Please refer to Tab.[T7and Tab. 20|respectively. For RSD-Bench, due to the code length, we
only show the texture updating process(codes are available at Sec.[3.I). We can see that the updating
agent will adjust the job of each coder dynamically according to the result of test team.

4 SOFTWARE PRESENTATION

In this section, we show some games and websites written by EvoMAC. Fig. [and Fig. [5| present the
games and websites respectively. We see that: 1) EVOMAC outputs games with well-written GUI and

Under review as a conference paper at ICLR 2025

Table 5: Textual description of the task to be completed.

Task: Design a Single-Player Tank Battle Game

Requirements:

1. The interface should be divided into a 20x20 grid, though grid lines are not necessary. Each tank
occupies one grid space, while obstacles may occupy multiple grid spaces. The background should be
black, obstacles should be brown, enemy tanks should be silver, and the player’s tank should be yellow.
2. The player can control the tank’s movement using the arrow keys on the keyboard, allowing for
movement one grid space at a time. The ’enter’ key is used to fire bullets.

3. In the game, there are two enemies fixed at a certain position on the game interface, constantly firing
bullets in four directions: up, down, left, and right. Two enemies and players cannot be initialized in the
same row.

4. Both the player and the enemies have their own health points, which are initialized to 200. When hit
by a bullet, the player’s health decreases by 10 and the enemy’s health decreases by 100. When health
points drop to zero, the corresponding tank is destroyed. But the log still records information about the
destroyed tank, with health points of 0.

5. Destroying an enemy tank earns the player 200 points. The game ends when the player’s tank is
destroyed or all enemy tanks are destroyed, at which point the player’s score will be displayed on the
screen.

6. As the game start, a new log file named ’game.log’ should be created to record the game’s progress.
The first log entry should capture the initial state of the game. Each time a new event occurs to the
player, a new log entry should be written in real-time. The logs should follow the format below.
The EVENT_TYPE can only be one of the following: "INIT", "MOVE_LEFT", "MOVE_RIGHT",
"MOVE_UP", "MOVE_DOWN", "FIRE" or "INJURED". The game_state should capture the current
state of the game. In this setup, the position coordinates are defined with the top-left grid as [0, 0], where
the x-coordinate increases by one unit for each grid space moved to the right, and the y-coordinate
increases by one unit for each grid space moved downward. The player is initialized at position [0,0].

{

"timestamp": timestamp,
"EVENT_TYPE": "INIT" | "MOVE_LEFT" | "MOVE_RIGHT" | "MOVE_UP"
| "MOVE_DOWN" | "FIRE" | "INJURED",
"game_state": {
"player": {

"position": [xp, vpl,
"health": health_player,
"score": score
b
"enemies": [
{
"position": [xel, yell],
"health": health_enemyl

"position": [xe2, ye2],
"health": health_enemy2
}
J 4
"obstacle_position": [(xol, yol), ..., (xon, yon)]
}I

game rules. It can handle different kinds of GUI and game rule requirements from diverse games. ii)
EvoMAC outputs websites with beautified, user-friendly web pages and correct transition logic. It
can handle the requirements of different websites.

Under review as a conference paper at ICLR 2025

Table 6: MAC network representing the team responsible for generating the code.

by

"composition": {

"Programmer 1": "Implement bullet firing logic that decreases
health points for both the player and enemies when hit. This
includes creating a function to handle bullet movement and
collision detection, updating health points accordingly, and
logging the events in the game.log file.",

"Programmer 2": "Implement health management to check for
health points dropping to zero and handle tank destruction.
This includes creating a function to check health status
after each hit, updating the game state, and logging the
destruction event in the game.log file.",

"Programmer 3": "Implement scoring logic to update the player'j
score when an enemy tank is destroyed and display the final
score when the game ends. This includes creating a function
to manage scoring and game-over conditions, and logging the
final score in the game.log file."

"workflow": {
"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
i
"Programmer 3": [
"Programmer 2"

]

Under review as a conference paper at ICLR 2025

Table 7: Generated output produced by the coding team as a result of the feed-forward pass.
Due to the limit of page length, we only show partial of the codes.

This is the main file for the Single-Player Tank Battle Game.
It initializes the game, sets up the GUI, and manages the game
loop, including player movement, enemy behavior, and logging
events.

L)

import pygame

import json

import time

Constants

GRID_SIZE = 20

CELL_SIZE = 30

WINDOW_SIZE = GRID_SIZE x CELL_SIZE

PLAYER_COLOR = (255, 255, 0) # Yellow
ENEMY_COLOR = (192, 192, 192) # Silver
OBSTACLE_COLOR = (139, 69, 19) # Brown
BACKGROUND_COLOR = (0, 0, 0) # Black
FPS = 60

Game state

player_position = [0, 0]

player_health = 200

player_score = 0

enemies = [

{"position": [5, 5], "health": 200},
{"position": [10, 10], "health": 200}
]
obstacles = [(3, 3), (7, 7), (12, 12)]

Log file
log_file = open('game.log', 'w')
initial_state = {
"timestamp": time.time (),
"EVENT_TYPE": "INIT",
"game_state": {
"player": {
"position": player_position,
"health": player_health,
"score": player_score
}I
"enemies": enemies,
"obstacle_position": obstacles

}
}
log_file.write(json.dumps (initial_state) + '\n')
Initialize Pygame
pygame.init ()
screen = pygame.display.set_mode ((WINDOW_SIZE, WINDOW_SIZE))
pygame.display.set_caption ("Tank Battle Game")
clock = pygame.time.Clock ()
class Bullet:

This class represents a bullet fired by the player.

def __init__ (self, position, direction):
self.position = position
self.direction = direction
def move (self) :
if self.direction == 'UP':
self.position[l] -=1
elif self.direction == 'DOWN':
self.position[l] += 1
elif self.direction == '"LEFT':
self.position[0] -=1
elif self.direction == 'RIGHT':

self.position[0] += 17

Under review as a conference paper at ICLR 2025

Table 8: MAC network representing the team responsible for generating the target proxy (unit
tests).

"composition": {
"Programmer 1": "Carefully test the logging mechanism
according to the task requirements. Ensure that logs
happen immediately after an action is taken, recording
the most recent state. Verify the logging order, ensuring
basic operations are recorded first, followed by subsequent
events. Check that the data format, keys, and values are
accurate, paying attention to the nested data types and
carefully checking each element.",
"Programmer 2": "Test the logging mechanism for special
triggered conditions, such as when the player's health drops
to zero or when an enemy tank is destroyed. Ensure that these
events are logged correctly and that the game state reflects
the changes accurately.",
"Programmer 3": "Test the value initialization required by
the task to ensure they are correctly achieved. Pay attention
to the coordinates of the player and enemies, ensuring they
are initialized in the correct positions and that no two tanks
occupy the same row.",
"Programmer 4": "Test the function inputs and the global
variables imported in each function. Ensure that the input
values and global variables used in the functions are valid
and involved when the function is called.",
"Programmer 5": "Test that each event in the task is
implemented correctly and that the logic triggered matches
the conditions described in the task. This includes movement,
firing bullets, and health reduction for both the player
and enemy tanks."
}s
"workflow": {
"Programmer 1": [],
"Programmer 2": [
"Programmer 1"
1,
"Programmer 3": [
"Programmer 1",
"Programmer 2"
1,
"Programmer 4": [
"Programmer 1",
"Programmer 2",
"Programmer 3"
Is
"Programmer 5": [
"Programmer 1",
"Programmer 2",
"Programmer 3",
"Programmer 4"

Under review as a conference paper at ICLR 2025

Table 9: Target proxy (unit tests) generated by the testing team based on the task description.
Due to the limit of page length, we only show one test case written by one of the five test coders.

import unittest
import Jjson
import time
from main import player_position, player_health, player_score,
enemies, log_file, log_event, fire_bullet, check_health
class TestTankBattleGame (unittest.TestCase) :

def setUp(self):

global player_position, player_health, player_score, enemies

player_position = [0, 0]

player_health = 200

player_score = 0

enemies = [
{"position": [5, 5], "health": 200},
{"position": [10, 10], "health": 200}

]

log_file = open('game.log', 'w')
def tearDown (self) :

log_file.close()
def test_move_left (self):

global player_position

player_position[0] = 1 # Move to the right first

log_event ("MOVE_LEFT")

player_position[0] -= 1

self.assertEqual (player_position, [0, 0])
def test_move_right (self):

global player_position

log_event ("MOVE_RIGHT")

player_position[0] += 1

self.assertEqual (player_position, [1, 0])
def test_move_up (self):

global player_position

player_position[l] = 1 # Move down first

log_event ("MOVE_UP")

player_position[l] -=1

self.assertEqual (player_position, [0, 0])
def test_move_down (self) :

global player_position

log_event ("MOVE_DOWN")

player_position[l] += 1

self.assertEqual (player_position, [0, 1])
def test_fire_bullet_hit_enemy (self):

global player_score

initial_health = enemies[0] ["health"]

fire_bullet ()

self.assertEqual (enemies[0] ["health"], initial_health - 100)

self.assertEqual (player_score, 200)
def test_fire_bullet_miss_enemy (self):

global player_position

player_position = [0, 0]

fire_bullet ()

self.assertEqual (enemies[0] ["health"], 200)
def test_player_injury(self):

global player_health

player_health -= 10

log_event ("INJURED")

check_health ()

self.assertEqual (player_health, 190)
def test_enemy_destruction(self) :

global enemies

enemies[0] ["health"] = 0

check_health ()

self.assertEqual (enemies[0] ["health"], 0)
if _ name_ == '_ _main__ ':

unittest.main () 9

Under review as a conference paper at ICLR 2025

Table 10: The optimization objective aiming to minimize the difference between the generated
output and the target proxy using the environmental feedback. According to the unit test
results, Updating agent add more notes for the sub-task for Programmer 2 and Programmer 3.
To see a complete updating process, please refer to Sec.|3.3

"composition": {
"Programmer 1": "Implement bullet firing logic that decreases
health points for both the player and enemies when hit. This
includes creating a function to handle bullet movement and
collision detection, updating health points accordingly, and
logging the events in the game.log file.",
"Programmer 2": "Implement health management to check for
health points dropping to zero and handle tank destruction.
This includes creating a function to check health status after
each hit, updating the game state, and logging the destruction
event in the game.log file. Additionally, ensure the game loop
terminates properly when the player's tank is destroyed.",
"Programmer 3": "Implement scoring logic to update the player'j
score when an enemy tank is destroyed and display the final
score when the game ends. This includes creating a function to
manage scoring and game-over conditions, and logging the final
score in the game.log file. Ensure the final score is
displayed correctly when the game ends."

}y

"workflow": {
"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
i
"Programmer 3": [
"Programmer 2"

]

Table 11: Unit test case: Game

Example 1 Game Ghostly
Requirement(partial) 3. If the ghost controlled by the player eats a
superpellet (the big pellets), it gains the ability
to eat other ghosts.

Subtask given by Test Organizer(partial) "Programmer 5": "Test that each event in the
task is implemented and that the logic triggered
matches the conditions in the task description.”
Generated test case(partial) please see Tab. |12
Evaluation test case(partial) please see Tab.|13

10

Under review as a conference paper at ICLR 2025

Table 12: The partial generated test case for Game Ghostly.

def test_eat_other_ghost (self):

main.superpellet_active = True # Activate superpellet
main.move_ghost ("up") # Move to [1, 0]

more move_ghost function call omitted here

with open('game.log', 'r') as log_file:

logs = log_file.readlines|()

last_log = json.loads (logs[-1])

self.assertEqual (last_log["event_type"], "eat_other_ghost")
self.assertEqual (last_log["ghost_position"], [6, 5])
self.assertNotIn ([0, 5], main.other_ghost_positions)

Table 13: The partial evaluation test case for Game Ghostly.

def check_eat_other (self): # Check if Character can eat others
with superpellet
try:

print ("===s=========== Test eat other=============")

process = self.start_game ()

time.sleep(0.1)

pg.press ('right',presses=1,interval=0)

time.sleep(0.1)

more press omitted here

process.terminate ()

print ("terminated")

Read the log

logs = self.read_log()

print (logs)

cnt=0
for log in logs:
if log["event_type"]=="eat_other_ghost":
cnt+=1
if cnt==2:

print ("Character can eat other with superpellet\n\n")
return 1
print ("Character can eat other with superpellet\n\n")
return O
except:
print ("eat_other error")
return O

Table 14: Unit test case: Website

Example 2 Website DailyHealthTips
Requirement(partial) please see Fig. |3
Subtask given by Test Organizer(partial) "Programmer 2": "Test whether the first page

of the website is the login page and whether it
can log in correctly based on the example data

provided in the Task."
Generated test case(partial) please see Tab.|15
Evaluation test case(partial) please see Tab. |16

11

Under review as a conference paper at ICLR 2025

Table 15: The partial generated test case for Website DailyHealthTips.

Test whether the first page of the website is the login page and
whether it can log in correctly based on the example data
provided in the Task.
Tr
import unittest
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
import time
class TestDailyHealthTipsLogin (unittest.TestCase):
def setUp(self):
self.driver = webdriver.Chrome ()
self.driver.get ("http://localhost:5000")
def test_login_page (self):
driver = self.driver
Check i1f the current page is the login page
self.assertIn ("User Login", driver.title)
print ("Login page title is correct.")
Locate username and password fields
username_field = driver.find_element (By.ID, "username_field")
password_field = driver.find_element (By.ID, "password_field")
login_button = driver.find_element (By.ID, "login_button")
Input example data
username_field.send_keys (" john_doe")
password_field.send_keys ("securepassword")
login_button.click ()
Wait for the page to load
time.sleep(2)
Check if redirected to Daily Health Tips page
self.assertIn("Daily Health Tips", driver.title)
print ("Successfully logged in and redirected to
Daily Health Tips page.")
def tearDown (self):
self.driver.quit ()
if _ name_ == "_ main__ ":
unittest.main ()

12

Under review as a conference paper at ICLR 2025

Table 16: The partial evaluation test case for Website DailyHealthTips.

def

def

def

def

class TestCase (unittest.TestCase) :

setUp (self) :
"""Set up the Selenium WebDriver before each test."""
self.driver = webdriver.Chrome ()

self.driver.get ("http://localhost:5000")

tearDown (self) :
"""Tear down the WebDriver after each test."""
self.driver.quit ()

login(self) :
self.driver.delete_all_cookies|()
username = "Jjohn_doe"

password = "securepassword"

Performing login

self.driver.get ("http://localhost:5000")
self.driver.find_element (By.ID, "username_field")
.send_keys (username)

self.driver.find_element (By.ID, "password_field")
.send_keys (password)

self.driver.find_element (By.ID, "login_button").click ()

=== Login Page Tests =====
test_login_page_elements (self) :

Go back to the login page and check elements
self.assertTrue(self.driver.find_element
(By.ID, 'username_field').is_displayed())
self.assertTrue(self.driver.find_element
(By.ID, 'password_field').is_displayed())
self.assertTrue(self.driver.find_element
(By.ID, 'login_button').is_displayed())

test_login_page_functionality (self):

Assume user login is verified by the presence
of daily tips page elements

self.assertIn("User Login", self.driver.title)
username = "Jjohn_doe"

password = "securepassword"
self.driver.find_element (By.ID, 'username_field')
.send_keys (username)
self.driver.find_element (By.ID, 'password_field')
.send_keys (password)
self.driver.find_element (By.ID, 'login_button').click()

Check if we are redirected to the daily tips page
self.assertIn("Daily Health Tips", self.driver.title)

more test case omitted

Table 17: Updating process on RSD-Bench

RSD-Bench Game Tank Example
Requirement(partial) please see Tab. |5
Initial Code Organizer(iteration 0) please see Tab. |6
Updating agent(iteration 1) please see Tab. |10
Updating agent(iteration 2) please see Tab.|18
Updating agent(iteration 3) please see Tab. (19

13

Under review as a conference paper at ICLR 2025

Table 18: Updating process on RSD-Bench Game Tank, iteration 2

"composition": {
"Programmer 1": "Fix the health management logic to ensure
that when the player's health drops to zero, the destruction
event is logged correctly, and the game loop terminates
properly. This includes modifying the “check_health™ function
to accurately log destruction events for both the player and
enemies.",
"Programmer 2": "Implement the game-over conditions to ensure
that the game ends when the player's tank is destroyed or all
enemy tanks are destroyed. This includes creating a function
to manage the game-over state and logging the final score
in the game.log file."

by

"workflow": {
"Programmer 1": [],
"Programmer 2": [

"Programmer 1"

]

Table 19: Updating process on RSD-Bench Game Tank, iteration 3

"composition": {
"Programmer 1": "Implement constant firing behavior for enemy
tanks in four directions. This includes creating a mechanism
for enemies to fire bullets at the player and logging the
corresponding events.",
"Programmer 2": "Implement the display of the player's score
at the end of the game when the game is over. This includes
modifying the game-over logic to ensure the final score 1is
logged and displayed correctly.",
"Programmer 3": "Fix the logging mechanism to ensure that
the log file remains open during gameplay and logs events
in real-time without closing prematurely. This includes
reviewing the log_event function and ensuring it is called
correctly throughout the game loop."

}s

"workflow": {
"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
1,
"Programmer 3": [
"Programmer 1",
"Programmer 2"

14

Under review as a conference paper at ICLR 2025

Table 20: Updating process on HumanEval

HumanEval

Example

Requirement

Write a function that takes a message, and en-
codes in such a way that it swaps case of all
letters, replaces all vowels in the message with
the letter that appears 2 places ahead of that
vowel in the english alphabet. Assume only
letters.

Initial Code Organizer(iteration 0)

"Programmer 1": "Identify and implement the
logic to swap the case of all letters in the mes-
sage.", "Programmer 2": "Implement the logic
to replace all vowels with the letter that appears
2 places ahead in the English alphabet."

Generated test case(iteration 0)

please see Tab. |21

Main code(iteration 0)

please see Tab. [22

Updating agent(iteration 1)

"Programmer 1": AssertionError: en-
code(’test’) != "TGST’. The actual output is:
"TgST’., "Programmer 2": AssertionError:
encode(’This is a message’) != "tHKS KS C
MGSSCGG’. The actual output is: tHkS kS ¢
MgSScGg’.

Final code(iteration 1)

please see Tab. 23]

Table 21: Updating process on HumanEval, Generated test case. iteration 0

v

Write a simple test case to verify
LI B |

import unittest

from encode_function import encode

def test_example_case_1 (self):
def test_example_case_2 (self):

'"tHKS KS C MGSSCGG')
__name___ !

if == '_ main :

unittest.main ()

self.assertEqual (encode('test'),

the logic of the encode function.

class TestEncodeFunction (unittest.TestCase) :

'TGST')

self.assertEqual (encode ('This is a message'),

15

Under review as a conference paper at ICLR 2025

Table 22: Updating process on HumanEval, Main code, iteration 0

def encode (message) :
vowels = 'aeiouAEIOU'
encoded_message = []
for char in message:
if char.isalpha():
Swap case
if char in vowels:
Replace vowel with the letter 2 places ahead
if char.islower () :

new_char = chr(((ord(char) - ord('a') + 2) % 26)
+ ord('a'))

else:
new_char = chr (((ord(char) - ord('A') + 2) % 26)
+ ord('A'"))

encoded_message.append (new_char)

else:
Just swap case for consonants
encoded_message.append (char.swapcase ())
else:
If it's not a letter, we can just append it as is
encoded_message.append (char)
return ''.join (encoded_message)

Table 23: Updating process on HumanEval, Final code, iteration 1

def encode (message) :
vowels = 'aeiouAEIOU'
encoded_message = []
for char in message:
if char.isalpha() :
Swap case
if char in vowels:
Replace vowel with the letter 2 places ahead
and swap case
if char.islower():

new_char = chr(((ord(char) - ord('a') + 2) % 26)
+ ord('a')) .upper ()

else:
new_char = chr(((ord(char) - ord('A') + 2) % 26)
+ ord('A')) .lower ()

encoded_message.append (new_char)

else:
Just swap case for consonants
encoded_message.append (char.swapcase())
else:
Preserve spaces
encoded_message.append (char)
return ''.join (encoded_message)

16

Under review as a conference paper at ICLR 2025

LN
Score: 150
[]
[J
° °
L]
' O
®

)

4 ® .
L J
(a) Balls (b) Bomberman

o0
Score: 21900

H

(c) Mario (d) Tank

Score: 0
Remaining Lives of Bricks: 150

(e) Brick (f) Ghostly

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(g) Racing

(h) Sokoban

Figure 4: Games generated by EvoMAC.

Login to
CharitableGivingPlatform
Username:
Password:

GardeningForBeginners

Gardening Tips Forum Logout

Login successfull

Gardening Tips

Current Tips:

« Water your plants in the early morning for best resuits.
« Use compost to nourish your garden soil.

Add a new tip:

Add Tip.

(a) CharitableGivingPlatform

(b) GardeningForBeginners

My Personal Blog

Blog Posts
My First Blog Post

Exploring Python

(c) PersonalBlog

18

Under review as a conference paper at ICLR 2025

GourmetFoodSubscription

Dashboard
Add Subscription
View Subscriptions
Contact Us

Logout

Your Subscriptions
Subscription Types:
Subscription Frequencies:
Subscription Start Dates:

Select Subscription Type:

Choose a subscription

Edit Subscription Delete Subscription

New Journal Entry

Title:

happy day

Content:

I feel happy

Back to Dashboard

(d) GourmetFoodSubscription

(e) OnlineTherapeuticJournaling

Festival List

Coachella — California — 2023-04-14

Lollapalooza — Chicago - 2023-08-03

Add New Festival

Logout

(f) MusicFestivalDirectory

Figure 5: Websites generated by EvoMAC.

Under review as a conference paper at ICLR 2025

REFERENCES

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code. 2021.

20

	Benchmark details
	Algorithm
	Case Study
	Complete EvoMAC process
	Unit test case
	Updating process

	Software Presentation

