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Abstract

Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are widely-
used frameworks for solving imaging inverse problems by computing fixed-points
of operators combining physical measurement models and learned image priors.
While traditional PnP/RED formulations have focused on priors specified using
image denoisers, there is a growing interest in learning PnP/RED priors that are
end-to-end optimal. The recent Deep Equilibrium Models (DEQ) framework has
enabled memory-efficient end-to-end learning of PnP/RED priors by implicitly
differentiating through the fixed-point equations without storing intermediate acti-
vation values. However, the dependence of the computational/memory complexity
of the measurement models in PnP/RED on the total number of measurements
leaves DEQ impractical for many imaging applications. We propose ODER as a
new strategy for improving the efficiency of DEQ through stochastic approxima-
tions of the measurement models. We theoretically analyze ODER giving insights
into its convergence and ability to approximate the traditional DEQ approach. Our
numerical results suggest the potential improvements in training/testing complexity
due to ODER on three distinct imaging applications.

We adopt the monotone operator theory [1,2] for a unified analysis of ODER. The contributions of
this work are algorithmic, theoretical, and numerical. We propose ODER as a new algorithm. We then
develop new theoretical insights into its ability to approximate the traditional DEQ. In Supplement
A, we prove the convergence of forward pass to € Fix(T) up to an error term controlled by v and
w. In Supplement B, we prove that the online backward pass in expectation converges to b € Fix(F)
up to an error term that can be controlled via w. In Supplement C, we prove our main theorem
establishing the ability of ODER to approximate the stationary points of the desired loss ¢(6) up to
an error term that can be controlled during training. Finally, in Section D, we provide additional
technical details on our implementations and simulations omitted from the main paper due to space.

We use the same notations as in the main paper. The measurement model corresponds toy = Axz*+e,
where x* is the true solution and e is the noise. The function g(x) denotes the data-fidelity term.
The operator Dg(-) denotes the learned prior within ODER and RED (DEQ), which is implemented

via its residual Rg := | — Dg. The operator Tg(-) and F( -) denote the ODER stochastic forward
and backward passes, respectively. The operator Tg(-) and F(-) denote the full batch forward and
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Figure 1: Empirical evaluation of the Lipschitz continuity of T. Each histogram was generated
by storing all ODER iterates and T € Fix(T) across all the test images used in the tables of the
main paper. The x-axis is the value of || T(x*=1) — T(Z)|2/||z*~ 1 — Z||2. Left: The histogram
of IDT at b = 500 with {15, 20, 25} dB of input SNR. Middle: The histogram of sparse CT at
b € {90,120, 180} projection views. Right: The histogram of the radially sub-sampled parallel
MRI at 10% and 20% sampling. Note how T numerically acts as a contraction on all the iterates
generated for the CT and MRI experiments, and on 99.79% iterates generated for the IDT experiments.
Despite their imperfect numerical precision, current spectral normalization techniques still provide a
powerful tool for systematically ensuring stability of PnP/RED fixed-point iterations.

backward passes of RED (DEQ), respectively. Finally, our code, including pre-trained CNN models
used in ODER and RED (DEQ), is also included in the supplementary material.

A Proof of Proposition 1

The following proposition shows the convergence (in expectation) of the ODER forward pass for
convex g and contractive Dg. Note that this proof is a variation of existing results in the literature on
online PnP/RED [3-6]. However, this result plays an important role in the analysis of the ability of
ODER to approximate the traditional DEQ learning.

Proposition 1. Run the forward pass of ODER for k > 1 iterations under Assumptions 1-4 using the
step size 0 < v < 1/(\+ 7). Then, the sequence of forward pass iterates satisfies

E[|z* - &) < 7R+ — >

TN M

for some constant 0 < 1 < 1 where T € Fix(T).

Proof. For notation connivance, we abbreviate Tg(---) as Tg(- -+ ) in the following proof. From
Lemma 1, T is a contraction, which means that there exists 0 < 7 < 1 such that

IT(z) = T@)ll2 < nllz - yll2,
for all z,y € R™. Then, for T € Fix(T), we have that

la* — > = [T - T@)5 = T - T@) + T - T" ")l
<T@ =T@)ll2 + T ) = T(@* ]2
<l —E|o + || Vg(a" ") = Vgt )|,
where we used the triangular inequality and that T is n-Lipschitz continuous. We take the conditional

expectation from both sides to obtain
v

E [Ja* — s 2] < nllat " — e + T
where we applied the Jensen’s inequality to the variance bound in Assumption 4. By taking the total
expectation, we thus have
v
ﬁ.

By iterating this inequality and using the bound in Assumption 3, we get the result

Ellz* - % SnkR—i— L.
[H ||2] (1_77)\/17}

E (2" - z||2] <7E [z - Z|2] +



A.1 Useful Results for the Proof of Proposition 1

The following lemma establishes that T is a contraction. The proof is a minor modification of the
Proposition 1 from [7], which we provide for completeness. It is worth noting that this result does
not assume that the functions {g;} are strongly convex.

Lemma 1. Suppose that Assumptions 1-2 in the main paper are true. Then, forany 0 < v < 1/(A7),
the operator T in eq. (2) of the main paper is a contraction, which means that for all x € R"

V2T ()2 <1,

where || - ||2 denotes the spectral norm.

Proof. The Jacobian of the operator T with respect to « is given by
VoT(x) = (1 —~7)I — yHg(x) — v7V.D(x).

Let Ay > --- > )\, denote sorted eigenvalues of the Hessian matrix Hg(x). Since ¢ is convex, we
have that A,, > 0. Then, for any € R", we have

[VaT(x)|l2 = (1 =y7)I — yHg(x) — y7VaD(z)|l
< (X =y7)I —yHg(@)[|2 +77(|VaD()||2
< max {1 —~vy7 —y\}+7k

T 1<i<n
<1l—m1(l-k) <1,

where in the first inequality we used the triangular inequality, in the second the fact that D is a
contraction, and in the third the convexity of g. O

B Proof of Proposition 2

The following result is a novel analysis of the ODER backward pass. The result implies that the
backward pass converges (in expectation) up to an error term that can be controlled by the minibatch
parameter w. Our numerical results provide additional corroboration to our theory by showing that
ODER nearly matches the performance of the traditional DEQ learning.

Proposition 2. Run the backward pass of ODER for k > 1 iterations under Assumptions 1-4 from
b? = 0 using the step-size 0 < v < 1/(A\+ 7). Then, the sequence of backward pass iterates satisfies

_ By
E [|[b* — b|js] < Bin® + == 2
(16" = Bll2] < Bun® + ==, @

where 0 < n < 1, By > 0 and By > 0 are constants independent of k and w, and b € Fix(F).

Proof. Let € denote the output of the forward pass of ODER after ' > 1 iterations, * denote the
training label, and T € Fix(T). Consider the following two operators

F(b) = [VoT(@)] b+ (@ —2*) and F(b) = [V, T(zX)]Tb+ (= — z*),

where the first operator is used in the backward pass of RED (DEQ), while the second is its online
approximation. Note also the following two Jacobians

VoT(@) =1 —v(Hg(T) + 7VLR(®E)) and VoT(x®) =TI — y(Hj(xX) + 7VLR(xX)).

Lemma 1 implies that T is a contraction. Let 0 < 7 < 1 denote the Lipschitz constant of T. Since
VF(b) = V4 T(Z), we have | VpF(b)||2 = ||V T(Z)||2 < 7, which means that F is a contraction

IF(2) = F@)ll2 < nllz —yll2, 2z,y €R™
We can thus show the following bound
IB* = Bl|2 = [[F(b* 1) — F(B)|l2 = [F(* 1) — F(B) + F(B* ') — F(6"* 1)
< [IF(*) = F(®)[l2 + [IF(B*) — F(B" )2
< bRt = Blls + [F(BR 1) = F(F 1) |2,



where we first used the triangular inequality and then the fact that F is a contraction. By taking the
conditional expectation on both sides, we obtain

E[Jb* = Bll2 | @65 1] < pllb* " = Bllo + E [[F(F) — FO* )2 | 2,65 3)
We can bound the second term in (3) as follows
B [IIF(65") — FO )z |27, 04! | < B [[Hg(®@) — Hg(a™)lla [, 6] 6
+ 7] VaR(@) — VaR(@™)||2[I6" ]2 + Iz — 2]
< Az — |2 [6" |2 + Lleb’“‘le +yrala’ —z|[|6" 2 + [|lz* — 2

A
V'
with A1 = (29A + 2y7aR + 1) and Ay = 2v R, where in the second inequality we used Lemma 2

and the a-Lipschitz continuity of VR and in the third [b*~1]|2 < 2R. Since b° = 0, Assumption 3
implies that ||b|2 < R, which leads to ||b*~!||; < 2R forall k > 1.

By including the last bound into (3), we obtain
E[|[b" =Bll2 |2, 6" 1] < nl[o" "t = bll2 + Ayl —Z|2 + Az/ V.

By taking the total expectation and using Proposition 1, we get

< Ayllz® -z +

_ P Ay Ay
E[|6F — bl <nE[||b" ! - b ARy L2 22
[l[B* = Bll2] < nE(] lo] + AR + T 5=+ o

By iterating this bound and noting that k < K, we get the final result
- B

E[|[6* —b|s] <n*By + =2

[|| ||2] — 77 1 + \/E i
where B .= R+ A1 R/(1 —n)and By := (((A1v)/(1 —n)) + A2)/(1 —v).

B.1 Technical Lemma for the Proof of Proposition 2

The following technical result is used in the proof of Proposition 2. It bounds the variance of the
Hessian of the data-fidelity term g.

Lemma 2. Suppose that Assumptions 1 and 4 in the main paper are true. Then, for any z,y € R"

E[[[Hg(z) — Hg(y)ll2] < Allz — yll2 + ﬁ
where the expectation is taken over the indices {i1, . .. i, } used for g.

Proof. The proof directly follows the A-Lipschitz continuity assumption of Hg is Assumption 1 and
boundedness of the variance in Assumption 4

E[IHg(z) — Hg(y)ll2] < E[|[Hg(2) — Hg(y)ll2] + E [[[Hg(y) — Hg(y)l]

v
<AMz-yla+—,
Vw
where we used the Jensen’s inequality to get the second term. O

C Proof of Main Theorem

Our main theoretical result is a novel analysis on the ability of ODER to approximate the stationary
points of the fraining loss £(0). We show that ODER can approximate (in expectation) the stationary
points up to an error term that can be controlled by the minibatch size w and the learning rate 3.



Main Theorem. Train ODER using SGD for T > 1 iterations under Assumptions 1-6 using the
step-size parameters 0 < 8 < 1/L and the minibatch size w > 1. Select a large enough number of
forward and backward pass iterations K > 1 to satisfy 0 < n® < 1/\/w. Then, we have that

LS e[iveeniz) < O L G se,
t=0

where Cy > 0 and Cy > O are constants independent of T' and w.

Proof. Consider the RED (DEQ) loss ¢ and its ODER approximation i

1 R 1A -
(0)==> ;(6) and £(6) =— i;(6), “
P P
J J
where each £; and éj have the forms
1, . N 1 .
4;(8) = 5 z;(8) - xill3 and £;(0) = §\|wf(9) - ;|3

Vector a:jK denotes the final iterate of the online forward pass obtained after K > 1 iterations for the
training sample j € {1,--- ,p}.

From Assumption 5, we obtain the traditional Lipschitz continuity bound on the gradient
[VE(01) — VE(02)]]2 < L[|01 — 2|2,
which directly leads to traditional quadratic upper bound (see Lemma 1.2.3 in [8]).
L
0(6,) < €(62) + VI(62)T (6, — 6) + §H91 - 053 )

Lemma 3 in this supplement establishes the following useful bound for our analysis

£ [Ivie") - vewo)3] < -

V'
for some constant C' > 0 (see its full expression in Lemma 3). This directly implies that
. 1, - 1 C
_ T ty - 012 <« _ 2 (2 .
B |-VUeTVi") + 3O ] < 3BV + 5o ©®
Consider a single iteration of SGD for optimizing ODER
0" =0t — BV, (6"). @)

From the quadratic upper bound (5), we get
L
(6™) — (6) < VU(O")T (0 — 61) + |0 — 6|3
2
N L N
= VOV, (6") + 2V (8)]3

For notation convenience, we use E[-| \ j;] to denote the expectation only with respect to the training

index j; € {1,...,p}, where we condition on 8 and the random indices within forward and backward
passes at this iteration. By taking E[-| \ j:] on both sides of the quadratic upper bound (5)
. P . B*L 5 .
E[((6"F)|\ ji] — €(6") < —BVUO")E [V, (6)] \ ji] + 5B [IVE;,(6")I3] \ 5
T/t BzL i ty (12 .
= —BVUO")TVI0") + B[ IVE, 03]\ i) - ®)
where we use (4) and the fact that j; is distributed uniformly at random in {1, ..., p}.



‘We now estimate the last term in (8)
E[IV2,(6")131\ 5]
— E[|IV7;,(6") — Vi(8") + VE(O" 3]\ jt| o
= E [|V2,,(6") — VI(0") |3+ 2(VE,(6") — Vi(©")TVi0") + | VE(0") 3]\
—E[IIVE;,(6") — VIO I\ 3e] +E[IVEOI31\ je]

where in the third equality we use the fact that E | (V;, (8") — V£(6"))TVE(6")] \ ji| = 0.

By replacing the last term in (8) with (9) and taking the full expectation on both sides of (8) in terms
of all random variables and invoking the bound (6), we obtain

E[0(6)] —E[£(6")]

<& [-svueviie) + Zhivienn] + e [ivi, e - i)
C ’L C
< GBIV + 5 + P (ae” + 20,

where we used the fact that 0 < 8 < 1/L, and in the last inequality we used the bound from Lemma 4
in this document. By rearranging the terms, and summing this bound over 0 < ¢t <T' — 1, we obtain

1= 2y 2008°) —E[((6T)]) | &
- §t:03 E [||Ve(eh)|3] < o + s+ 0
2(0(6°) — £(6*))  Cy
< s to=t BCs,

where C; = 7y272a*(R + R?)(B1 + B2 + R* + ywR/(1 — 1)) and C := 4Lo? are constants
independent of ¢ and w. In the last inequality we used the fact that £(68*) < () for all 8, where 6*
denotes a global minimizer of ¢. O

C.1 Technical Lemmas for the Proof of Main Theorem

The following lemma are useful for relating V7 and V¢ in expectation up to an error term. Both are
used in the proof of Main Theorem.

Lemma 3. Given the loss function £ of RED (DEQ) and i of ODER, by selecting a large enough
number of forward and backward iterations K > 1 to satisfy 0 < 0 < 1/\/w, we have

B[Ivie) - ve@)l] < .

where C' == 7?720?(R + R?)(By + By + R?2 + ywR/(1 — 7)) is a constant.
Proof. By using the DEQ training, we have the following bound

V4,(0) - V65(0)s = | [VoTo(@)] b5 — (VoTo(@,) B,

= [vﬁg(mf )}T (bF — b)) + [vﬁa(mf ) — veTa(@)}TE

2
< |[VoTo(@f)|| 165 —bjll2+ | VoTo(@f) = VaTo(@,)|_ 1Bz

<yra(|[bff = bjll2 + |2 —z;|2llBill2), Vi€ {Ll, - .p},  (10)

where in the first inequality, we used Cauchy-Schwarz inequality and the fact that Dg and VgDg(x)
are a-Lipschitz continuous with respect to @ and 6 based on Assumption 2. By applying Assumption
3 which states that ||b* — bl||» < Rand ||z* — Z||2 < R for every «, b € R", we have

IVE;(8) — VE;(0)|ls < yra(R+R?), Vje{l,--,p} (11)



On the other hand, by taking the expectation with respect to the stochastic approximation variables in
forward and backward propagation in (10), invoking the bounds obtained from Proposition 1 and
Proposition 2 and using the fact that 0 < n* < 1/,/w, we have

E [IV;(0) = V6,(0)]] < ra <31 *\%* U 5 —%ﬁ/@)

where By > 0 and By > 0 are constants obtained in Proposition 2 . Now consider a random
variable X which has a probability density function given by f(z) on the real number line such that
P(0 < X <c¢) =1, then we have

E[X?] = /OCCEQf(x)dx < /Oc cxf(z)dr = cE[X].

As a consequence, given the bound (11) for the random variables ||V/;(8) — V;(8)| and using
the above fact, we have the following useful bound for our proof

. C
E|IVE0) - V4Ol < 7 (12)
where C' == v?*720?(R + R?*)(B1 + B2 + R* + ywR/(1 — 1)) is a constant.
Note also the fact that for aq,--- ,a, € R", we have
2
p p
doa| <p)llagls
Jj=1 9 j=1
As a result, applying the bound (12), we have
) 2
. 1 .
E[IVi(6) - vUO)I3] = E |||>_(VE(6) - V¢;(6))
P = ,
1< R 2
< Y E {ij(a) - wj(a)HQ]
j=1
<<
This finishes the proof. O

Lemma 4. Given the loss function { and l, by taking the conditional expectation with respect to the
training index j; (via conditioning on all other variables), we have

j ; 6C
E[V4.(6") = VE©")5] < 40° + 7=,

where C' > 0 obtained in Lemma 3 is a constant.

Proof. By taking expectation with respect to training index j; € {1---, N}, we obtain the following
useful bound for our proof

E|I1V;,(6") = VE©") 3]\ i

—E[[|V4,(8") - VA(8") + V4(6") — VE(6)]3]\ ji

= E[|[V£;,(8") - VU(8") |3 + | V(8") — V(6" 3 "
+ 2(VL,(6") = VAO")T(VEB") — VEO)|\ ji|

<2 (E[|IVE,,(0) = VE@") [ + IVA©") - Vi3I \ ji] )

= 2K [|V4;,(8) — VE(O") 3]\ ji] + 2/ V4(6") — VI8,



where we used Young’s inequality that states for any a;, as € R", we have
2a{az < [lai]3 + llazl3 = a1 +azl3 < 2(la1]3 + [laz]l3)-

By taking the full expectation of the inequality (13) above and applying Lemma 3 and the bounded
variance in Assumption 6, we have

E[IIVe;,(6") - vi(e")]1]
< 2K [E [|[V¢;,(6) — VEOH |31\ 3] + 2B [IVE(6") — Ve(o") 3 (14)

2C
<9252+ =

\/E
Similarly, by taking full expectation and using Lemma 3 and the bound (14), we write that
E[IIVE;.(6") — vi(e")]]
= E|[V4;,(6") ~ V2;,(6") + VE;,(6") — VoY) 3]
< 28 [|V1;,(0) ~ VIO 3] + 2B [|VE;, (8) — Ve,,(6") 3]

<d4o?+ —.
_0—5—\/@

D Additional Technical Details and Numerical Results

In this section, we present technical details that were omitted from the main paper for space. We used
the following signal-to-noise ratio (SNR) [4,9] in dB for quantitively comparing different algorithms

SNR(%, ) = max {20 logy <”w'm”2> } , (15)

a,beR —afc\+b||2

s

where & and x represents the noisy vector and ground truth respectively, while the purpose of a and b
is to adjust for contrast and offset. We also used the structural similarity index measure (SSIM) [10]
as an alternative metric. All the experiments in this work were performed on a machine equipped
with an Intel Xeon Gold 6130 Processor and eight NVIDIA GeForce RTX 2080 Ti GPUs.

As stated in [7, 11] and other DEQ work, using acceleration can reduce computational costs during
both training and inference time and lead to improvement of empirical performance at inference.
Here, we focus on the final image reconstruction performance for denoising based step-descent RED
(SD-RED) by using two different fixed-point acceleration methods, namely Anderson acceleration
and Nesterov acceleration. The detailed instructions of using Anderson acceleration is publicly
available with tutorials !. The Nesterov acceleration for RED (DEQ) and RED (Denoising) can be
summarized as

xk = Ty(s")

cr = (qk—1 —1)/ax
s* = zF + cp(ah — 2F 1),

where the value of g = 1/2(1+ /1 + 4¢7_,) is adapted for better PSNR performance. The average

SNR (dB) values for RED (Anderson) and RED (Nesterov) using different CNN denoisers on the MRI
images are presented in Table 1. We empirically observe that the RED with Nesterov acceleration led
to better reconstructions in terms of SNR. For the forward pass iterations, we equip ODER, RED
(Denoising), RED (Unfold) and RED (DEQ) with Nesterov acceleration for all experiments used
in this work. We utilize Anderson acceleration for the backward pass for both ODER and RED
(DEQ). We limit the number of backward pass iterations to 50 for efficiency considerations for all
three imaging applications. The number of forward passes is presented in each imaging modality

! Anderson acceleration for DEQ was introduced at http://implicit-layers-tutorial.org/.


http://implicit-layers-tutorial.org/.

Table 1: Average SNR (dB) for different pre-trained CNNs on MRI test images. Note that the
“AWGN denoising” performance is for noise level o = 5 and the “Time (ms)” presents the runtime of
evaluating Rg(x)/V4Re(x) on images of size 320 x 320.

Model
DnCN Ti -Net -Net
SNR(dB) nCNN iny U-Ne U-Ne
AWGN denoising 30.30 30.36 30.41
RED (Nesterov) 26.37 26.35 26.42
RED (Anderson) 25.44 25.46 25.51
Time (ms) 12.22/31.74 1.65/11.48 1.88/32.84

sub-section, respectively. Followed by [7, 12], we additionally set the convergence criterion (relative
norm difference between iterations) as

k+1 _ k:||2

|2 3
65

Zr
[EaglP

where € > 0. In forward passes, We set ¢ = 10~ for ODER and RED (DEQ), while we set stopping
criterion of backward passes to € = 102 for ODER and RED (DEQ).

We additionally tested three network architectures including DnCNN [13], U-Net [14] and tiny
U-Net [15]. The DnCNN network has seventeen layers, including 15 hidden layers, an input layer,
and an output layer. The tiny U-Net is a simplified variant of the normal U-Net with less trainable
parameters. In specific, the CNN consists of four scales, each with a skip connection between
downsampling and upsampling. These connections increase the effective receptive field of the CNN.
The number of channels in each layer are {32, 64, 128, 256}. We make two additional modifications
to the tiny U-Net. First, we drop out the second group normalization (GN) [16] at each composite
convolutional layers. Second, we add spectral normalization to each layers for more stable training
and better Lipschitz constrain of the neural network. It is worth to note that spectral normalization
is a widely used method for Lipschitz constrained neural network, and it is not our aim to claim
any algorithmic novelty with respect to it. In Table 1, we present the denoising performance on
AWGN removal with noise level ¢ = 5 and the run time of calculating Rg (x)/V zRe () with respect
to a 320 x 320 image. Overall, the traditional U-Net architecture achieves the best denoising and
reconstruction performance, but requires more time per iterate than tiny U-Net. As a result, we
implement traditional U-Net denoiser for RED (Denoising), and we equip ODER, RED (DEQ) and
RED (Unfold) for the same tiny U-Net architecture in order to decrease per-iteration computation
costs during training.

In Fig. 1, we report the empirical evaluation of the Lipschitz constant  of T used in our simulations
and stated in Lemma 1 on the testing images from all three inverse problems in the main paper. We
plot the histograms of values n = | T(x*~1) — T(Z)||2/||<*~* — Z||2, and the maximum value of
each histogram is indicated by a vertical bar with the frequency of > 1, providing an empirical
upper bound on the values of 7. Note that despite the numerical limitations of current spectral
normalization techniques, they still provide a useful tool to ensure stable convergence.

D.1 Additional Details and Validations for IDT

We follow the experimental setup in [4, 6, 17] to generate the measurement matrix and simulated
images for IDT 2. In specific, the simulated images are assumed to be on the focal plane z = Oum
with LEDs located at z; gp = —70mm. The wavelength of the illumination was set to A = 630nm
and the background medium index was assumed to be water with €, = 1.33. We generated b = 500
intensity measurements with 40 x microscope objectives (MO) and 0.65 numerical aperture (NA).
Followed by [6], we assume real permittivity function, and our implementation stores each A; as
two separate arrays for phase and absorption. In addition, each matrix is stored in the Fourier space
to reduce the computational complexity of evaluating convolutions. This result in the storage of
complex valued arrays for each, consisting of pairs of single precision floats for every element when
training ODER/RED (DEQ). Thus, the shape of each measurements and measurement operators in

’The code is publicly available at https://github.com/bu- cisl/High-Throughput-IDT
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Figure 2: Numerical Illustration of ODER on IDT for two minibatch sizes w € {100, 250}. The
result for RED (DEQ) with b = 500 is also provided for reference. The left figure shows how ODER
improves the efficiency of the backward pass of RED (DEQ) by reducing the per-iteration complexity
of the measurement matrix. The middle figure plots the loss against the epoch number evaluated on
the training set. The right figure plots the SNR (dB) achieved at different epochs for ODER evaluated
over the testing set. This figure highlights that by using minibatches 1 < w < b, ODER improves
per-iteration complexity and matches the same final imaging quality achieved by RED (DEQ).

Table 2: Average SSIM values for IDT image recovery on testing images from [18].

Method Input SNR (dB)
15 20 25
TV 0.9810 0.9829 0.9835
U-Net 0.9811 0.9831 0.9836
ISTA-Net+ 0.9809 0.9833 0.9841
SGD-Net (100) 0.9832 0.9859 0.9866
RED (Denoising) 0.9831 0.9852 0.9866
OBER 00) T e ks GRS Gosge

ODER (250) 0.9846 0.9878 0.9891
RED (DEQ) 0.9845 0.9879 0.9890

full batch RED (DEQ) for reconstructing one slice is 1 x 416 x 416 x 500 x 2. A detailed discussion
on the IDT forward model is available in [4, 17].

We train ODER and RED (DEQ) with the initialization ¢y = A"y, where A" denotes the conjugate
transpose. For both ODER and RED (DEQ) during training, we fix the step-size parameter and
regularization parameter to y = 5 x 1072 and 7 = 4, respectively. The learning rate of ODER/RED
(DEQ) is set in two stages. In the first 100 epochs, we adopt the cyclic learning rate policy [19],
where the policy cycles the learning rate between 0.05 and 0.16 with exponentially decay to 0.9998.
In stage 2, the learning rate was gradually reduced by a factor of 0.6 every 50 epochs. The number
of total training epochs was 200. We set the same forward pass initialization ° in ODER for all
reference methods. In these experiments, we set the number of forward pass iterations in ODER/RED
(DEQ) to K = 80, and we set the steps in RED (Denoising) and RED (Unfold) to K = 100 and
K =9, respectively.

Table 2 reports average SSIM values obtained by ODER and other baselines. Fig. 2 presents
quantitative evaluation of ODER on IDT for two minibatch sizes w € {100,250} against RED
(DEQ) using the full-batch of b = 500 measurements. Specifically, Fig. 2 (left) presents the empirical
acceleration of ODER backward pass over that of RED (DEQ) due to the reduction in the computation
complexity of data-consistency blocks at each iteration. Fig. 2 (middle) illustrates the loss against the
epoch number on the training set, while Fig. 2 (right) presents the SNR achieved at different epoches
for different values of w evaluated over testing set. Fig. 3 provides additional visualizations of IDT
reconstruction produced by ODER and other reference methods. Fig. 5 (left) shows the evolution of
SNR for ODER, RED (DEQ), and RED (Denoising) on IDT against the iteration number.
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Figure 3: Quantitative evaluation of several well-known methods on IDT under noise corresponding
to input SNR of 20 dB. The total number of IDT measurements in this experiment is b = 500. RED
(DEQ) corresponds to the full batch architecture that uses all the measurements at every step. Each
image is labeled with its SNR (dB) and SSIM values with respect to the original image. The yellow
box provides a close-up with a corresponding error map provided on its right. Note the similar
performance of ODER and RED (DEQ), and the improvement over RED (Denoising) /RED (Unfold)
due to the usage of DEQ learning. Best viewed on a digital display.
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Figure 4: Left and Middle: Average SNR is plotted against the training epoch for ODER and RED
(DEQ) on the training and validation images used in the sparse-view CT experiments of the main
paper. Two variants of RED (DEQ) are trained with b = 50 and b = 180 projections to illustrate
the influence of using all the available measurements. While the complexity of ODER, which cycles
through w = 50 projections, is comparable to RED (DEQ) using b = 50, it nearly achieves the
performance of RED (DEQ) using all b = 180 projections. Right: ODER and RED (DEQ) in Left
and Middle were trained by initializing the CNN prior using pre-trained denoisers. Here, we show
the evolution of SNR for ODER and RED (DEQ) trained from a random initialization ( “training from
scratch”). Note the empirical benefit of initializing the CNN priors using pre-trained denoisers.

D.2 Additional Details and Validations for CT/MRI

Sparse-view CT. For the CT images, we train ODER by using the filtered backprojection (FBP)
initialization 2° = A" F'y. We use the Hann filter for FBP reconstruction. We set the number of
forward pass steps in ODER/RED (DEQ) to K = 180, and we use Adam with training minibatch size
4 and weight decay 1 x 10~ 7. For ODER and RED (DEQ), we fixed the step-size toy = 1.25 x 103
and regularization parameter to 7 = 3. The learning rate starts from 3 x 10~* and is halved at epoch
15, then gradually reduced by a factor of 0.6 every 5 epochs. The number of total training epochs
is 35. It is worth to note that we equally divided the full projection views b € {90,120, 180} into
5 non-overlapping chunks, each with size of {18,24, 36} views, respectively. At every iterations,
the corresponding ODER model with w/b € {30/90,40/120, 50/180} randomly picks a subset of
{6,8, 10} from each chunk for the data-consistency block calculation. This leads to better empirical
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Figure 5: [llustration of the SNR convergence of ODER, RED (DEQ) and RED (Denoising) for three
imaging applications. Left: IDT with the full batch of b = 500 measurements under 25 dB input SNR.
Middle: Sparse-view CT with b = 180 projection views. Right: Parallel MRI at 20% sampling with
b = 96 simulated coil sensitivity maps. Note that ODER matches the performance of RED (DEQ),
and converges to a higher SNR than RED (Denoising) due to the end-to-end training.

Table 3: Sparse-view CT reconstruction in terms of SNR (dB) and SSIM on another patient from [20].

Method Projection Views

90 120 180
U-Net 33.66 09775 . 3462 09808 . 3577  0.9848
RED (Unfold) 3427 09810 © 3518 09842 i 3627  0.9870
RED (Denoising) 3294 09717 0 3407 09781 i 3534 09812
S A O 0600087 3546 05848 36l 09864
RED (DEQ) 3481 09831 i 3555 09852 0 3634  0.9867

reconstruction improvement for ODER. Similarly, we set the number of forward pass iterations in
RED (Denoising) and RED (Unfold) to K = 150 and K = 7, respectively.

Table 3 reports the average SNR for serveral methods on CT images using another different patient
data from [20]. Table 4 presents new simulations on sparse-view CT to empirically quantify the
influence of w > 1 on SNR (dB). Fig. 4 (left and middle) compares the average reconstruction SNR
of ODER and RED (DEQ) for a fixed periteration measurement budget on sperase-view CT. The
total number of projection views is b = 180. The batch algorithm RED (DEQ 50/180) and ODER
with (w = 50) are allowed to use only 50 projection views at per iterate. This means that in each
figure both RED (DEQ 50/180) and ODER with (w = 50) have the same per-iteration computational
complexity. Empirically, we observe that ODER outperforms RED (DEQ 50/180) by around 3 dB
on the validation set under the same per-step memory complexity and matches the performance of
RED (DEQ 180/180). Fig. 4 (right) shows the average SNR of ODER and RED (DEQ) trained from
a random initialization (“training from scratch”) on CT. Note the empirical benefit of initializing
the CNN priors using pre-trained denoisers. Fig. 5 (middle) shows the evolution of SNR for ODER,
RED (DEQ), and RED (Denoising) on CT against the iteration number. Fig. 6 shows visual results of
running ODER with different minibatch sizes w > 1 on CT test images, where the full measurement
size is b = 120. Note how using 1/12th and 1/6th of total measurements allows ODER to match the
visual quality of RED (DEQ). In Fig. 7 (top), we provide additional visualizations of the solutions
produced by ODER/RED (DEQ) and various baseline methods considered in our work.

Parallel MRI. For the MRI images, we train ODER/RED (DEQ) by using the zero-filled reconstruc-
tion as initialization 2°. For the 2D MRI images, we set the number of iterations in ODER/RED
(DEQ) to K = 200, and we use Adam with training minibatch size 16 and weight decay 2 x 1077,
We fixed the step-size to v = 1.2 and regularization parameter to 7 = 0.05 for both ODER and RED
(DEQ). The learning rate starts from 1 x 10~ and is gradually reduced by a factor of 0.6 every 10
epochs. The number of total training epochs is 40. In these experiments, we set the number of forward
pass iterations in RED (Denoising) and RED (Unfold) to K = 200 and K = 25, respectively. For the
3D MRI volumes, we set the number of steps in ODER/RED (DEQ) to K = 400, and we use Adam
with training minibatch size 4 and weight decay 1 x 1075, We fixed the step-size to v = 1.25 and
regularization parameter to 7 = 0.01 for both ODER and RED (DEQ). The learning rate starts from
5 x 10~° and is gradually reduced by a factor of 0.65 every 10 epochs. The number of total training
epochs is 100. Similar to sparse-view CT, we equally divided the number of coil sensitive maps
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Figure 6: Visual illustration of ODER results using different minibatch sizes w > 1 on CT test
images. Each image is labeled with the corresponding SNR (dB) and SSIM values. The figures below
are the error residuals relative to the ground truth. This figure corroborates our theoretical analysis
by showing that w allows to balance computational/memory efficiency against accuracy relative to
RED (DEQ). Note how using 1/2th, 1/6th, or 1/12th of total measurements allows ODER to be within
0.07 dB, 0.39 dB, and 0.86 dB of SNR achieved by RED (DEQ) that uses all b = 120 measurements.

Table 4: Average SNR (dB) of ODER for different minibatch sizes w > 1 on CT test images. Note
that RED (DEQ) always uses the full batch size of b = 120 measurements.

w/b, b=120 || 1/12 1/6 1/3 1/2 3/4 111 RED (DEQ)
ODER || 34.34 34.94 35.12 35.24 35.25 35.27 35.26

b = 96 into 4 non-overlapping chunks, each with size of 24 coils, respectively. At every iterations,
the corresponding ODER model with w = 48 randomly picks a subset of 12 from each chunk for the
data-consistency block calculation. For the 3D MRI volumes, we set the number of forward pass
iterations in RED (Denoising) and RED (Unfold) to K = 400 and K = 20, respectively. Fig. 5
(right) shows the evolution of SNR for ODER, RED (DEQ), and RED (Denoising) on MRI against
the iteration number. Fig. 7 (bottom) reports the comparison on medical brain images for CS-MRI
with under-sampling ratio of 10%.

References
[1] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces,
Springer, 2 edition, 2017.

[2] E. K. Ryu and S. Boyd, “A primer on monotone operator methods,” Appl. Comput. Math., vol. 15, no. 1,
pp. 3-43, 2016.

[3] Y. Sun, B. Wohlberg, and U. S. Kamilov, “An online plug-and-play algorithm for regularized image
reconstruction,” IEEE Trans. Comput. Imag., vol. 5, no. 3, pp. 395-408, Sept. 2019.

[4] Z. Wu, Y. Sun, A. Matlock, J. Liu, L. Tian, and U. S. Kamilov, “SIMBA: Scalable inversion in optical
tomography using deep denoising priors,” IEEE J. Sel. Topics Signal Process., vol. 14, no. 6, pp. 1163-1175,
Oct. 2020.

[5] J. Tang and M. Davies, “A fast stochastic plug-and-play ADMM for imaging inverse problems,” 2020,
arXiv:2006.11630.

[6] Y. Sun, Z. Wu, B. Wohlberg, and U. S. Kamilov, “Scalable plug-and-play ADMM with convergence
guarantees,” IEEE Trans. Comput. Imag., vol. 7, pp. 849-863, July 2021.

[7]1 D. Gilton, G. Ongie, and R. Willett, “Deep equilibrium architectures for inverse problems in imaging,”
IEEE Trans. Comput. Imag., vol. 7, pp. 1123-1133, 2021.

[8] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic Publishers,
2004.

[9] H. Gupta, K. H. Jin, H. Q. Nguyen, M. T. McCann, and M. Unser, “CNN-based projected gradient descent
for consistent ct image reconstruction,” IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1440-1453, Jun. 2018.

[10] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility
to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr 2004.

13



(11]

(12]

[13]

(14]

[15]

[16]
(17]

(18]

(19]

[20]

S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” Proc. Advances in Neural Information
Processing Systems 33, vol. 32, 2019.

S. Bai, V. Koltun, and J. Z. Kolter, “Neural deep equilibrium solvers,” in International Conference on
Learning Representations, 2022.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of
deep CNN for image denoising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142-3155, Jul. 2017.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmenta-
tion,” in Proc. Med. Image. Comput. Comput. Assist. Intervent., 2015, pp. 234-241.

J. Liu, Y. Sun, W. Gan, B. Wohlberg, and U. S. Kamilov, “Sgd-net: Efficient model-based deep learning
with theoretical guarantees,” IEEE Transactions on Computational Imaging, vol. 7, pp. 598-610, 2021.

Y. Wu and K. He, “Group normalization,” in Proc. Euro. Conf. Comp. Vis., Sep. 2018, pp. 3—19.

R. Ling, W. Tahir, H.-Y. Lin, H. Lee, and L. Tian, “High-throughput intensity diffraction tomography with
a computational microscope,” Biomed. Opt. Express, vol. 9, no. 5, pp. 2130-2141, May 2018.

A. Aksac, D. J. Demetrick, T. Ozyer, and R. Alhajj, “Brecahad: a dataset for breast cancer histopathological
annotation and diagnosis,” BMC research notes, vol. 12, no. 1, pp. 1-3, 2019.

L. N. Smith, “Cyclical learning rates for training neural networks,” in 2017 IEEE Winter Conference on
Applications of Computer Vision, Mar. 2017, pp. 464—472.

C. McCollough, “TU-FG-207A-04: Overview of the low dose CT grand challenge,” Med. Phys, vol. 43,
no. 6Part35, pp. 3759-3760, 2016.

14
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A
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Figure 7: Visual evaluation of several well-known methods on two imaging problems: (top) Re-
construction of sparse-view CT from b = 90 projection views. Each image is labeled with the
corresponding SNR (dB) and SSIM values. The figures below are the error residual images to the
ground truth; (bottom) Reconstruction of brain MRI images from its radial Fourier measurements at
10% sampling with b = 96 simulated coil sensitivity maps. Best viewed on a digital display.
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