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A DOUBLE PENDULUM

Figure 4 presents a graphical representation of a double pendulum with its two masses and two
weightless rods. Figure 5 shows examples of trajectories generated by a double pendulum.

Figure 4: Physical representation of the double pendulum1

The double pendulum is a simple physically system that is chaotic and exhibits rich dynamical
behavior. The Lagrangian of the double pendulum is
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The corresponding Hamiltonian can be derived using Legendre transform H =
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The system evolution can be simulated by integrating the Hamilton equations:
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Note that the diagonal elements cancelling in pairs, which results in a trace of zero that indicates the
volume-preserving property of the Hamiltonian flow according to Liouville’s theorem. This prop-
erty corresponds to information preservation in nondissipating physical systems. Consequently, a
noncoupled double pendulum does not have a proper attractor. However, for a given initial condi-
tion, and thus given energy, the possible states still form a densely populated volume in state-space.
Applying the nonphysical coupling term, the conservation rule do not hold anymore.

The real part of the eigenvalues of J are called the local Lyapunov exponents.

1Source: JabberWok / Wikimedia Commons, CC-by-3.0.
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Figure 5: Example of trajectories generated by a double pendulum. The solid lines represent the
true process and the dots the sampled measurements.

The direction of the largest expansion evolves as
dq

dt
= Jq

|q(0)| = 1

The largest Lyapunov exponent is given by

�1 = lim
t!1

1

t
log |q(t)|.

Note that in stationary processes J is constant, and the differential equation have a closed form
solution

q(t) = q(0)eJt,

and the local and global Lyapunov exponents are equal.

The largest Lyapunov exponent can be described intuitively as

|�(t)| ⇡ |�(0)|e�1t,

where �(t) is defined as the difference between two phase-space trajectories, with initial condition
infinitesimally close to each other:

x0(t) = x(t) + �(t), t � 0

|�(0)|  ✏.

We use numerical integration to compute the largest Lyapunov exponent of the double pendulum,
and verify that it is in the chaotic regime.

B INTERACTING NEURON POPULATIONS

The time series is the average membrane potential of two populations of leaky integrate-and-fire neu-
rons with alpha-function shaped synaptic currents (iaf psc alpha) simulated by NEST-2.20.0 (Fardet
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Table 2: Parameters [m, kg] and the largest Lyapunov exponents of the uncoupled pendulums (�1 >

0 indicates chaotic behavior). We report means and their confidence interval over 10 repetitions with
initial angles perturbed with � = 0.05 normal distributed noise.

SYSTEM l1 l2 m1 m2 ✓1 ✓2 �1 AND CI (80%)

X  Y
X 1 0.5 2.0 1.0 1 -0.5 0.306 (0.149, 0.468)
Y 0.5 1.0 0.5 4.0 1 -0.5 0.005 (0.001, 0.010)
WHOLE X ! Y SYSTEM 0.318 (0.183, 0.422)

X  Z ! Y

X 0.5 1.0 2.0 1.0 1.0 -0.5 0.008 (0.006, 0.009)
Y 0.5 1.0 2.0 1.0 1.0 -0.5 0.008 (0.006, 0.009)
Z 1.0 1.0 1.0 3.0 1.0 -0.5 0.007 (0.005, 0.008)

WHOLE X  Z ! Y SYSTEM 0.090 (0.027, 0.510)

et al., 2020). Each population contains 100 units with sparse random excitatory synapses inside pop-
ulation, and unidirectionally from population A to population B. A Poisson generator with rate of
40kHz was used to excite the network.

Table 3: Neuron populations. Every non-specified model parameter is left at the default value.

Population tau m [ms] I e [µA]

A U(15.0, 16.0) 0.0
B N (15.0, 1.0) 60.0
C (not obs.) 10.0 0.0

Table 4: Synapses. Parameters have been tuned to achieve stable firing without depolarizing the
neuron populations.

From To connection type parameter

Poisson A fixed outdegree outdegree = 10
Poisson C fixed outdegree outdegree = 10

A A fixed indegree indegree = 67
B B fixed indegree indegree = 20
C C fixed indegree indegree = 67

C B fixed outdegree outdegree = 60

In Figure 6, we plot the reconstruction correlations of the coupled neuron populations obtained with
the fully observed time series (10 observations per second) and evaluated with standard CCM. We
observe a small convergence in the reconstruction in the non-causal direction, indicating potential
synchrony. As presented in Table 1, our approach also captures this small reconstruction signal.

C RESULTS WITH UNIVARIATE GAUSSIAN PROCESSES

In Table 5, we present the results of our experiments with univariate Gaussian Processes (GP). In
this case, we only learn a GP on the dimension of interest to compute the delay embeddings. As we
can see, results are slightly worse than when using multivariate Gaussian Processes (MVGP).
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Figure 6: Result of CCM on fully observed neural activity data. Despite a clear signal of A driving
B, we observe some positive correlation for the reconstruction in the noncausal direction.

Table 5: Average reconstruction scores Sc (and their standard deviations) in all directions for the
double pendulum and neural activity experiments. Standard deviations are computed using 5 repe-
titions. Significant correlations compared to noncoupled dynamical systems are in bold (p < 0.01).
Significance is computed using the Mann-Whitney rank test. Our approach detects the correct causal
structure. 3and 7 highlight correct and wrong direction detection respectively.

DATA SPATIAL CCM GP MVGP LATENT-CCM

CASE 1
X ! Y -0.017 ± 0.037 0.002 ± 0.004 0.009 ± 0.014 0.001 ± 0.013
X Y 0.018 ± 0.0056 -0.001 ± 0.003 -0.001 ± 0.021 0.055 ± 0.001
AUC1!2 0.2 (P=0.98)3 0.6 (P=0.22) 3 0.66 (P=0.11) 3 0.55 (P=0.35) 3
AUC2!1 0.6 (P=0.23)7 0.44 (P=0.67) 7 0.44 (P=0.67) 7 1 (P<0.001) 3

CASE 2
X ! Y 0.488 ± 0.074 -0.01 ± 0.008 -0.005 ± 0.009 0.001 ± 0.005
X  Y 0.181 ± 0.119 -0.000 ± 0.003 -0.007 ± 0.012 0.009 ± 0.014
X ! Z 0.054 ± 0.021 -0.003 ± 0.003 -0.002 ± 0.014 0.035 ± 0.019
Z! X 0.324 ± 0.197 0.061 ± 0.004 0.012 ± 0.014 0.657 ± 0.105
Y ! Z -0.071 ± 0.078 -0.003 ± 0.003 -0.003 ± 0.023 0.005 ± 0.011
Z! Y 0.101 ± 0.052 0.039 ± 0.008 -0.003 ± 0.016 0.555 ± 0.109
AUC1!2 1.00 (P<0.001)7 0.21 (P=0.98) 3 0.31 (P=0.91) 3 0.78 (P=0.02) 3
AUC2!1 1.00 (P<0.001)7 0.49 (P=0.53)3 0.31 (P=0.92) 3 0.67 (P<0.09) 3
AUC1!3 0.98 (P<0.001)7 0.35 (P=0.87) 3 0.61 (P=0.19) 3 0.79 (P=0.02) 3
AUC3!1 0.93 (P<0.001)3 0.74 (P=0.03)7 0.81 (P=0.01) 3 1.00 (P<0.001) 3
AUC2!3 0.26 (P=0.97)3 0.36 (P=0.85) 3 0.45 (P=0.63) 3 0.46 (P=0.62) 3
AUC3!2 0.79 (P=0.02)3 0.58 (0.26) 7 0.43 (P=0.69) 7 1.00 (P<0.001) 3

COUPLED
A! B 0.267 ± 0.001 0.028 ± 0.006 0.028 ± 0.006 0.295 ± 0.012
A B 0.055 ± 0.003 0.026 ± 0.010 0.026 ± 0.010 0.033 ± 0.012
AUCA!B 1.00 (P=0.006)3 1.00 (P=0.006) 3 1.00 (P=0.006) 3 1.00 (P=0.006) 3
AUCB!A 1.00(P=0.006) 77 1(P=0.006) 7 1.00(P=0.006) 7 1.00(P=0.006) 7

INDEPENDENT
X ! Y -0.012 ± 0.001 -0.002 ± 0.008 -0.002 ± 0.008 -0.006 ± 0.007
X  Y -0.001 ± 0.001 -0.003 ± 0.005 -0.003 ± 0.005 -0.002 ± 0.008
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D FAILURE OF THE GRANGER CAUSALITY FRAMEWORK

To show how the Granger causality framework fails in the general nonlinear dynamical systems
case, we consider the following coupled dynamical system:

X[t+ 1] = X[t](a� bX[t]� cY [t])

Y [t+ 1] = Y [t](d� eY [t])

Following Granger causality, including values of Y for predicting X[t + 1] should increase the
prediction accuracy, and thus hint towards a causal effect of Y on X . However, dynamics of X[t]
can be rearranged such that all information about Y [t] is contained in X[t] already. Indeed,

Y [t] =
�1

c
(

X[t]

X[t� 1]
� a+ b)(d+

e

c
(

X[t]

X[t� 1]
� a+ b).

Conditioning on Y [t] would not bring additional information and Granger causality would then fail
to uncover the right causal structure.

E PROOF OF LEMMA 3.1

Proof. We first write the map �k

g(�H),↵H
(H(t)) in its full form:

�k

g(�H),↵H
(H(t)) : H ! Rk s.t.

�k

g(�H),↵H
(H(t)) = (↵H(g(�H,0(H(t)))),↵H(g(�H,�⌧ (H(t)))), ...,↵H(g(�H,�k⌧ (H(t)))))

= (↵H(g(H(t))),↵H(g(H(t� ⌧))), ...,↵H(g((H(t� k⌧)))))

= (↵H(X[t]),↵H(X[t� ⌧ ]), ...,↵H(X[t� k⌧ ])),

where the last line follows from the definition of the dynamical system. � then maps the latent
process to the delay embedding of X obtained with observation function ↵H .

As the observation function ↵H 2 C2, the flow �H and the function g(·) are all continuous, this
implies that the map � is also continuous in H(t). It is also surjective as all delay embeddings (or
points in the state-space) will have at least one latent value generating this delay embedding. Indeed,
if we write M0

↵H
as the shadow manifold of the delay embeddings of X with observation function

↵H , we have that

8m 2 M0
↵H

, 9h 2 H s.t. �k

g(�H),↵H
(h) = m.

Let us now assume that there exists a specific observation function ↵
⇤
H

such that � is injective. The
map �↵

⇤
H

is then bijective. Furthermore, as both H and M0
↵

⇤
H

are endowed with a metric, the map
�↵

⇤
H

is a homeomorphism between H and M0
↵

⇤
H

.

We now show that � is a homeomorphism for any observation function. From Takens’ theorem, any
delay embedding with valid observation function ↵, dimension k, and delay ⌧ is a valid embedding
of the strange attractor of the dynamical system. There must then exists a homeomorphic map  
between any two valid delay embeddings with different observation functions:

8↵,� 2 C2
,R ! R , 9 homeomorphism  ↵,� : M0

↵
! M0

�
s.t.

8m↵ 2 M0
↵
,m� 2 M0

�
, ↵,�(m↵) = m� .

By transitivity, there is now a homeorphism between H and any valid delay embedding defined with
observation function ↵H defined as  ↵

⇤
H
,↵H

��k

g(�H),↵⇤
H

(H(t)). By Takens’ theorem, H is thus an
embedding of the strange attractor of the dynamical system containing X[t].
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F COMPARISON WITH PCMCI AND VARLINGAM

F.1 PCMCI

We compared our approach with PCMCI (Runge et al., 2019), a recently introduced method to
estimate causal networks from large-scale time series datasets. The method uses independence tests
at various time lags to infer causal links between time series. The method does not allow for sporadic
time series as a constant time lag is required for the conditional independence tests. Furthermore,
the method does not support a way to handle a collection of short time series from a common
dynamical system. We then used the method on a less challenging variant of our data where the
observations are sampled at a constant rate corresponding to the sampling rate used for generating
the sporadic time series. We only feed a very long time series without interruption. We used a
maximum time lag of 10 seconds and report the results of cases 1 and 2 of the double pendulum
for various significance thresholds in Table 6. We used the implementation of the method provided
by the authors at https://github.com/jakobrunge/tigramite/. Because the method
infers causality with a different score than ours, we report the inferred configuration at each repeat
and for each case. The different configurations are shown on Figure 7. For case 1, we observe that
PCMCI recovers the true causal graph 2 times out of 5 when the significance is set to p < 0.001.
For case 2, at all levels of confidence, PCMCI infers a fully connected graph (configuration�). We
suggest this results form the large number of time series for this configuration (12) as well as the
existence of complex coupling dynamics of the chaotic dynamical system, make the causal inference
challenging. An example of inferred causal network with PCMCI (case 1 with significance level of
p < 0.001) is presented on Figure 8.

F.2 VARLINGAM

We also compared the Latent CCM method with VARLinGAM (Hyvärinen et al., 2010). VAR-
LinGAM detects causal links between longitudinal variables by learning a directed acyclic graph
of interactions of the variables and their time lags. In particular, VARLinGAM derives the best
acyclic graph with the LinGAM method (Shimizu et al., 2006). We infer causality between the
group of variables X and another Y by checking the existence of causal edges between individ-
ual variables of X and Y . We used the implementation of VARLinGAM available at https:
//github.com/cdt15/lingam and use a maximum time lag of 10 seconds (same as for
PCMCI) and a minimum causal weight of 0.01. As for PCMCI, the score provided to infer a graph
is different than ours and we provide the results of the learnt causal graphs for cases 1 and 2 of the
double pendulum in Table 6. The method only recovers the true graph of case 1 in 60% of the time.
For case 2, the method fails to recover the causal generative model for all the repeats.

Table 6: Inferred causal configurations for double pendulum cases with PCMCI and Var-LinGAM.
Details of the configuration codes used are given on Figure 7. Sign. Level stands for significance
level.

MODEL CASE SIGN. LEVEL REPEAT 1 REPEAT 2 REPEAT 3 REPEAT 4 REPEAT 5

PCMCI CASE 1 p < 0.01 A (7) A (7) A (7) A (7) A (7)
p < 0.001 B (7) � (3) B (7) B (7) � (3)

CASE 2 p < 0.01 � (7) � (7) � (7) � (7) � (7)
p < 0.001 � (7) � (7) � (7) � (7) � (7)

VARLINGAM CASE 1 p < 0.01 A (7) A (7) A (7) A (7) A (7)
p < 0.001 A (7) A (7) � (3) � (3) � (3)

CASE 2 p < 0.01 A (7) B (7) B (7) B (7) � (7)
p < 0.001 � (7) � (7) A (7) � (7) � (7)
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Figure 7: Different configurations inferred by PCMCI in both double pendulum cases.

19



Published as a conference paper at ICLR 2021

Figure 8: Example of causal network inferred by the PCMCI method for case 1 (repeat 1) of the
double pendulum data. Significance level : p < 0.001.

G MODEL SELECTION PROCEDURE

When training GRU-ODE-Bayes models, we use 80% of the available time series samples as training
set and the remaining 20% as validation set. For training, we use the reconstruction loss proposed
by the authors (De Brouwer et al., 2019). For validation, we feed the time series until half of
the available horizons (e.g. for time series of length 10 seconds, we feed the 5 first seconds) and
compute the MSE on the reconstruction of the subsequent available samples. We choose the model
hyperparameters that minimize the MSE over the validation set. Note that we do not need test set
as our ultimate goal resides in causal direction inference and not in accurate forecasting of the time
series. Importantly, models for each time series are learnt independently and no information about
causal direction is available at any time in the process.

H SPORADIC DATA WITH MISSINGNESS NOT AT RANDOM

Experiments and results presented in Section 4.5 consider a a random sporadic sampling of the data.
The data is thus missing at random (MAR). In practice, however, the sampling of a process is usually
not fully random but rather depends on the value of the process itself. As a simple example, doctors
measure the blood pressure of patients more often when it’s high or likely to be high. The sampling
pattern then gives information about the value of the process we want to model.

In order to account for this bias occurring in practice, we consider also a variant of the double
pendulum dataset (case 1) where the missingness is not at random (MNAR) and with noise standard
deviation of 0.01. The sampling pattern we consider is the following. If the absolute value of the
angle of the first rod ✓1 is larger than ⇡

4 , we sample the process with a probability two times larger
than if the angle is smaller than ⇡

4 . The sampling probability of an observation ps(Xt) is then :
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ps(Xt) =

⇢
p if ✓1(Xt)  ⇡

4

2p if ✓1(Xt) >
⇡

4

Note that the total number of observations is still kept constant with respect to the MAR case.

Figure 9 shows the results of latent CCM on the MNAR double pendulum data (case 1). We observe
that latent CCM is still inferring the correct causal directions, despite the sampling bias.

Figure 9: Result of latent CCM on the MNAR double pendulum data (case 1 with low noise). The
correct causal directions are inferred.

Table 7: Results of latent CCM on the MNAR double pendulum data (case 1 with low noise).

X ! Y Y ! X

Sc �0.009± 0.008 0.399± 0.029
AUC 0.49 (p=0.52) 1 (p<0.001)

I USING A RNN INSTEAD OF A NEURAL-ODE

As Equation 3 in the paper suggests, we consider our observations are generated from a continuous
latent process H(t). Different techniques could be used to infer this process H(t) in our latent CCM
approach. Among those techniques, neural-ODE models such as [1] or [2] embody the assumptions
of Equation 3 and are thus a natural choice for the inference of informative latent vectors. Another
choice could be to learn those dynamics with a non-continuous recurrent neural network approach.
In this section, we compare Neural-ODE methods with using a standard recurrent neural network
(GRU) for learning the dynamics of the process. Because the processing of missing data across
dimensions is not well defined for GRU, we use a version of the data as in Appendix F, namely the
observations are sampled at a constant rate (similar to the one used for sporadic data, taking into
account the sampling across dimensions) and importantly, no missing dimensions are allowed. We
then use the learnt latent process to infer causal direction for case 2 of the double pendulum data.
Results are presented in Table 8. We observe that incorrect causal directions are inferred (from X

to Z and from Y to Z).
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Some theoretical properties of Neural-ODEs can help explain this result. Because of their continuous
resolution, Neural-ODEs allow to have a denser coverage of the attractor we want to reconstruct.
This feature is further strengthened by the fact that different integrators can be used to recover the
latent process, therefore allowing to tune the resolution of the learnt latent process. In the case of
physical systems, a symplectic integrator can also be used, to ensure conservation of energy and
more accurate learning of the dynamics.

Table 8: Results of latent CCM on the double pendulum data with latents learn from a GRU. Data is
constantly sampled with no missing values and simulated as for the case 2 of the double pendulum.

X ! Y Y ! X X ! Z Z ! X Y ! Z Z ! Y

Sc 0.013± 0.020 0.022± 0.019 0.108± 0.049 1.064± 0.057 0.053± 0.011 0.513± 0.018
AUC 0.34 (p=0.884)3 0.41 (p=0.753)3 1.00 (p<0.001)7 1.00 (p<0.001)3 1.00 (p<0.001)7 1 (p<0.001) 3

J COMPLEXITY OF THE METHOD AND BASELINES

As all methods require a k-nearest neighbors step for each pair of time series, the difference in com-
putation arises in the computation of the embeddings fed to the kNN. We then report the complexity
of computing the embeddings to be used for the cross-mapping in Table 9. Computing delay em-
beddings scales linearly in the number of embedding dimensions (H) and the number of samples in
each time series (M ). When using Gaussian Processes, one has first to infer the latent process at all
time points and invert a covariance matrix of size D⇥D which requires an additional O(D3 ⇥M).
For latent-CCM, we avoid the computation of the delay embeddings but we require to train a Neural-
ODE model which requires O(H2) for each time step and at each observation.

Table 9: Time complexity for computing the embeddings in the different methods. Complexities
depend on the embedding dimension (H), the number of samples observed per time series (M ), the
length of each time series (T ) and the number of features in the time series (D).

Method Time complexity

Multi-spatial CCM O(H ⇥M)
GP O(H ⇥ T +M ⇥D

3)
MVGP O(H ⇥ T +M

3
⇥D

3)
Latent-CCM O(H2

⇥ T +D ⇥H ⇥M +H
2
⇥M)
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