
8 Supplementary Material377

8.1 Background on Linearly Solvable MDP378

Since the Reference-Based POMDP expands the Linearly Solvable (fully observed) MDPs[18, 19, 20]379

to POMDPs, for completeness, here, we summarise Linearly Solvable MDPs.380

A standard infinite horizon MDP is specified by tuple ⟨S,A, T , R, γ⟩, where S and A are the state381

and action spaces, T (s, a, s′) is the conditional probability function P (s′ | s, a) that specifies the382

probability the agent arrives at state s′ ∈ S after performing action a ∈ A at state s ∈ S, R is the383

reward function, and γ ∈ (0, 1) is the discount factor. The solution to an MDP problem is a an384

optimal policy π∗ : S → A that maximises the value function:385

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S
T (s, a, s′)V ∗(s′)

]
(30)

The works in [18, 19, 20] consider a class of MDPs where, the state space S is finite and for any states386

s, s′ ∈ S, there exists a one-step (not necessarily time-homogeneous) transition probability p(s′ | s)387

representing the passive dynamics of the system. They propose a new formulation of MDPs, called388

Linearly Solvable MDPs, to be specified by ⟨S, p, r, γ⟩, where r : S → R is the reward function. A389

solution to the Linearly Solvable MDP is a stochastic state-to-state transition probability u(· | s) that390

maximises:391

v(s) = sup
u(· | s)∈Up(s)

(
r(s)−KL

(
u(· | s) ∥ p(· | s)

)
+ γ

∑
s′∈S

u(s′ | s)v(s′)
)
. (31)

where Up(s) is the set of admissible controls. An admissible control u(· | s) is one that prohibits state392

transitions that are not feasible under the passive dynamics p(· | s).393

Now, suppose w(s) := ev(s) for any s ∈ S, then (31) is equivalent to394

w(s) = er(s)
∑
s′∈S

p(s′ | s)wγ(s′). (32)

Moreover, the solution w∗ to the above equation exists and is unique. The optimal stochastic transition395

to the equation (31) is given by396

u∗(· | s) = p(· | s)w∗γ(·)
D[w∗γ](s)

. (33)

where D[w∗γ](s) :=
∑

s′∈S p(s′ | s)w∗γ(s′) is a normaliser. Intuitively, one can view w∗ as the397

desirability score, so that (33) represents distorting the passive dynamics to transition dynamics that398

favour transitioning to states with higher desirability scores. Of course, w∗ is not known a priori399

but it can be determined by iterating the Bellman backup operator given by (32). This computation400

essentially reduces to taking expectations under the reference dynamics, which can be computed401

faster than searching for the optimal value function in (30) directly.402

A standard MDP can be embedded in a linearly solvable MDP. This implies that, for a given standard403

MDP problem ⟨S,A, T , R, γ⟩, one can embed it as an instance of a linearly solvable MDP, use404

the above efficient machinery to determine the solution to the linearly solvable MDP u∗(· | s), and405

then choose the symbolic action a∗ ∈ A such that T (s′ | s, a∗) is as close as possible to u∗(· | s).406

Empirical results in [19] indicate that there is a close correspondence between the optimal value of407

the embedded standard MDP ⟨S,A, T , R, γ⟩ and the optimal value of the linearly solvable MDP.408

8.2 Proof of Lemma 3.1409

Step 1. We first need to verify that a maximiser to the supremum in (10) exists. To this end, define410

W(b) := eV(b) for any b ∈ B and notice that the terms inside the supremum in the RHS of equation411

11

(10) can be rewritten as412 ∑
a,o

U(a, o | b)
[
R(b, a)− log

{ U(a, o | b)
Up(a, o | b)

}
+ γ

∑
a,o

V
(
τ(b, a, o)

)]
= −

∑
a,o

U(a, o | b)
[
log

{ U(a, o | b)
Up(a, o | b)eR(b,a)Wγ(τ(b, a, o))

}]
= −

∑
a,o

U(a, o | b)
[
log

{ U(a, o | b)D[Wγ](b)

Up(a, o | b)eR(b,a)Wγ(τ(b, a, o))

}
− log

{
D[Wγ](b)

}]
= −KL

(
U(·, · | b)

∥∥∥ Up(·, · | b)eR(b,a)Wγ
(
τ(b, a, o)

)
D[Wγ](b)]

)
+ log

{
D[Wγ](b)

}
(34)

where D[Wγ](b) :=
∑

a,o Up(a, o | b)eR(b,a)Wγ
(
τ(b, a, o)

)
is a normalising factor. Only the KL413

divergence term in the last line above depends on U. We know that the KL divergence is minimised414

when its two component distributions are identical. That is, when415

U∗(a, o | b) =
Up(a, o | b)eR(b,a)Wγ

(
τ(b, a, o)

)
G(b)

. (35)

It is clear that U∗ belongs to the space Up(b) since Up(a, o | b) = 0 implies that U∗(a, o | b) = 0 too.416

Therefore, we conclude that the supremum is attained and that U∗ is the maximiser.417

Step 2. Now, we can essentially repeat the classical argument from Ross [15] (see e.g. Theorem 6.5).418

Namely, let Φ : B(B)→ B(B) be the Bellman backup operator419

ΦV(b) := sup
U∈Up(b)

(
R(b,U)−KL(U ∥Up)

+ γ EU
[
V
(
τ, ·, ·)

)])
∀b ∈ B (36)

where, for brevity, we write420

KL(U ∥Up) := KL
(
U(·, · | b) ∥Up(·, · | b)

)
(37)

and421

EU
[
V
(
τ, ·, ·)

)]
:=

∑
a,o

U(a, o | b)V
(
τ(b, a, o)

)
. (38)

We want to show that Φ is a contraction. For any b ∈ B and any V1,V2 ∈ B(B),422

(ΦV1)(b)− (ΦV2)(b)

= sup
U∈Up(b)

(
R(b,U)−KL(U ∥Up) + γ EU

[
V1

(
τ, ·, ·)

)])
− sup

Ũ∈Up(b)

(
R(b, Ũ)−KL(Ũ ∥Up) + γ EŨ

[
V2

(
τ, ·, ·)

)])
≤

(
R(b,U∗)−KL(U∗ ∥Up) + γ EU∗

[
V1

(
τ, ·, ·)

)])
−
(
R(b,U∗)−KL(U∗ ∥Up) + γ EU∗

[
V2

(
τ, ·, ·)

)])
= γ

∑
a,o

U∗(a, o | b)
[
V1

(
τ(b, a, o)

)
− V2

(
τ(b, a, o)

)]
≤ γ ∥V1 − V2∥∞ (39)

12

where U∗ is the maximiser of423

R(b,U)−KL(U ∥Up) + γ EU
[
V1

(
τ, ·, ·)

)]
. (40)

Reversing the roles of V1 and V2 and using the fact that b ∈ B is arbitrary, we conclude that424

∥ΦV1 − ΦV2∥∞ ≤ γ ∥V1 − V2∥∞. (41)

Since we assumed that γ ∈ (0, 1), we conclude that Φ is a contraction.425

8.3 Proof of Theorem 3.1426

Repeating the argument in Step 1 of 8.2, we see that the Bellman equation (10) reduces to427

V(b) = log
[
D[wγ](b)

]
= log

[∑
a,o

Up(a, o | b)eR(b,a)Wγ
(
τ(b, a, o)

)]
(42)

which, after taking exponents, justifies the equivalence to (12). Given this equivalence and Lemma428

3.1, it is clear that (12) has a unique solution. To be more explicit, suppose for a contradiction that429

(12) does not have exactly one solution (up to ∥ · ∥-equivalence of solutions). Then by the equivalence430

between the two Bellman equations, (10) would either have no solutions or more than one solution431

which contradicts the existence and uniqueness guaranteed by Lemma 3.1. Finally, (13) follows from432

the form of the maximiser at each Bellman step.433

8.4 Proof of Proposition 3.1434

For brevity, we will fix a b ∈ B and drop it from our notation. Also write u = u(· | b) and ua = u(a | b).435

The Lagrangian for the constrained problem is436

L(u, λ) =
∑
a,o

P (o | a)ua log
[P (o | a)ua
U∗(a, o)

]
+ λ

(∑
a

ua − 1
)
. (43)

We require, in addition, that the minimiser u∗ (which exists due to the Weierstrass extreme value437

theorem) is such that u∗a ≥ 0 for each a ∈ A. The first order necessary conditions gives438

ua = e−(1+λ) exp[−Π(a)] ∀a ∈ A (44)

and the constraint equation gives439

1 =
∑
a

ua = e−(1+λ)
∑
a

exp[−Π(a)]. (45)

Hence the only candidate for the minimiser is u∗ such that440

u∗a =
exp[−Π(a)]∑

â∈A exp[−Π(â)]
∀a ∈ A. (46)

The Hessian of L is positive definite for any λ and u ∈ ∆(A), so we conclude that u∗ is a minimiser.441

Finally, that u∗a ≥ 0 for every a ∈ A is clear from (46).442

8.5 Proof of Proposition 4.1443

Proof. Fix an â ∈ A and b ∈ B. Clearly p as defined in (24) has full support on A. Thus, if we set444

uâ(a | b) :=
{
1, a = â

0, otherwise
(47)

and445

Uâ(a, o | b) := P (o | â, b)uâ(a | b) ∈ Up (48)

for any uâ ∈ ∆(A) then the constraint (21) is satisfied trivially. Straightforward computations show446

that the constraint (22) is satisfied by Uâ(a, o | b) with (ρ, p) as defined in (23) and (24).447

13

8.6 Proof of Proposition 4.2448

Proof. For a fixed δ > 0, the matrix equation (25) has a solution xδ if and only if449 ∑
s∈S

b(s)ρδ(s) = ℓ(b) ∀b ∈ Cδ. (49)

As δ ↓ 0 the δ-cover converges to the set R which proves that the pair (ρ, p) is an embedding.450

8.7 Algorithm REFSOLVER451

Algorithm 1 REFSOLVER

parameters:
⟨S,A, T ,R, γ⟩
max-depth
max-rollout-depth
α ▷ expl const = 1− α

require: γ ∈ (0, 1), α ∈ [0, 1)

PRE-PROCESS (OFFLINE)

1: πFO ← GENERATE-FO-POLICY(⟨S,A, T ,R, γ⟩)

2: RUNTIME (ONLINE)

3: procedure PLAN-AND-EXECUTE(h)
4: repeat
5: if h = ∅ then
6: s ∼ I
7: else
8: s ∼ B(h)
9: end if

10: SIMULATE(s, h, 0)
11: until TIMEOUT()
12: return OPTIMAL-STOCHASTIC-POLICY(h)
13: end procedure

14: procedure ROLLOUT(s, h, depth)
15: a← πFO(s)
16: if s ∈ G or depth > max-rollout-depth

then
17: returnR(s, a)
18: end if
19: (s′, o,R) ∼ G (s, a) ▷ generative model
20: returnR(s, a)+ROLLOUT(s′, hao, depth+

1)
21: end procedure

22: procedure SIMULATE(s, h, depth)
23: if s ∈ G or depth > max-depth then
24: return exp(ROLLOUT(s, h,max-depth))
25: end if
26: B(h)← B(h) ∪ {s}
27: N(h)← N(h) + 1
28: X ∼ Bernoulli(α)
29: a← πFO(s)I{X=1} +(1−α)× I{X=0}
30: (s′, o,R) ∼ G (s, a)
31: N(ha)← N(ha) + 1

32: R̂(ha)← R̂(ha) + R(s,a)−R̂(ha)
N(ha)

33: Ŵ ← Ŵ+ eR̂(ha)SIMULATE(s′,hao,depth+1)−Ŵ(h)
N(h)

34: return Ŵ(h)γ

35: end procedure

36: procedure OPTIMAL-STOCHASTIC-
POLICY(h)

37: D ← 0 ▷ Normaliser
38: for a ∈ A and o ∈ O do
39: if hao /∈ T then
40: Û∗(hao) = 0
41: else
42: Û∗(hao)← N(hao)

N(h) eR̂(ha)Wγ(hao)

43: end if
44: D ← D + Û∗(hao)
45: end for
46: for a ∈ A do
47: Π(a)← N(hao)

N(ha) log
[

N(hao)D
N(ha)Û∗(hao)

]
48: end for
49: u∗ ← {a : exp[−Π(a)]/DΠ}
50: return RANDOM-SAMPLE(u∗)
51: end procedure

8.8 Details of Navigation1 Scenario452

The robot can move in the four cardinal directions with 0.1 probability of actuator failure. If the453

realised movement leads to a collision with an obstacle or the edge of the map, no movement occurs454

and the robot remains in its current position. If the robot’s true state is a landmark, the robot receives455

a position reading uniformly in the 9× 9 grid around the robot’s true state. Outside the landmarks,456

the robot receives no observation. The robot receives a penalty of -100 for entering a danger zone457

14

and a reward of +300 for entering a goal state. In both cases, the problem terminates. Every other458

state incurs a reward of -1. The discount parameter was 0.99. The robot’s initial belief was equally459

distributed between two initial positions that were uniformly sampled from the southern-most row of460

the map.461

8.9 Details of Navigation2 Scenario462

Similar to Navigation1, the robot’s action space consists of moves anywhere in the four cardinal463

directions NORTH, SOUTH, EAST, WEST. To simulate noise in the robot’s actuator’s, actions fail464

with 0.1 probability, and if this occurs, the robot moves randomly in a direction orthogonal to the465

one specified. If the realised movement leads to a collision with an obstacle or the edge of the466

map, no movement occurs and the robot remains in its current position. If the robot’s true state is a467

landmark, the robot receives a position reading uniformly in the 9× 9 grid around the robot’s true468

state. Otherwise, the robot receives no observation. The robot receives a reward of +600 for being in469

a goal state, and -3 for being in any other state. The discount parameter was γ = 0.99. The robot’s470

initial belief was equally distributed between two initial positions that were uniformly sampled from471

the southern-most row of the map.472

8.10 Source code473

We also include the source codes for REFSOLVER, which is developed on top of pomdp_py.474

15

	Introduction
	POMDP Background
	Reference-Based POMDP
	Existence and Uniqueness of the Solution
	Transforming the Value Function
	Recovering the Stochastic Actions

	Relating the Reference-Based POMDPand the Standard POMDP
	An Online Planning Algorithm
	Experiments
	Problem Scenarios and Testing Parameters
	Navigation1: Long Horizon
	Navigation2: Slightly Perturbed Environment

	Performance comparison

	Summary
	Supplementary Material
	Background on Linearly Solvable MDP
	Proof of Lemma 3.1
	Proof of Theorem 3.1
	Proof of Proposition 3.1
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Algorithm RefSolver
	Details of Navigation1 Scenario
	Details of Navigation2 Scenario
	Source code

