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ABSTRACT

The ability to construct transferable descriptors for molecular and biological systems has
broad applications in drug discovery, molecular dynamics, and protein analysis. Geomet-
ric graph neural networks (Geom-GNNs) utilizing all-atom information have revolutionized
atomistic simulations by enabling the prediction of interatomic potentials and molecular
properties. Despite these advances, the application of all-atom Geom-GNNs in protein mod-
eling remains limited due to computational constraints. In this work, we first demonstrate
the potential of pre-trained Geom-GNNs as zero-shot transfer learners, effectively modeling
protein systems with all-atom granularity. Through extensive experimentation to evaluate
their expressive power, we characterize the scaling behaviors of Geom-GNNs across self-
supervised, supervised, and unsupervised setups. Interestingly, we find that Geom-GNNs
deviate from conventional power-law scaling observed in other domains, with no predictable
scaling principles for molecular representation learning. Furthermore, we show how pre-
trained graph embeddings can be directly used for analysis and synergize with other archi-
tectures to enhance expressive power for protein modeling.

1 INTRODUCTION

In silico molecular computation and simulation are indispensable tool in modern research for biology, chem-
istry, and material sciences capable of accelerating the discovery of new drugs and materials, as well as predic-
tion of protein structures and functions. One of the key advance in molecular computation is the use of learn-
able geometrical descriptors for representing the atomic environment (Todeschini & Consonni, 2008; Mauri
et al., 2017; Baig et al., 2018; Moriwaki et al., 2018). Geometric Graph Neural Networks (Geom-GNNs) with
all-atom resolutions can learn to construct system-specific molecular force fields by incorporating geometric in-
ductive biases such as rotational invariance (Schütt et al., 2018; Gasteiger et al., 2020) and equivariance (Schütt
et al., 2021; Batzner et al., 2022). These ML-based force fields can be seen as learnable geometric descriptors
that map the molecular conformation to the potential function of a target. These capabilities position Geom-
GNNs as powerful tools for mapping molecular conformations to target functions, such as potential energy
surfaces. However, most applications remain restricted to quantum chemistry tasks, with limited exploration in
protein modeling. And such all-atom information can be crucial in modeling protein-protein interaction (PPI),
protein-ligand binding, and protein reaction kinetics.

In contrast to other domains such as text and vision, where pre-trained models have been recognized as highly
effective feature extractors trained with self-supervised objectives (Devlin et al., 2019; Radford et al., 2021;
Kirillov et al., 2023), the potential of pre-trained Geom-GNNs for protein modeling remains underexplored.
Recent advances, such as denoising pre-training, have shown promise in enhancing the generalization of Geom-
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GNNs across diverse molecular systems (Zaidi et al., 2022). Building on these developments, we first demon-
strate that pre-trained Geom-GNNs can serve as effective zero-shot learners for protein systems, extracting
rich, transferable representations when pretrained on small-molecule datasets, thereby addressing the chal-
lenges discussed earlier. We evaluate the performance of these pre-trained models by analyzing neural scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022). Specifically, we studied pre-training graph embeddings via
characterizing the graph neural scaling laws in the self-supervised learning pre-training, supervised regression
and unsupervised feature extraction setups.

Figure 1: Meta-architecture for Using Pre-trained
Geom-GNNs as descriptors: The figure shows a
framework where pre-trained Geom-GNNs act as lo-
cal geometric descriptors to featurize residue-level con-
formations. Each window represents an atomic envi-
ronment for residue feature extraction, defined by a
user-defined context (illustrated here as a sliding win-
dow of nearest neighbors in sequence). In each win-
dow, atomic structures are treated as individual graphs
and processed by the pre-trained Geom-GNN to ex-
tract atomic-level features, which are aggregated into
residue-level representations or “tokens.” The archi-
tecture can employ self-attention (SA), multi-layer per-
ceptron (MLP), or message passing mechanisms to en-
hance representational power. For graph-level tasks, the
mixed tokens are pooled and input to a task-specific
head for training and predictions.

Our results reveal that, contrary to the power-law
scaling observed in other domains, Geom-GNNs ex-
hibit unique scaling patterns characterized by early
saturation and diminishing returns. Furthermore, we
explore how pre-trained all-atom graph embeddings
can be integrated with other neural architectures to
improve their expressive power in complex tasks
such as protein folding and kinetic modeling. We
additionally show how those pre-trained graph em-
beddings could be easily combined with other archi-
tectures to enhance their expressive power for pro-
tein modeling. The low-dimensional projection of
the pre-trained graph embedding space (Figure 2 and
Appendix K) shows meaningful clustering of similar
conformations. These findings not only consolidate
our understanding of Geom-GNN scaling principles
but also pave the way for their broader application
in molecular and protein sciences. Our contributions
can be summarized as follows:

We first demonstrate the use of pre-trained Geom-
GNNs as zero-shot transfer learners for protein
featurization when pre-trained on small-molecule
datasets. When representing residue conformations
in proteins with nearest neighbors, graph embed-
dings match conventional rotamer features but pos-
sess better expressivity in describing the atomic en-
vironment flexibly. The pre-trained graph embed-
dings excel at constructing kinetic models through
the VAMPNet objective: a challenging unsuper-
vised learning task that is crucial for enhanced sam-
pling and probing energy landscapes in computa-
tional chemistry and biology. Compared to tradi-
tional pairwise distance features, the graph embeddings achieve significant performance gains up to 50% across
complex peptide and protein systems.

We systematically investigated the scaling behaviors of Geom-GNNs under the self-supervised, supervised
and unsupervised setups. We found that Geom-GNNs do not exhibit typical power-law scaling during self-
supervised pre-training, suggesting distinct scaling principles for molecular representations compared to areas
like language modeling. Under more rigorous setups requiring out-of-distribution (OOD) generalization, we
found there is no predictable scaling behavior on molecular property and force field prediction tasks, in contrast
to earlier discoveries. In the transfer learning setups for protein modeling, we also found there is no predictable
scaling behavior in kinetic model construction and fold classification.

2 RELATED WORKS

Pretraining via Denoising is a novel pretraining strategy for equivariant GNN architectures, drawing inspira-
tion from advancements in visual generative models (Sohl-Dickstein et al., 2015; Song et al., 2020a;b). Zaidi
et al. (2022) introduced a method of corrupting input atomic coordinates of equilibrium molecular structures
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and training the equivariant GNN to denoise and restore the original coordinates. The denoising objective is
defined as: LDenoising = Er∥ϵ − GNN(r̂)∥2. Here, ϵ represents the noise added to the original coordinates r,
producing the noised input r̂. Wang et al. (2023) expanded this method to include denoising of non-equilibrium
structures. Further studies have investigated varying noise distributions such as sliced noise (Ni et al., 2023).

Graph neural scaling laws represent efforts to extend scaling laws from language modeling to the graph
domain. Frey et al. (2023) demonstrated the power-law relationship between supervised loss, model size N ,
and dataset sizeD when training a Geom-GNN as a potential function. Chen et al. (2024) further advanced this
area by demonstrating a predictable power-law relationship between supervised loss and dataset size using a
topological GNN. More recently, Liu et al. (2024) expanded the discussion to a parametric perspective, focusing
on excessively large datasets such as PCQM4M (Nakata & Shimazaki, 2017; Hu et al., 2020) in a supervised
setting without pre-training.

Learning-based molecular dynamics In molecular simulations, addressing complex tasks beyond basic
molecular property predictions involves techniques such as kinetic modeling using time-lagged independent
component analysis (TICA) (Molgedey & Schuster, 1994; Naritomi & Fuchigami, 2011; Scherer et al., 2015)
and Variational Approach for Markov Process (VAMP) (Wu & Noé, 2020; Mardt et al., 2018), prediction of
committer functions Strahan et al. (2023a;b) in transition path theory (Weigend, 2006; Metzner et al., 2009),
and the application of enhanced sampling methods (Bonati et al., 2021; Jung et al., 2023). These tasks require
meticulously crafted descriptors that capture the structural nuances of the systems under study. Recent ad-
vancements have underscored the value of atomistic detail, leading to the integration of learnable Geom-GNNs
(Klein et al., 2024; Huang et al., 2024; Liu et al., 2023) into aforementioned more advanced modeling sce-
narios. However, the scalability of these methods remains challenging due to the necessity of training graph
representations on-the-fly.

3 EXPERIMENTAL AND DATASET SETUP

We focus on two state-of-the-art architectures based on message-passing (MP): Equivariant Transformer (ET)
(Thölke & De Fabritiis, 2022) and its extension, ViSNet (Wang et al., 2024), which incorporates higher body-
order features. To investigate scaling effects, we separately studied effect of width, depth and aspect ratio of
MP layers. We further analyze the effect of radius cutoff distance and refer readers to Appendix F for detailed
model configurations and Table D for a summary of datasets used.

Pre-training setup. For pre-training, we employed a vanilla denoising objective, where scaled noise was added
directly to the input atomic coordinates, and the network was tasked with predicting this added noise. After
pre-training, the denoising head was discarded. We utilized two distinct datasets for pre-training: PCQM4Mv2
(Nakata & Shimazaki, 2017; Hu et al., 2020) and the training dataset of OrbNet-Denali (Christensen et al.,
2021) (hereafter referred to as PCQM and Denali). These datasets represent equilibrium and non-equilibrium
molecular structures, respectively. In PCQM, each sample represents a unique molecular topology, with struc-
tures relaxed using DFT, thus providing equilibrium structures. Conversely, Denali contains multiple geometric
conformations for each molecular topology, offering a diverse range of non-equilibrium structures.

Supervised downstream tasks setup. The supervised downstream tasks to validate the learned representa-
tions encompass diverse molecular structures and conformations. For chemical structure diversity, we utilized
the QM9 dataset (Ramakrishnan et al., 2014) for molecular property prediction, implementing an ID setup
through random splitting (Random-QM9) and an OOD setup through scaffold splitting based on molecular
motifs using RDKit (Landrum et al., 2013) (Scaffold-QM9). For conformational diversity, the xxMD dataset
(Pengmei et al., 2024a) was employed, which surpasses the MD17 benchmark (Chmiela et al., 2017) in sam-
pling and computational techniques. This dataset features extensively sampled non-equilibrium conformations
within reactive regions. We applied a temporal split (Temporal-xxMD) based on timesteps and a random split
(Random-xxMD) as ID and OOD scenarios. Here, Random-xxMD represents a well-sampled condition, ensur-
ing even representation of conformational space across training and testing sets. Conversely, Temporal-xxMD
presents a more challenging scenario with less time correlation and poorer sampling, demanding significant
extrapolation capabilities.

Zero-shot transfer setup. Beyond conventional supervised learning, we explored zero-shot transfer ap-
proaches to extract pre-trained graph representations, following the methodology outlined in Mardt et al. (2018)
and Pengmei et al. (2024b). For kinetic modeling tasks for characterizing non-reversible dynamics, we utilized
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molecular dynamics trajectories from three systems: alanine dipeptide (ala2), pentapeptides from MDshare
(Nüske et al., 2017; Wehmeyer & Noé, 2018), and λ6-85 fast-folding protein (Bowman et al., 2011). We in-
ferred and stored activations from the last MP layer of pre-trained all-atom Geom-GNN checkpoints. These
features are used to optimize the network as shown in Figure 1 with the VAMP score. To further assess the
versatility of pre-trained representations, we investigated their potential to enhance other GNN architectures.
Specifically, we augmented a previously developed protein-specific GNN (Wang et al., 2022) with activations
from the pre-trained all-atom Geom-GNN. We then evaluated this enhanced model on a protein fold classifica-
tion task (Hou et al., 2018).

4 ZERO-SHOT TRANSFER DOWNSTREAM TASKS

Comparing supervised objectives, self-supervised objectives are emerging areas of researches in learning-based
molecular dynamics simulations. As mentioned before, training all-atom graph representations on-the-fly are
subject to scalability and generalization issues. We propose to address these challenges by pre-trained graph
embeddings including atom-level information, thereby separating the training of Geom-GNNs from the sim-
ulation objectives. This section is structured as follows: We begin by showcasing the application of zero-
shot transferable Geom-GNN representations, integrated with other architectures to meet the VAMP objectives
(Mardt et al., 2018), which aims to learn a low-dimensional representation that preserves the long-timescale
kinetics of the molecular system. It is crucial in computational biology for enhanced sampling and under-
standing the underlying energy landscapes. We explored three systems with increased complexity up to 1258
heavy atoms: ala2, pentapeptide, and the λ6-85. Subsequently, we demonstrate how these features can be com-
bined with protein-specific GNNs to improve the classification performance on protein folding, with analysis
presented in Appendix K for brevity.

4.1 KINETIC MODELING: VAMP

Figure 2: Visualization of learned singular vectors of Koopman operator onto the Ψ − Φ dihedral angle space
of ala2 using pre-trained ViSNet embedding with 64 width. Those singular vectors describe the slow modes of
the underlying dynamics (Appendix J).

Initial experiments focused on the ala2 system, known for its metastable states characterized by two main
backbone dihedrals, Ψ and Φ. We input the atomic numbers and Cartesian coordinates of ten heavy atoms into
the pre-trained ViSNet and extracted graph-level embedding. A separate VAMP head was then trained to learn
the kinetic model. The learned coordinates were projected onto a two-dimensional space constructed by Ψ−Φ
dihedrals. As illustrated in Figure 2, the network successfully identified the first learned singular vector as the
slowest transition between positive and negative Ψ angles. The subsequent vector characterized the transition
between small and large Φ angles. Lower-order singular vectors identified transition states between the α and β
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regions of the Ramachandran plot. These observations show that the graph representations capture structurally
accurate and semantically meaningful information as illustrated in Figure 2, 14 and 17.

Koopman matrix quantifies the kinetic variance between instantaneous and time-lagged data (Appendix J). A
minimal VAMP score of 1 corresponds to equilibrium, while the maximum score is theoretically determined
by the dimensionality of the Koopman operator constructed, with the highest possible score being the output
dimension plus one. However, the actual VAMP score varies depending on the characteristics of the molecular
trajectories and the selected lag time. Figure 3 shows the VAMP scores for models trained on pentapeptide tra-
jectories across various output dimensions and lag times, following the PyEMMA setup Scherer et al. (2015).
Furthermore, to interpret the learned coordinates, we visualized characteristic structures and their projections
onto conventional physical collective variables in Figures 14, 15 and 16 (Appendix). These visualizations facil-
itate direct comparisons with established reference literature (Scherer et al., 2015; Bowman et al., 2011). Our
observations reveal that increasing the output dimension to 10, across all five tested lag times, does not plateau
in performance when compared to the linear TICA method, which utilizes backbone torsion angles. This
demonstrates that using graph features allow for the higher resolution comparing to conventional descriptors.*

Table 1: Validation of VAMP-2 scores (↑) for Ala2, Pentapeptide, and λ6-85 with PCQM-ViSNet with varying
dimensions and model architectures, with a constant batch size of 5000. Scores reflect the performance with
and without (’Sum’ refers to non-learnable sum. pooling) residue-level token mixing in graph embedding
vectors post-coarse-graining. Lag times: Ala2 at 1 ps, Pentapeptide at 0.5 ns, and λ6-85 at 25 ns. Except
Ala2, all systems are split by trajectories, where half of trajectories are reserved for validation. ’OOM’ refers
to out-of-memory at this combination of dimension and batch size on an instance with 4 × NVIDIA A10G
GPUs. We reproduced Mardt et al. (2018) with the same setup, for ala2 and pentapeptide we consistently used
the heavy atom pairwise distances, and we used pairwise distances of 80 Cα atoms for λ6-85.

Dimension Ala2 Pentapeptide λ6-85

Token Mixing Sum Sum MLP SA Sum MLP SA

Out. Dim. 6 10 10
#Heavy Atoms 10 44 (5 residues) 1258 (80 residues)

64 4.71±0.01 5.63±0.37 7.00±0.47 4.81±1.52 4.27±0.06 8.49±0.24 7.01±0.21
128 4.72±0.01 6.41±0.07 6.91±0.32 7.11±0.43 5.17±0.08 8.35±0.36 7.80±0.18
256 4.70±0.01 6.10±0.22 7.67±0.08 7.04±0.21 4.75±0.26 8.52±0.14 OOM
384 4.70±0.01 6.62±0.16 7.71±0.23 7.26±0.11 5.81±0.18 OOM OOM

Mardt et al. 3.92±0.47 5.14±0.25 7.40±0.40

In terms of scaling feature dimensions, We observed no significant performance gains for Ala2 when increasing
the feature dimension beyond 64, as the model effectively captured all critical slow dynamics at this lower
dimension. However, for more complex systems like Pentapeptide and λ6-85, which possess a greater number
of degrees of freedom, scaling the embedding dimension provided clear performance improvements. This
indicates that the effectiveness of scaling is contingent upon the complexity of the system and whether the
network has reached its representational limit. Other than scaling, another key factor affecting performance
is the use of token mixing techniques, where residue-level embeddings were generated from pre-trained all-
atom graph embeddings and subsequently mixed using higher-level operators such as the MLP-Mixer and
self-attention mechanisms (Pengmei et al., 2024b). As shown in Table 1, this approach led to significant
performance improvements, particularly for λ6-85, where applying the MLP-Mixer resulted in over a 46%
increase in VAMP-2 scores compared to the baseline sum pooling method.

In comparison to the baseline VAMPnet model (Mardt et al., 2018), our approach using pre-trained graph
features led to performance improvements of 20.4%, 50.0%, and 15.1% for Ala2, Pentapeptide, and λ6-85,
respectively. In smaller systems such as the Pentapeptide, early-stage information compression can occur, and
token mixing methods alleviate this limitation. For larger systems like λ6-85, the improvements gained from
pre-trained features were not as substantial as for smaller systems. This indicates that future work should focus
on developing more expressive models capable of generalizing global relationships from local tokens, as well

*http://www.emma-project.org/latest/tutorials/notebooks/00-pentapeptide-showcase.html
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as refining the process of localizing graph embeddings for each residue in protein systems along molecular
trajectories. Current methods, which treat the entire protein as a single graph, may suffer from over-smoothing,
leading to the mixing of global and local features at each node. By addressing these challenges, more effective
residue-level token mixing and introducing global features could be achieved to improve overall performance.
In principle, this approach can be extended to study phase diagrams and free energy surfaces of polymeric and
other complex chemical systems but we limit our scope to biomolecules due to the lack of reference.

4.2 PROTEIN REPRESENTATION LEARNING: FOLD CLASSIFICATION

Figure 3: Validation VAMP-2 scores using pre-
trained ViSNet embeddings with 256 length (no
token mixer) across various output dimensions
and lag times for the pentapeptide system. Ran-
dom half of available trajectories are held for val-
idation and the remaining are used for training.

As we explored the usage of pre-trained graph embedding
to study the conformation space of peptides and proteins,
we extend to explore the utility of such all-atom embed-
ding in the protein representational learning. Depicted in
Figure 1, modeling the dependence among multiple inputs
require an active token mixer. MP-based GNNs themselves
are also a type of token mixers. In protein-specific GNNs,
residues are represented as nodes, and the features attached
to each node are usually Cα positions and a set of geometri-
cal descriptors for backbone or side-chain dihedral and tor-
sion angles (”rotamers”). While these features are effective
for describing secondary structures, they are inadequate for
describing protein tertiary structures, meaning the lack of
direct modeling of interactions between side-chains, partic-
ularly in environments with π-stacking between aromatic
residues. More importantly, torsion angles do not capture
hydrogen bonding between distant residues, salt bridges or
disulfide bonds, which are vital for the tertiary structure
identification. The direct modeling of the possible side-
chain with solvent, membrane and ligand interaction is also
missing, which can be addressed by Geom-GNN represen-
tation. For illustration, we naively concatenate projections
of pre-inferred all-atom embedding to interaction blocks of Wang et al. (2022) and test the downstream task
performance on the FOLD dataset (Hou et al., 2018). Per Figure 20, we observe improvement of integrating
such all-atom features into the ProNet without angle information. More importantly, the pre-trained graph em-
bedding can match with conventional rotamer features in non-interacting cases as shown in Figure 17, 18 and
19, where we used a sliding window on the backbone sequence. And it remains future efforts to curate such
benchmarks that test how side-chains interact with environments.

5 SELF-SUPERVISED PRE-TRAINING TASKS

As we have studied a few preliminary application of pre-trained graph embedding, we wonder if the power
of features given by Geom-GNNs with varying architectures and configurations. We approach this by first
varying the network width with constant depth and cutoff radius, followed by separate assessments of depth
and cutoff radius impacts. We also analyzed the effects of aspect ratio while maintaining a consistent total
parameter count considering the specific challenges of MP-based architectures, including under-reaching and
over-smoothing.

Effect of model width. We investigated the scaling behavior of ET and ViSNet on both PCQM and Denali
datasets. For the denoising pre-training task, we measured performance using the mean square error (MSE)
between the predicted and normalized noise. We varied model width and allowing each model to train 10
epochs. We report both the first epoch loss (where each data point is seen once) and the converged loss
as parameter-limited and data-limited scenarios. Figure 6 illustrates findings, revealing: (1) Deviation from
power-law: The scaling relationship between pre-training loss and model size does not strictly follow a power-
law. (2) Rapid initial improvement: In low parameter regimes, model performance improves quickly as size
increases. (3) Saturation effect: Beyond a certain threshold (e.g., after 107 parameters), performance gains
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Figure 4: Scaling behavior of ViSNet depth for the converged results of training on PCQM and Denali datasets.
The plot shows the relationship between the number of layers and the pre-training loss, illustrating the initial
rapid improvement followed by diminishing returns as depth increases. We additionally show the results of the
first epoch loss in Figure 7 (Appendix).

become marginal, with models often reaching a point where further increases in model size yield diminishing
returns, deviating from the fitted power-law line.

Effect of Model Depth. The number of MP layers determines the receptive field size, as each layer gathers
information from adjacent nodes, enabling data propagation from distant nodes. In experiments, we varied the
network’s width and depth to assess their impacts on pre-training loss, as depicted in Figures 4 and 7. Our
results show significant performance gains with increased depth in the initial layers, with diminishing returns
beyond 6 layers. Notably, scaling behaviors differ between the PCQM and Denali datasets. The PCQM dataset
shows saturation in both initial and converged losses, whereas in the Denali dataset, deeper and narrower mod-
els tend to surpass wider and shallower ones, likely due to the larger average graph sizes (PCQM: 29.5 nodes,
Denali: 45.0 nodes). Larger graphs benefit from more MP steps, but the over-smoothing issue inherent in MP-
based GNNs limits the advantages of greater depth. With deeper networks, the influence of depth diminishes,
and the model’s performance becomes more reliant on increasing parameter counts. This shift suggests that
optimal depth achieves maximum performance before capacity expansion becomes more effective.

Effect of aspect ratio. To further discern the effect of scaling the model depth, we fix the total parameter
count by varying the model width to control the aspect ratio. By eliminating the parameterization effect, we
observe the checkpoints with similar amount of parameters and lower aspect ratio (width/depth) enjoy better
pre-training performance per depicted in Figure 8 (Appendix). In other words, deeper models are favored,
though such improvement diminished as the depth is saturated.

Effect of Cutoff Radius. The cutoff radius in Geom-GNNs critically defines the model’s effective receptive
field by regulating the scope of atomic interactions during message passing. Figure 9 (Appendix) shows sig-
nificant performance fluctuations at different radii. On the PCQM and Denali datasets, the pre-training loss
for a 6-layer ViSNet model displays a U-shaped curve, decreasing to a minimum at approximately 5 Å be-
fore rising again up to 9 Å. This pattern indicates an optimal cutoff radius that effectively integrates local and
global information, with more pronounced effects in the larger, more complex Denali dataset. In this dataset,
losses increase sharply beyond the optimal radius, indicating the importance of distinguishing relevant local
interactions from misleading long-range correlations.

6 SUPERVISED DOWNSTREAM TASKS

As described in the experimental setup, we additionally used two molecular benchmarks to verify the perfor-
mance of learned features: QM9 for molecular properties prediction (chemical diversity) and xxMD for force
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field prediction (conformational diversity). Our analysis covers two scenarios: transferring weights from pre-
trained model and fine-tuning all parameters, and training models with identical configurations from scratch.

Table 2: Performance of ViSNet and ET models on the Scaffold-QM9 dataset with varying model widths. The
table shows the mean absolute error (MAE) vs model width, comparing pre-trained (fine-tuned) models using
PCQM dataset with those trained from scratch. All models are trained without the auxiliary denoising loss.

Model Dim µ (mD) α (ma3
0) ϵHOMO (meV) ϵLUMO (meV) ∆ϵ (meV)

PT-ViSNet

64 28.8 99.1 56.8 37.2 90.2
128 24.9 93.4 56.8 35.9 80.7
256 25.1 110.8 51.7 32.3 77.8
384 23.2 91.2 47.1 34.8 77.0
512 26.5 90.5 54.9 35.5 71.0

ViSNet

64 36.5 142.1 74.4 46.6 110.5
128 32.3 106.4 62.0 42.8 94.5
256 36.3 101.5 55.0 41.8 92.5
384 34.3 115.2 60.9 44.2 96.2
512 35.9 139.9 60.0 52.5 123.6

PT-ET

64 36.9 108.3 69.0 45.8 96.3
128 33.5 117.4 62.1 40.2 88.4
256 29.2 116.4 54.0 36.4 84.0
384 35.2 101.3 52.3 40.1 82.0
512 29.4 197.8 57.7 37.5 80.1

ET

64 35.9 104.2 72.7 47.5 101.9
128 32.3 98.4 65.4 44.6 96.2
256 31.3 127.5 65.1 43.2 100.9
384 34.8 116.6 60.6 44.0 98.7
512 53.8 178.7 83.7 53.3 97.7

6.1 CHEMICAL DIVERSITY: QM9

Effect of Scaling and Pre-training: We evaluated the performance of both fine-tuned and from-scratch trained
ViSNet and ET models across different capacities, as depicted in Table 2 Figure 10 (Appendix). We assessed
model performance on a hold-out test set, leading to the following observations. Firstly, we noted a limited
scaling behavior; while moderately larger models generally outperform smaller ones, the performance im-
provements do not predicatively scale with model size, indicating a manifestation of generalization error due
to model over-parameterization. Secondly, models initialized with pre-trained weights consistently outperform
their counterparts trained from scratch across both architectures and all model sizes, highlighting the value
of the pre-training approach for downstream tasks. Lastly, regardless of the splitting strategy and training
approach, ViSNet demonstrates superior performance compared to ET, aligning with the pre-training results
shown in Figures 6 and 7 (Appendix).

Effect of Data Split and Label Uncertainty. Figure 11 (Appendix) depicts the results from the Random-QM9
experiment. Typically, wider models exhibited improvements in Random-QM9, whereas scaffold-split mod-
els struggled, highlighting challenges in domain generalization. Increased model parameters might suggest
overfitting rather than true generalization enhancement. Pre-trained models, exposed to a broader molecular
structure range in the PCQM dataset (including QM9 molecules), showed superior transferability to down-
stream tasks, as reflected in the performance disparity between pre-trained and from-scratch models discussed
earlier. Additionally, evaluation errors are significantly attributed to label uncertainty. For instance, variations
in HOMO-LUMO gap predictions among common DFT methods for three QM9 molecules, detailed in Ap-
pendix E and Zhao & Truhlar (2005); Zhang & Musgrave (2007); Mardirossian & Head-Gordon (2017), are
markedly greater than the prediction errors, illustrating the inherent uncertainty in training and evaluation la-
bels. And prediction error of B3LYP functional (Lee et al., 1988) used in QM9 dataset are usually at eV-scale.
This error in ”ground truth” complicates model performance assessment and generalization interpretation, sug-
gesting that training data uncertainty can largely contribute to the observed limitations in model scaling and
OOD performance, beyond model limitations.
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6.2 CONFORMATIONAL DIVERSITY: XXMD

Building upon our analysis of chemical diversity, we now focus on conformational diversity within a single
stilbene molecule using the Random-xxMD. We begin our analysis by controlling the number of samples
used to supervise the network. We prepared models with varying widths and training strategies to examine
dataset and parameter scaling effects, as well as the transferability of embeddings learned from equilibrium
and non-equilibrium structures. As illustrated in Figures 12 (Appendix), Our findings highlight three key
trends: (1) Pre-training shows diminishing returns beyond a certain dataset size, suggesting a nuanced balance
between pre-training depth and dataset scale. (2) In data-rich scenarios, larger models consistently outperform.
(3) In data-limited situations, only models pre-trained on the equilibrium PCQM dataset effectively enhance
performance. These observations echo the phenomenon of “parameter ossification” mentioned in pre-training
literature (Hernandez et al., 2021), where pre-trained models exhibit early performance saturation. Chen et al.
(2024) discussed this issue for GIN models pretrained on molecular datasets at the 105 sample scale. Our
findings extend this concept to Geom-GNNs, demonstrating that ossification can occur even at the 103 sample
scale. Notably, we did not observe ossification effects in the QM9 dataset, despite its orders-of-magnitude-more
samples, suggesting that ossification is related to both the number and the correlation among samples.

Table 3: Performance of models with varying width and training strategy on xxMD-Temporal subsets. Best
models are picked based on the force regression in terms of MAE. Only models pre-trained on Denali dataset
can positively transfer, while ET receives more benefits from pre-training comparing to ViSNet.

Subset Best Dim Model Energy (meV) Force (meV/Å)

ViSNet

Stilbene 128 PT-Denali 321 137
Azobenzene 256 No PT 75 72
Malonaldehyde 256 PT-Denali 95 142
Dithiopehene 256 No PT 87 55

ET

Stilbene 384 PT-Denali 348 142
Azobenzene 64 PT-Denali 127 98
Malonaldehyde 384 PT-Denali 144 157
Dithiopehene 64 PT-Denali 78 74

Next, we examined the performance on the Temporal-xxMD dataset, using all four systems: azobenzene,
stilbene, malonaldehyde, and dithiophene. Figures 13 (Appendix) illustrates the results for energy and force
regressions. The trends observed in this experiment differ notably from our earlier findings: (1) pre-trained
embeddings from the Denali dataset demonstrate superior transfer compared to those from PCQM. Table 3
suggests that exposure to non-equilibrium conformations during pre-training enhances the model’s ability to
generalize to the more diverse conformational space in the xxMD dataset. When both the pre-training and
downstream datasets lack coverage of non-equilibrium conformations, the network struggles to extrapolate
effectively. However, networks that have learned non-equilibrium representations from the Denali dataset show
improved transfer to reactive, highly non-equilibrium conformations. (2) we observe that pre-training does not
universally improve performance. Specifically, while ET models consistently benefit from pre-training on
either Denali or PCQM datasets, ViSNet models do not always show positive transfer. Greater benefit from
pre-training for ET is attributed to its lower baseline performance, allowing more room for improvement since
it has not yet reached the underlying DFT uncertainty.

7 CONCLUSION

In short, this work explored the application of Geom-GNNs from a new perspective of represenation learning
where pre-trained all-atom Geom-GNNs are effective zero-shot transfer learners that can faithfully describe
complicated protein environment with all-atom granularity. To study the expressive power of Geom-GNNs
with varying architectures and configurations, we characterize the scaling behaviors of Geom-GNNs on self-
supervised, supervised and unsupervised tasks. Deviating from common neural scaling power-laws, Geom-
GNNs saturate early and are bounded by issues such as under-reaching and over-smoothing. Though there are
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benefits of scaling on supervised and unsupervised tasks, other aspects become more crucial, such as address-
ing data label uncertainty and crafting optimal architectures for protein modeling with pre-trained all-atom
embeddings. We hope our work can inspire to rethink how should Geom-GNNs be trained and applied on a
broader spectrum of problems. Limited by the scope of the paper, we only explored denoising pre-training
objective, while future efforts include expanding the pre-training scope to include molecular topology and ex-
ploring co-pre-trained models for applications such as conditional molecule optimization, protein design, and
protein-protein interaction.
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Müller. Machine learning of accurate energy-conserving molecular force fields. Science advances, 3(5):
e1603015, 2017.

Anders S Christensen, Sai Krishna Sirumalla, Zhuoran Qiao, Michael B O’Connor, Daniel GA Smith, Feizhi
Ding, Peter J Bygrave, Animashree Anandkumar, Matthew Welborn, Frederick R Manby, et al. Orbnet
denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and dft
accuracy. The Journal of Chemical Physics, 155(20), 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019. URL https://arxiv.org/abs/1810.04805.

RHWJ Ditchfield, Warren J Hehre, and John A Pople. Self-consistent molecular-orbital methods. ix. an ex-
tended gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical
Physics, 54(2):724–728, 1971.

Thom H Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through
neon and hydrogen. The Journal of chemical physics, 90(2):1007–1023, 1989.

Nathan C Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor W Coley,
and Vijay Gadepally. Neural scaling of deep chemical models. Nature Machine Intelligence, 5(11):1297–
1305, 2023.
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A APPENDIX

B EQUIVARIANT GRAPH NEURAL NETWORKS

Equivariant Geom-GNNs are essential in chemistry and biology for leveraging spatial data like atomic posi-
tions while maintaining rotational and translational invariance and equivariance. Equivariance ensures that
a function f transforms its output consistently with its input transformation, expressed mathematically as
f(T (x)) = T (f(x)). Geom-GNNs using invariant scalars (Schütt et al., 2018; Gasteiger et al., 2020) can
easily achieve roto-invariance, but they fall short in predicting general equivariant properties other than deriva-
tives with respect to the input coordinates. Group-equivariant Geom-GNNs GNNs (Batzner et al., 2022; Batatia
et al., 2022; Musaelian et al., 2023) utilize spherical harmonics and group representation theory. However, these
architectures are expressive yet memory-intensive and computationally expensive. The emergence of vector-
based equivariant Geom-GNNs GNNs, such as (Schütt et al., 2021; Thölke & De Fabritiis, 2022; Wang et al.,
2024), has shown promising results while scaling more efficiently.

C NEURAL SCALING LAW ON LANGUAGE

Neural Scaling Laws describe empirically-derived power-law relationships between model performance and
various scaling factors. These laws have been instrumental in understanding and predicting the behavior of
large language models. Kaplan et al. (2020) identified key power-law relationships between the pre-training
loss L and several variables: L ∝ N−α, L ∝ D−β , L ∝ C−γ where N is the number of model parame-
ters, D is the dataset size, and C is the amount of compute. These laws have elucidated performance disparities
between different neural architectures, such as Long Short-Term Memory (LSTM) networks (Hochreiter &
Schmidhuber, 1997) and Transformers (Vaswani et al., 2017), particularly in terms of pre-training loss. Sub-
sequent work by Hoffmann et al. (2022) and Muennighoff et al. (2024) further refined these relationships,
considering factors like optimal batch size, compute-optimal training, and data constraint.

D DATASET SUMMARY

Table 4: Overview of datasets used for pretraining and downstream tasks, detailing their purpose, molec-
ular domains, structural types (equilibrium vs. non-equilibrium), labeled properties, the number of sam-
ples, and the method of data splitting.

Purpose Name Domain Structure Labels #samples Split

Pretraining PCQM4Mv2† Small
molecules

Equilibrium Conformation 3,378,606 N/A

OrbNet-
Denali‡

Molecules
complexes

Non-
equilibrium

Conformation 2,383,351 N/A

Downstream QM9§ Small
molecules

Equilibrium Conformation,
quantum properties

116,038 Scaffold

xxMD¶ Small
molecules

Non-
equilibrium

Conformation, po-
tential, force

Varies Temporal

Fold|| Proteins Equilibrium Conformation 16,292 Scaffold
Alanine
Dipeptide**

Mini peptide Non-
equilibrium

Conformation 3 x 250 ns tra-
jectories

Random

Pentapeptide†† Mini peptide Non-
equilibrium

Conformation 25 x 500 ns tra-
jectories

Trajectory

λ6-85‡‡ Protein Non-
equilibrium

Conformation 500 x trajecto-
ries with vary-
ing time

Trajectory

†https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
‡https://figshare.com/articles/dataset/OrbNet_Denali_Training_Data/14883867
§https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.QM9.html
¶https://github.com/zpengmei/xxMD
||https://github.com/phermosilla/IEConv_proteins#download-the-preprocessed-datasets

**https://markovmodel.github.io/mdshare/ALA2/#alanine-dipeptide
††https://markovmodel.github.io/mdshare/pentapeptide/#peptide
‡‡https://exhibits.stanford.edu/data/catalog/mh050cw6709
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E UNCERTAINTY IN QM9 LABELS

Figure 5: HOMO-LUMO gap of ’gdb1’, ’gdb2’ and ’gdb3’ predictied by varying combinations of common
basis sets and density functionals. Different combinations showed considerable variance.

As shown in Figure 5, we scanned combinations of five commonly used functionals (Zhao & Truhlar, 2008;
Haoyu et al., 2016; Adamo & Barone, 1999; Lee et al., 1988) and basis sets (Weigend, 2006; Ditchfield
et al., 1971; Dunning Jr, 1989), resulting in 25 distinct computational methods using PySCF package (Sun
et al., 2020). The standard deviations of the HOMO-LUMO gap predictions were substantial: 12571±1775,
8411±1626, and 9333±1758 meV for gdb1, gdb2, and gdb3, respectively. Such uncertainty from DFT calcu-
lations has been widely studied in chemistry community (Zhang & Musgrave, 2007), especially the accuracy
of B3LYP functional used in QM9 dataset is non-ideal per current standard (Zhao & Truhlar, 2005; Goerigk &
Grimme, 2011; Mardirossian & Head-Gordon, 2017).
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F HYPERPARAMETERS SUMMARY

Table 5: Hyperparameters used for different models used for pre-training.
Hyperparameter ET and ViSNet

Hidden dimension 64,128,256,384,512
# MP layers 2-10

# Attention heads 8
# RBFs 32

Layernorm Max-Min (ViSNet), Whitened/None (ET)
Radius cutoff 3-9

Epochs 10
Batch size 400

Learning rate 0.0005
Optimizer Adam
Noise level 0.05 (PCQM), 0.2 (Denali)

Table 6: Hyperparameters used for different models in the supervised regression experiments using QM9 and
xxMD datasets. In xxMD experiments, we set the weight on the force and energy as 100:1.

Hyperparameter QM9 xxMD

Hidden dimension 64,128,256,384,512 64,128,256,384
# MP layers 6

# Attention heads 8
# RBFs 32

Layernorm Max-Min, Whitened Max-Min, None
Radius cutoff 5

Epochs 500 200
Early Stopping (epochs) 10 20

Batch size 50 12
Learning rate 5e-5/1e-4/5e-4 (from-scratch) 1e-4/5e-4 (from-scratch)

Optimizer Adam
Scheduler ReduceLROnPlateau

Scheduler patience (epoch) 8

Table 7: Hyperparameters used for different models in the VAMP experiments.

Hyperparameter Ala2 Pentapeptide λ6-85

Base model ViSNet (PCQM)
Hidden dimension 64,128,256,384
Output dimension 6 1-10 6

# MP layers 6
# Attention heads 8

# RBFs 32
Layernorm Max-Min

Radius cutoff 5
Token mixer None None None, MLP-Mixer, Transformer

Epochs 10 50 50
Early Stopping (train,val batches) 100,5

Batch size 5000
Learning rate 5E-04 2E-04 2E-04

Optimizer Adam
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Table 8: Hyperparameters used for fold classification experiments.
Hyperparameter ProNet-Amino-Acid/ViSNet

Hidden dimension 64,128,256,384
# MP layers 2

# Attention heads 8
# RBFs 32

Layernorm Max-Min
Radius cutoff 5 (ViSNet), 10 (ProNet)

Epochs 400
Batch size 32

Learning rate 0.0005
Optimizer Adam

Coord noise TRUE
Rep. noise FALSE
Res. Mask TRUE
Dropout 0.4 (ProNet-AA), 0.5 (ProNet-Vis)

G ILLUSTRATION OF DENOISING RESULTS

Figure 6: Scaling behavior of ViSNet and ET models on PCQM and Denali datasets. The plots show the
denoising Mean Squared Error (MSE) against model width and colored with the number of model parameters.
Results are presented for both the first epoch and converged performance on each dataset. Solid lines with
markers represent observed data, while dashed lines indicate power-law fits.
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Figure 7: Scaling behavior of ViSNet depth for the first epoch results of training on PCQM and Denali datasets.
The plot shows the relationship between the number of layers and the pre-training loss, illustrating the initial
rapid improvement followed by diminishing returns as depth increases.

Figure 8: Influence of the aspect ratio on the self-supervised denoising pre-training task using the ViSNet
model. With similar amount of parameters, pre-training performance improves as the aspect ratio decreases.
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Figure 9: Influence of the radius cutoff distance on the self-supervised denoising pre-training task using the
ViSNet model. Orange and blue curve refer to models trained using Denali and PCQM datasets, respectively.
Both the first epoch and the converged loss are reported. Models pre-trained on both datasets demonstrate same
optimal radius cutoff at 5 Å. Deviating further from the optimal cutoff, the penalty of models pre-trained on
Denali dataset is more severe than the PCQM.

H ILLUSTRATION OF QM9 RESULTS

Figure 10: Performance comparison of ViSNet and ET models on Scaffold-QM9 dataset with varying model
widths. The plot shows Mean Absolute Error (MAE) against model width, comparing pre-trained (fine-tuned)
models with those trained from scratch. Dashed lines refer to non pre-trained models and solid lines refer to
pre-trained models using PCQM dataset. ViSNet consistently outperforms ET. Pre-trained models show better
performance than their from-scratch counterparts.
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Figure 11: Illustration of the performance of PCQM pre-trained ViSNet models with varying width on Ran-
dom and Scaffold-QM9. The plots indicate different scaling behaviors with respect to the model parameters.
Random-QM9 can always benefit from scaling the model size while the Scaffold-QM9 cannot.

I ILLUSTRATION OF XXMD RESULTS

Figure 12: Performance comparison of ViSNet models on the randomly split stilbene subset of xxMD-DFT
for energy and force prediction. The plot shows the Mean Absolute Error (MAE) of potential energy against
the number of training samples for models with varying widths [64, 128, 256, 384]. Three training scenarios
are compared: from-scratch, pre-trained on PCQM (Equilibrium structures), and pre-trained on Denali (Non-
equilibrium structures). This experiment illustrates: (1) we observe an intersection point beyond 103 samples
which pre-training may actually hinder performance compared to training from scratch. This suggests a com-
plex relationship between pre-training benefits and downstream dataset size. (2) in data-abundant regimes (with
more than 103 samples), larger models generally demonstrate superior performance, aligning with typical scal-
ing laws in machine learning. (3) in data-sparse scenarios, only models pre-trained on the PCQM dataset show
positive transfer to downstream tasks, highlighting the difference of learned embedding from equilibrium and
non-equilibrium pre-training datasets.
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Figure 13: Comparison of Energy MAE and Force MAE using Temporal-xxMD-DFT dataset across different
systems for various architectures and training configurations. Each subplot represents a different system (’azo’:
azobenzene, ’sti’: stilbene, ’mal’: malonaldehyde, and ’dia’: dithiophene), with consistent color coding for
architectures and distinct markers indicating different training methods and pre-training datasets. Top row
shows Energy MAE, while the bottom row shows Force MAE, demonstrating model performance variation
with feature dimensions.

J VAMPNET OBJECTIVE AND ILLUSTRATION OF MORE VAMP RESULTS

VAMPNet is a deep-learning-based objective that learns the projection from high-dimensional feature space
to low-dimensional latent space while preserving the slow dynamics of a given time series data. Consider a
molecular system characterized by a high-dimensional configuration space, X . Let {xt}Tt=1 denote a trajectory
from a molecular dynamics simulation, where xt ∈ X represents the molecular configuration at time t. For
general non-stationary and non-revsersible dynamics, the Koopman operator Kτ describes the time evolution
of an observable ψ(x) over a time lag τ :

Kτψ(xt) = E[ψ(xt+τ ) | xt].

To approximate the Koopman operator in practice, we used linear superposition ansatz as a finite set of basis
functions (features).

f(x) ≈
N∑
i=1

ciχi(x),

where ci are coefficients, and χi(x) are basis functions or features that depend on the conformational degrees
of freedom of the system. Then, the finite-dimensional approximation of the Koopman matrix K is defined as:

K = C−1
00 C01.
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where the instantaneous covariance matrices C00 and C11, as well as the time-lagged covariance matrix C01,
are computed as follows:

C00 :=
1

T − τ

T−τ∑
t=0

(χ(t)− µ0) (χ(t)− µ0)
⊤

C11 :=
1

T − τ

T∑
t=τ

(χ(t)− µ1) (χ(t)− µ1)
⊤

C01 :=
1

T − τ

T−τ∑
t=0

(χ(t)− µ0) (χ(t+ τ)− µ1)
⊤

The mean vectors µ0 and µ1 are computed from all data excluding the last τ steps and the first τ steps of every
trajectory, respectively:

µ0 :=
1

T − τ

T−τ∑
t=0

χ(t)

µ1 :=
1

T − τ

T∑
t=τ

χ(t)

To refine this approximation, the half-weighted Koopman matrix K̄ is introduced, which normalizes the co-
variance matrices using their inverse square roots:

K̄ = C
−1/2
00 C01C

−1/2
11 .

The matrix K̄ is significant as it encodes the optimal reduced model for the dynamical system, particularly
preserving the slowest modes. The singular value decomposition (SVD) of K̄ is then performed to extract the
primary components of the dynamics:

K̄ = U ′SV ′⊤,

where U ′ and V ′ represent the left and right singular vector matrices, and S is the diagonal matrix of singular
values.

To derive the singular functions, the input feature vectors are subsequently projected onto the singular vectors,
yielding the left singular functions ψ(t) and right singular functions ϕ(t):

ψ(t) = U ′⊤C
−1/2
00 (χ(t)− µ0), ϕ(t) = V ′⊤C

−1/2
11 (χ(t)− µ1).

The VAMP-2 score, which is a measure of the quality of the dynamical model in preserving the slow dynamics,
is directly related to the singular values of the half-weighted Koopman matrix K̄:

VAMP-2 = ∥C−1/2
00 C01C

−1/2
11 ∥2F =

d∑
i=1

σ2
i (K̄),

where ∥ · ∥F denotes the Frobenius norm, and σi(K̄) are the singular values of the half-weighted Koopman
matrix K̄. Then the VAMP-2 score can be used to optimize the network, which is equivalent to finding a
representation ψ such that the corresponding Koopman matrix captures the dominant dynamical modes.
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Figure 14: Characteristic structures of pentapeptide in the trajectories visualized on the three-dimensional
projection of the learned 6-state VAMP coordinates.

K ILLUSTRATION OF FOLD CLASSIFICATION RESULTS AND EMBEDDINGS

In this study, we explore whether graph embeddings can effectively represent local all-atom structures. To
achieve this, we fragmented the proteins into individual residues while retaining a sliding window of 3/2
residues based on the sequence to provide contextual information. We then input the corresponding atomic
coordinates into the Geom-GNNs to obtain the embedding feature vectors. This approach also helps mitigate
the over-smoothing problem, where global information is mistakenly mixed into local features, thus deteriorat-
ing the quality of local embeddings.

To visualize the features learned by Geom-GNNs, we generated two-dimensional t-SNE embeddings of the
latent space for both pre-trained and untrained networks using the validation set of the HomologyTAPE dataset,
as shown in Figures 17 and 18. While equivariant features provide higher resolution, they are often challenging
to reduce in dimensionality with standard techniques like principal component analysis (PCA) or t-SNE. To
enhance visualization, we regulated the scalar channels of the network during denoising pre-training, following
the approach of Liu et al. (2022). Additionally, we noticed multiple preprocessing errors in the provided
dataset when visualizing characteristic structures in the graph embedding space in Figure 19. We followed
the Wang et al. (2022) to use the pre-processed datasets from Hermosilla et al. (2021) (available at https:
//github.com/phermosilla/IEConv_proteins). These preprocessing errors are difficult to detect
in feature spaces defined by dihedral and torsion angles, but are more apparent in the graph embedding space,
which could negatively affect regression accuracy.

It is important to note that projections based on dihedral and torsion angles should not be directly compared
with graph embeddings. While these angular features are effective for characterizing secondary structures, they
lack all-atom resolution, are coarse-grained, and do not account for environmental effects. It is still a missing
piece of study to define some general emperical descriptors that can roughly describe the interactions between
residues and their side-chains. Our comparisons serve to confirm consistency and agreement between the
different representations. Interestingly, even untrained Geom-GNNs are able to capture patterns in the dataset,
similar to untrained convolutional neural networks (CNNs) in vision tasks, as demonstrated by Ulyanov et al.
(2018). However, the features derived from untrained networks are generally sparse and less interpretable.
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Figure 15: Three-dimensional projections of learned singular vectors in descending order from the 6-state
VAMP model. Lag time: 0.5 ns.
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Figure 16: Projection of the first VAMP singular vector (Lag time: 50 ns) on typical collective variables such
as radius of gyration, structural rooted mean squared difference (RMSD) to the crystal structure, fraction of
native contacts (Q), pair-wise distance of Trp22 and Tyr33. Bowman et al. (2011) indicates 2-3 states on those
common collective variables, and the results are comparable. We randomly drew 500 trajectories out of the
original dataset to train the VAMP head.
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Figure 17: Two-dimensional t-SNE visualization of residues in the validation subset of HomologyTAPE dataset
for the folding classification task. Points are colored according to the one-dimensional t-SNE projection of the
angles. Columns represent: (Left) backbone dihedral and sidechain torsion angles, (Middle) pre-trained graph
embedding from ViSNet with a width of 128, and (Right) untrained graph embedding from the same model.
Rows correspond to different amino acids: (1) Histidine (His), (2) Aspartic Acid (Asp), (3) Cysteine (Cys), and
(4) Methionine (Met).

27



Published as a conference paper at ICLR 2025

Figure 18: Two-dimensional t-SNE visualization of residues in the validation subset of HomologyTAPE dataset
for the folding classification task. Points are colored according to DBSCAN clustering labels of the angles.
Columns represent: (Left) backbone dihedral and sidechain torsion angles, (Middle) pre-trained graph embed-
ding from ViSNet with a width of 128, and (Right) untrained graph embedding from the same model. Rows
correspond to different amino acids: ((1) Histidine (His), (2) Aspartic Acid (Asp), (3) Cysteine (Cys), and (4)
Methionine (Met).
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Figure 19: Visualization of characteristic structures for histidine (His) residues using two-dimensional t-SNE
projections of pre-trained graph embeddings. The plot shows that structurally similar residues are clustered
together, while multiple outliers, likely due to preprocessing errors, are also present. Similar preprocessing
errors were observed for other types of residues as well.
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Figure 20: Folding classification accuracy with the fold and superfamily split. For pronet architecture, we
restrict ourselves to use amino-acid-level features (AA-PRONET), whereas we supplement the original ar-
chitecture with the pre-trained GNN features for transfer (GNN-PRONET). It is important to note that our
preliminary implementation is not compatible with the data augmentation techniques employed in the original
ProNet paper. Our primary objective is not to establish a new state-of-the-art model, but rather to analyze
the transferability of pre-trained all-atom graph representations to a distinct architectural framework and task
domain. We reproduced the original ProNet results with multiple runs to establish a baseline for comparison.
There are minor discrepancies between our reproduced values and those reported in the original paper, presum-
ably due to normal experimental variance with different hyperparameters. As illustrated in plots, both models
stopped to improve at 256 width on the fold split, while increasing the model size can continue benefit the
superfamily split.
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L ADDITIONAL RESULTS OF XXMD-TEMPORAL AND QM9 BENCHMARKS

Table 9: Performance comparison across different dimensions and training setups for ViSNet and ET models
on four subsets of xxMD-DFT using temporal split.

Molecule Model Dim No PT PT on Denali PT on PCQM

E F E F E F

Azobenzene

ViSNet 64 91 95 79 83 99 99
128 82 85 73 83 82 90
256 75 72 85 92 99 94
384 129 104 94 93 124 99

ET 64 121 133 127 98 160 122
128 135 118 145 104 187 135
256 224 131 176 108 162 115
384 182 113 172 106 200 115

Stilbene

ViSNet 64 332 148 368 148 315 147
128 421 173 321 137 361 155
256 302 140 335 157 330 139
384 352 157 361 154 313 144

ET 64 406 174 349 153 321 147
128 350 172 355 148 298 144
256 400 164 317 149 331 153
384 379 154 348 142 346 144

Malonaldehyde

ViSNet 64 89 162 99 156 99 151
128 94 157 98 145 117 160
256 78 147 95 142 112 157
384 184 193 95 164 225 290

ET 64 113 188 124 165 113 179
128 136 183 117 163 120 180
256 147 174 155 162 165 171
384 154 179 144 157 173 176

Dithiopehene

ViSNet 64 141 79 137 79 78 78
128 128 127 111 71 128 79
256 87 55 75 57 76 79
384 127 90 102 83 74 164

ET 64 117 82 78 74 110 80
128 110 82 92 82 100 88
256 122 91 116 81 105 82
384 126 81 97 83 144 98

M GENERAL RECOMMENDATIONS FOR SCALING AND EVALUATING GEOMETRIC
GNNS

To facilitate the training and evaluation of geometric GNNs, we provide an integrated summary of the obser-
vations drawn from experiments on self-supervised pre-training, unsupervised transfer, and supervised fine-
tuning. These findings offer practical guidance for practitioners aiming to scale and optimize GNN architec-
tures effectively.

From the perspective of pre-training, we observed a consistent decrease in training loss as the depth of the net-
work increased. However, these benefits diminished once a critical depth was reached. For instance, a ViSNet
with six layers achieved a training loss comparable to that of an eight-layer ViSNet with the parameter count
matched. This plateau effect suggests that, while increasing depth initially enhances the network’s learning
capacity, over-scaling yields diminishing returns. In molecular property prediction tasks, as demonstrated in
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Table 10: Comparison of ϵLUMO and ∆ϵ tasks in Scaffold-QM9 across different Layer-Dimensions with various
pre-training setups.

Layer-Dim Setup Metrics
ϵLUMO ∆ϵ

6L-128 No PT 42.8 94.5
PT on PCQM 35.9 80.7

5L-144 No PT 46.1 104.8
PT on PCQM 39.5 88.3

4L-160 No PT 45.6 98.5
PT on PCQM 39.8 96.7

3L-184 No PT 44.5 98.4
PT on PCQM 44.1 103.0

2L-216 No PT 43.5 97.6
PT on PCQM 46.6 96.0

Table 10, increased depth consistently improved prediction accuracy, reaffirming its importance for certain
downstream tasks. Nonetheless, in force field prediction tasks, as highlighted by Li et al. (2024) (Figure 2), the
advantage of scaling depth similarly diminished beyond a certain point, albeit with a less controlled parameter
setup. An intriguing phenomenon emerged concerning the radius graph cutoff. Increasing the cutoff distance
initially improved performance but eventually led to deterioration, forming a characteristic U-shaped perfor-
mance curve (Figure 9). This aligns with findings from Li et al. (2024), suggesting that excessively large cutoff
radii may introduce noise from irrelevant long-range interactions, thereby reducing model effectiveness.

In terms of parameter scaling, models with a width of 256 or 384 provided an optimal balance between compu-
tational cost and performance across various tasks, as illustrated in Figures 10, 11, 12, 13, and 20. Wider models
generally showed only marginal gains relative to their increased computational overhead, indicating diminish-
ing returns for excessive parameter expansion. It is critical to carefully consider the dataset splitting strategy
when evaluating the resulting models. Improper splits can lead to overfitting and hinder the generalization of
learned representations. For example, scaffold splits are more reliable than random splits for assessing the
transferability of molecular representations. Moreover, architecture-level improvements remain necessary. For
protein kinetic modeling, incorporating additional Transformer or MLP-Mixer layers significantly improved
performance (Table 1). Similarly, in force field prediction tasks involving larger molecules, adding long-range
interaction modules further enhanced model predictions if applicable, as evidenced by Li et al. (2024).
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