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Abstract

Conventional model compression techniques for
LLMs address high memory consumption and
slow inference challenges but typically require
computationally expensive retraining to preserve
accuracy. In contrast, one-shot compression meth-
ods eliminate retraining costs, but struggle to
achieve accuracy comparable to dense models.
This paper presents SLIM, a new one-shot com-
pression framework that holistically integrates
hardware-friendly quantization, sparsity, and low-
rank approximation into a unified process. First,
we formulate the quantization process using a
probabilistic approach (SLIM-Quant) that en-
ables us to apply uniform quantization. Then,
we use an existing one-shot pruning method to
apply semi-structured sparsity on top of the quan-
tized weights. Finally, to compensate for the intro-
duced aggregated quantization and sparsity error,
we use a novel saliency function with unique in-
vertible and additive features that enables us to
mathematically compute the value of low-rank
adapters. SLIM improves model accuracy by up
to 5.66% (LLaMA-2-7B) for 2:4 sparsity with
4-bit weight quantization, outperforming prior
methods. Models compressed with SLIM achieve
up to 4.3× and 3.8× layer-wise speedup on
Nvidia RTX3060 and A100 GPUs, respectively.
Additionally, they achieve up to 0.23× end-to-end
memory reduction in comparison to their dense
counterparts. We also propose an optional PEFT
recipe that further improves accuracy by up to
1.66% (LLaMA-2-13B) compared to SLIM with-
out fine-tuning.1

1Department of Computer Science, University of Toronto
2Google DeepMind 3NVIDIA Research. Correspondence to: Mo-
hammad Mozaffari <mmozaffari@cs.toronto.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Code and data for SLIM is available at: https://github.
com/Mohammad-Mozaffari/slim

1. Introduction
LLMs (Team et al., 2024; Dubey et al., 2024) have signifi-
cantly advanced natural language understanding and genera-
tion (Suzgun et al., 2022; Zhou et al., 2023). However, their
extensive parameter counts lead to significant memory over-
head and high inference costs (Frantar & Alistarh, 2023; Ma
et al., 2024; Guo et al., 2024). To mitigate these challenges,
recent methods (Shao et al., 2023; Sun et al., 2023; Lin et al.,
2024) leverage compression to reduce inference costs while
aiming to retain accuracy as much as possible, albeit often
with some trade-offs compared to dense models.

Pruning and quantization methods effectively reduce the
computational and memory overhead of LLMs, but they of-
ten require costly retraining on large-scale datasets to restore
accuracy (Sanh et al., 2020; Park et al., 2018). The com-
putational overhead of retraining, coupled with the numer-
ical and optimization challenges of fine-tuning quantized
models (Gholami et al., 2022), makes these approaches im-
practical for many real-world applications (Frantar et al.,
2022).

To eliminate the need for retraining, one-shot compression
methods have gained traction, achieving high accuracy using
only a relatively small set of calibration data. State-of-the-
art methods such as SparseGPT (Frantar & Alistarh, 2023)
and Wanda (Sun et al., 2023) have demonstrated strong
one-shot pruning performance. However, these methods
perform well with unstructured sparsity but struggle with
semi-structured patterns, such as NVIDIA’s 2:4 sparsity
pattern (Mishra et al., 2021), which is crucial for efficient
hardware-accelerated inference. To solve this challenge,
unlike SparseGPT and Wanda that focus on layer-wise error
minimization, MaskLLM (Fang et al., 2024) uses a learnable
mask that minimizes the end-to-end model error, resulting
in a significant boost to the accuracy of the model at the
cost of an expensive mask training phase. One-shot quanti-
zation methods use various methods including row/column
reordering (Frantar & Alistarh, 2023), scaling (Xiao et al.,
2023; Lin et al., 2024), and other transformations (Shao
et al., 2023; Ma et al., 2024) to mitigate model accuracy
loss. However, their dependence on complex GPU kernel
implementations can limit the practical benefits of quantiza-
tion and add challenges to their development.
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Although pruning and quantization are effective individually
in reducing model size and inference costs, combining them
provides even greater compression potential (Frantar & Al-
istarh, 2023). However, jointly applying these techniques
often compounds the accuracy degradation introduced by
each method, leading to a significant performance gap be-
tween compressed and original models. Recent work (Guo
et al., 2024) attempts to mitigate this issue by jointly pruning
and quantizing weights. While effective at 8-bit precision,
this work struggles to recover the accuracy of dense models
under lower bit-width quantization. This persistent accu-
racy gap highlights the need for alternative compression
techniques that can maintain efficiency while minimizing
quality degradation, especially at lower bit widths.

Low-rank adapters have emerged as a promising approach to
mitigate the accuracy loss introduced by model compression
techniques. Recent studies (Guo et al., 2023; Li et al., 2023)
have explored learnable low-rank adapters to reduce weight
reconstruction errors caused by pruning or quantization.
However, these methods typically require an expensive re-
training process on hundreds of millions of tokens to recover
performance (Dettmers et al., 2023; Nikdan et al., 2024).
This retraining is necessary because low-rank adapters are
often initialized based on weight norms rather than their
direct impact on model outputs, resulting in suboptimal
starting points (Guo et al., 2023). To address this limitation,
L2QER (Zhang et al., 2024a) introduces a one-shot low-rank
adapter approach that compensates for quantization loss by
directly minimizing its impact on model outputs. QERA
(Zhang et al., 2024b) and CALDERA (Saha et al., 2024)
find closed form solutions to the problem that L2QER tries
to solve. Although effective for quantization, methods such
as L2QER struggle to maintain accuracy when combined
with sparsity, underscoring the need for compression tech-
niques that seamlessly integrate low-rank approximations
with both sparsity and quantization2

To address these limitations, we propose SLIM, a one-shot
compression framework that seamlessly integrates hardware-
friendly sparsity, quantization, and low-rank approxima-
tion to minimize accuracy degradation while maintaining
computational efficiency. We decompose the primary ob-
jective of SLIM–one-shot hardware-friendly sparsity and
quantization with minimal accuracy loss–into three key sub-
tasks. For quantization, we prioritize uniform quantization
(e.g., one scale per tensor) because of its computational
efficiency on commodity hardware and its simplified encod-
ing/decoding process. However, standard uniform quanti-
zation often introduces significant quantization errors, par-
ticularly in tensors with a wide dynamic range or outliers
(Gholami et al., 2022). These errors degrade model accu-

2For a more detailed discussion of the related work, see Ap-
pendix S.

racy, making uniform quantization less attractive than more
complex per-group quantization methods. Optimizing uni-
form quantization is inherently a non-convex problem, and
recent approaches (Nagel et al., 2021) rely on grid search
to find an optimal scaling factor. However, grid search can
be both suboptimal and computationally expensive, often
leading to poor model quality. To address this, we introduce
SLIM-Quant, a probabilistic formulation of the quantiza-
tion process. Our approach reformulates the inherently
non-convex quantization problem into a convex optimiza-
tion problem, allowing for an efficient and tractable solution.
This transformation significantly reduces uniform quanti-
zation error, achieving accuracy levels comparable to more
complex group quantization methods while retaining the
computational efficiency of uniform quantization (up to 6%
speedup). After quantization, we apply Wanda (Sun et al.,
2023), a state-of-the-art pruning method, to introduce dif-
ferent forms of unstructured and structured sparsity on the
quantized weights.

While quantization and pruning significantly reduces the
model’s computational and memory footprint, the resulting
compression error is unavoidable, underscoring the need for
effective mitigation strategies. To address this, we propose
SLIM-LoRA, a one-shot low-rank adaptation method de-
signed to compensate for the aggregated error introduced by
quantization and sparsity. However, determining the optimal
values for adapter matrices typically requires an expensive
retraining process, making it impractical for large-scale
models. To eliminate this retraining overhead, we develop a
novel saliency function that is both invertible and additive,
enabling us to mathematically derive the low-rank adapter
values without iterative optimization. These properties allow
SLIM-LoRA to effectively correct compression-induced er-
rors while maintaining computational efficiency.

Compared to state-of-the-art methods, SLIM achieves an
average accuracy improvement of 5.66% on LLaMA-2-7B,
3.89% on LLaMA-2-13B, and 0.60% on OPT-13B under 2:4
sparsity and 4-bit weight quantization. More importantly,
SLIM shifts the Pareto frontier, delivering higher model
accuracy at the same total bit budget compared to existing
compression techniques (up to 0.5%) and even outperform-
ing dense models (up to 0.6%). These results highlight
the effectiveness of SLIM in maximizing model quality
under stringent resource constraints, making it an appeal-
ing solution for efficient large-scale deployment. Beyond
accuracy improvements, SLIM achieves up to 4.3× and
3.8× layer-wise speedup on NVIDIA RTX3060 and A100
GPUs, respectively, demonstrating its efficiency on modern
hardware. Finally, to further narrow the gap between com-
pressed and dense models, we use an optional lightweight
PEFT method, which provides up to an 1.66% additional
accuracy improvement for LLaMA-2-13B.
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2. Preliminaries
Model Compression. Model compression reduces the com-
pute and memory demands of large models while maintain-
ing predictive accuracy by minimizing output differences
between compressed and original models. However, directly
optimizing these differences across the entire model is com-
putationally infeasible due to the high dimensionality of
neural networks. Optimal Brain Surgeon (OBS) (Hassibi
et al., 1993) simplifies this challenge by focusing on mini-
mizing output discrepancies layer by layer, using calibration
datasets.

OBS applies a layer-wise approach to compress feed-
forward layers efficiently. Denoting compressed matrices
with a superscript C, for a layer with input X ∈ Rb×din ,
weight W ∈ Rdin×dout , and output Y ∈ Rb×dout , it min-
imizes output differences by optimizing Equation 1. This
method ensures compression fidelity and has become foun-
dational for many modern compression techniques.

min
WC

|YC − Y|2 = min
WC

|X (WC −W)|2 (1)

Symmetric Quantization. Symmetric quantization is a
core technique for reducing model size and boosting com-
putational efficiency. It computes the quantized matrix
MQ ∝ round(Mα ), where α is a scaling factor based on
the range or norm of the matrix. This scaling ensures MQ

values stay within the representable range, enabling efficient
matrix multiplications with minimal overhead. However,
its effectiveness depends on selecting α carefully, as this
choice significantly impacts precision.

AbsMax, the most common symmetric quantization method,
selects α as the matrix’s maximum absolute value, ensuring
all values remain within the target range. Unfortunately, it
is highly sensitive to outliers; a single large value can inflate
α, reducing the precision of most quantized weights. For
zero-centered, bell-curved distributions typical in LLMs,
AbsMax maps many weights to zero, leading to significant
quantization errors.

Group quantization (Alistarh et al., 2017; Gunho et al., 2022)
tackles AbsMax’s outlier sensitivity by assigning separate
scaling factors to subgroups of the weight matrix. This
approach captures local variations in weight magnitudes,
reducing quantization error for non-uniform distributions.
However, storing multiple scaling factors increases mem-
ory usage, and subgroup-specific dequantization increase
computational complexity, potentially slowing inference.
The challenges of using group quantization are discussed in
Appendix U.

SLIM-Quant
Saliency-Based

 Pruning

Saliency-Based 
Low-Rank Adapter

Figure 1. The SLIM weight compression pipeline consists of
three main steps: (1) Quantizing weights using the symmetric
SLIM-Quant algorithm, producing quantized weights WQ and
quantization error EQ; (2) Sparsifying quantized weights WQ

through a pruning method, resulting in compressed weights WC

and sparsity error ES ; (3) Mitigating compression errors through
SLIM saliency-based low-rank approximation, generating left and
right low-rank adapters L and R. Optionally, these adapters can be
fine-tuned with sparse quantized weights frozen to further enhance
model accuracy.

3. Quantized Sparse Plus Low-rank
Approximation of LLMs

To achieve effective compression of LLMs while preserv-
ing accuracy, SLIM combines quantization, pruning, and
saliency-based low-rank adapters into an integrated pipeline.
First, SLIM applies SLIM-Quant , a novel scheme designed
to minimize quantization error, laying the foundation for
subsequent pruning using methods such as Wanda (Sun
et al., 2023). Finally, low-rank adapters are introduced to
reduce the impact of compression errors from both quanti-
zation and pruning, ensuring minimal accuracy loss. The
overall process is illustrated in Figure 1, providing a visual
summary of how these components interact to achieve ef-
fective model compression. In the following subsections,
we dive into the details of each step, highlighting the in-
novations and contributions of SLIM-Quant , the pruning
strategy, and the saliency-based low-rank adapters.

3.1. SLIM-Quant Quantization Method

SLIM adopts symmetric weight quantization due to its low
dequantization and memory overhead and ease of implemen-
tation. Denoting the quantized matrices by Q superscript,
Equation 2 shows the symmetric quantization formula for q-
bit quantization, where α is the quantization scaling param-
eter and clip(.) operator clips the input to values between
[−1, 1].

WQ = round(clip(
W
α
))2q−1 (2)

The objective of quantization is to reduce the weight recon-
struction error shown in Equation 3, where the ∗ superscript
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shows the optimal value. But the objective function in Equa-
tion 3 is not convex, and to our best knowledge, does not
have a closed form solution.

α∗ = argmin
α

||WQ −W||2

= argmin
α

||round(clip(W
α
))2q−1 −W||2 (3)

To solve the mean squared error (MSE) problem in Equa-
tion 3, we propose a probabilistic reformulation as shown
in Equation 4, where Q(.) and Q−1(.) are the quantiza-
tion and dequantization functions respectively, and f(.) is
the probability distribution function (PDF) of the weight
elements.

α∗ = argmin
α

EQ = argmin
α

||WQ −W||2

= argmin
α

∫ ∞

−∞
f(x)|Q−1(Q(x))− x|2dx (4)

By incorporating the quantization formula from Equation 2
into Equation 4, we can simplify the integration into the sum
of two terms based on the absolute value of the data: the
quantization error for absolute values less than α (Equation
5) and the clipping error for absolute values larger than
α (Equation 6). Here, fabs(.) represents the probability
density function (PDF) of the absolute value of the weights.
Equation 7 presents the simplified version of Equation 4.

Equant(α)

=

∫ α

0

fabs(x)|α× round(
x

α
)× 21−q − x|2dx (5)

Eclip(α) =

∫ ∞

α

fabs(x)|α− x|2dx (6)

α∗ = argmin
α

EQ(α)

= argmin
α

Equant(α) + Eclip(α) (7)

Equation 7 can be solved theoretically by differentiating
the objective function with respect to α, provided the prob-
ability density function (PDF) of the weight distribution
is known. However, the weight distribution of neural net-
works rarely conform to standard PDFs. To verify this, we
tested various candidate distributions, including Gaussian,
Laplace, Pareto, q-Gaussian, and Weibull, as they are com-
monly used in modeling natural data. Unfortunately, none

Algorithm 1 SLIM-Quant Algorithm
1: Input: Weight Magnitude PDF: fabs, High Resolution Step Size: ηhigh, Low

Resolution Step Size: ηlow Weight Matrix: W , Quantization Bitwidth: q
2: Output: Wquant

3: function EstimateError(α)
4: Equant(α) =

∫ α
0

fabs(x)|α × round( x
α ) × 21−q − x|2dx

5: Eclip(α) =
∫ ∞
α

fabs(x)|α − x|2dx
6: return Equant + Eclip

7: end function
8: E = EmptyDictionary()
9: for α in range(0, M , ηlow) do
10: E(α) = EstimateError(α)
11: end for
12: αlow = argminα E(α)
13: for α in range(αlow − ηlow , αlow + ηlow , ηhigh) do
14: E(α) = EstimateError(α)
15: end for
16: α∗ = argminα E(α)

17: Wquant = round(clip( W
α∗ )) × 2q−1

of these matched the observed weight distributions accu-
rately. This discrepancy underscores the need for a more
adaptable method, motivating the data-driven approach we
adopt in SLIM-Quant .

To address the absence of a closed-form weight PDF, we
employ numerical integration on the weight histogram to
solve Equation 7. To enhance efficiency, we adopt a multi-
grid strategy: starting with 10 uniform samples in the range
(0,max(W )), the grid is iteratively refined around the re-
gion of minimum error. This iterative process converges to
the optimal α with minimal computational overhead. The
full procedure is detailed in Algorithm 1.

Activation-aware SLIM-Quant. Recent work has shown
that the quantization of a subset of the weight channels has
a higher impact on output error of the model (Xiao et al.,
2023; Lin et al., 2024). We extend SLIM-Quant by incor-
porating an output error minimization approach inspired by
AWQ (Lin et al., 2024). Similar to AWQ, our revised algo-
rithm applies a scaling strategy to activations, reducing the
quantization error of salient weight channels. Specifically,
we scale up the weights associated with the most significant
channels and correspondingly scale down the related input
activations. This approach maintains computational equiva-
lence while effectively lowering the quantization-induced
output error. In particular, scaling approximately 1% of the
channels does not alter the overall quantization parameters
but significantly reduces errors in the critical channels.

However, our approach diverges from AWQ by introducing
a novel saliency metric that jointly considers both activa-
tions and weights. We define the saliency of each channel as
the product of the normalized average magnitudes of inputs
and weights, expressed as |diag(x)×W|, where x and W
denote the average magnitude of activations and weights,
respectively, and |.| denotes the element-wise absolute value
operator. Channels with the highest saliency are scaled by
a factor of s > 1, while their corresponding activations
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are scaled by 1
s . Although this method introduces mod-

est computational overhead, that is attributed to on-the-fly
adjustments of roughly 1% of activations and resulting irreg-
ular memory access patterns, it yields measurable accuracy
improvements. These results underscore a clear trade-off
between computational complexity and model performance,
highlighting the relative strength of SLIM-QuantO (SLIM-
Quant with output error minimization) over SLIM-QuantW

(SLIM-Quant with weight error minimization). Please note
that SLIM-Quant without the superscript W denotes the
weight error minimization version of SLIM-Quant .

3.2. SLIM-LoRA Low-rank Adapters

After quantizing the model using SLIM-Quant , we sparsify
it using an off-the-shelf one-shot pruning method such as
Wanda. The combined effects of quantization and pruning
of a weight matrix can be modeled as additive noise, such
that WC = W + EQ + ES , where EQ = W − WQ and
ES = WC −WQ are the quantization and sparsity errors
respectively. To mitigate these errors, we introduce low-
rank adapters that adjust the compressed weights such that
W ≈ WC +LR, where L ∈ Rdin×r and R ∈ Rr×dout are
the low-rank adapters and r is the adapter rank.

A straightforward approach minimizes the total error norm
between W and WC , focusing solely on reducing the er-
ror magnitude while ignoring the saliency of individual
elements in the weight matrix. We call this method Naive-
LoRA as it overlooks the importance of individual elements
in the weight matrix. However, this method is suboptimal
and can be substantially improved.

To address the limitations of Naive-LoRA, we propose a
novel low-rank approximation formulation that integrates
weight saliency and uses a carefully designed saliency func-
tion to determine optimal adapters. The saliency function
(F ) in our formulation needs to satisfy two key proper-
ties. First, it needs to be invertible, enabling the retrieval
of low-rank adapters from their saliency. Second, it must
be additive, meaning ∀A,B : F (A+B) = F (A) + F (B).
The additive property is crucial for isolating the saliency of
low-rank adapters from the compressed matrix and distin-
guishing the saliency of the error from that of the original
weights. These properties ensure that the saliency func-
tion can effectively isolate and optimize the contribution of
low-rank adapters, forming the foundation of our proposed
formulation.

Assuming that there exists an additive invertible saliency
function F : Rdin×dout → Rdin×dout , we need to solve
Equation 8 to find the optimal adapters. Using the additive
property of the saliency function F (.), we can simplify
Equation 8 to Equation 9.

L,R = argmax
L,R

||F (WC + LR)||2

= argmin
L,R

||F (W − (WC + LR))||2 (8)

L,R = argmin
L,R

||F (W −WC)− F (LR)||2

= argmin
L,R

||F (−(EQ + ES))− F (LR)||2 (9)

Now, we can find F (LR) by computing the SVD of
F (−(EQ + ES)), and using the invertibility property of
F , we can obtain the exact value of L and R.

The saliency function used in SLIM must satisfy three essen-
tial criteria—invertibility, additivity, and the effective utiliza-
tion of input and weight statistics—to optimize weight im-
portance during compression. Recent works such as Wanda,
AWQ, LLM.int8(), and L2QER suggest that the product
of the magnitude of the weights and activations is a useful
metric for identifying important weights during pruning and
quantization. Motivated by this observation, we propose a
saliency function formulation for F that meets these criteria
and leverages weight-activation interactions for effective
compression.

To incorporate input statistics into the saliency function, we
define F (W) ≜ diag(x)W , where x ∈ Rdin represents the
average absolute value of inputs from a calibration set. This
formulation ensures that the saliency function effectively
weights the matrix elements based on their significance
during compression, facilitating a more accurate approxima-
tion. By replacing F (W) in Equation 9, the optimization
problem transforms into a computationally efficient solution
using singular value decomposition, followed by an inverse
saliency transformation to derive the left low-rank adapter
(Equation 11).

L,R = argmin
L,R

|| − diag(x)(EQ + ES)− diag(x)LR||2

(10)

diag(x)L,R = −SV D(diag(x)(EQ + ES)) (11)

We refer to this method of computing saliency-based low-
rank adapters as SLIM-LoRA, a practical and efficient
approach tailored for addressing compression errors in large
language models. To ensure numerical stability and guar-
antee the invertibility of the saliency function, an identity
matrix with small values can be added to diag(x). This ad-
justment is equivalent to uniformly shifting all elements of
x and ensures that the saliency function remains robust even
when x contains near-zero elements. Algorithm 2 provides
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Algorithm 2 SLIM-LoRA Saliency-based Low-rank
Adapter Computation
1: Input: Original Weight: W , Compressed Weight: WC Calibration Input: X
2: Output: L,R: Saliency-based Low-rank Adapters
3: EC = EQ + ES = WC − W // Compute Error
4: x̃ = mean(X ) // Average over all the samples
5: x = x̃+min(|x̃|) // Shift values to avoid zeros in x
6: SC = diag(x)EC // Compute error saliency
7: L̃, R̃ = SV D(SC) // Low-rank approximation
8: L = diag(1/x)L̃ // Converting saliency to weight
9: R = R̃

a comprehensive overview of the steps involved in comput-
ing saliency-based low-rank adapters using SLIM-LoRA,
ensuring reproducibility and clarity.

3.3. Low-rank Adapter Quantization

While pruning and quantizing the weights significantly re-
duce the model’s computation and memory requirements
(∼8× memory footprint reduction), incorporating full-
precision low-rank adapters reintroduces overhead, partially
offsetting these gains. To address this, we applied 4-bit
quantization to compress the adapters. This step ensures
that the compression efficiency achieved through weight
pruning and quantization is preserved, while maintaining
the performance benefits of the low-rank adapters.

Quantizing low-rank adapters poses unique challenges due
to the long-tailed distribution of their elements, which limits
the effectiveness of advanced non-group quantization meth-
ods, such as SLIM-Quant. To address this, we adopt an
AbsMax group quantization scheme for the adapters, where
groups of 128 elements share the same quantization parame-
ter. By grouping elements, this method effectively captures
the distribution’s variability while minimizing quantization
error, striking a balance between accuracy and compression.
This approach not only reduces the adapter overhead by 4×
but ensures that their contribution to overall model compres-
sion and performance is retained; as demonstrated in our
experimental evaluation.

3.4. Optional Post-compression Fine-tuning

Fine-tuning large language models post-compression has
many challenges because the high parameter count and
memory demands of traditional methods make them com-
putationally prohibitive. For example, using a simple op-
timizer such as ADAMW leads to 4× additional memory
overhead to store gradient and optimizer states, rendering
these approaches impractical for compressed models. Thus,
parameter-efficient fine-tuning is essential for preserving
the benefits of compression while avoiding excessive com-
putational and memory costs. This necessity is further
highlighted by the results in Section 4, which illustrate the
overheads of traditional fine-tuning and the advantages of

parameter-efficient alternatives.

To overcome the challenges of fine-tuning compressed mod-
els, SLIM employs parameter-efficient low-rank adapters as
the only tunable components during the fine-tuning phase.
During this optional phase, SLIM freezes the sparse and
quantized weights, enabling focused fine-tuning solely on
the adapters. If the adapters are quantized, SLIM uses
a straight-through estimator (STE) for quantization-aware
fine-tuning and reduces its overheads with custom quanti-
zation and dequantization kernels implemented in Triton.
This parameter-efficient fine-tuning method allows rapid
accuracy improvements for the compressed model, requir-
ing only a short phase over thousands of tokens. By limit-
ing the fine-tuning process to a small subset of parameters,
SLIM significantly reduces computational requirements
while ensuring the model can adapt effectively to new data
or tasks. This approach maintains the benefits of compres-
sion while enabling efficient adaptation, as demonstrated by
the significant improvements achieved during fine-tuning.

4. Experimental Results
Models, Datasets, and Evaluation.3 We evaluate SLIM on
the OPT (Zhang et al., 2022) and LLaMA-2 (Touvron et al.,
2023) model families, both of which serve as standard base-
lines in model compression studies (Ma et al., 2024; Frantar
& Alistarh, 2023; Sun et al., 2023). Model accuracy is as-
sessed on a range of zero-shot downstream tasks, including
MMLU (Hendrycks et al., 2020), Piqa (Bisk et al., 2020),
Arc-Easy, Arc-Challenge (Clark et al., 2018), WinoGrande
(Sakaguchi et al., 2021), and OpenBookQA (Mihaylov et al.,
2018). For zero-shot evaluations, we utilize the Language
Model Evaluation Harness (Gao et al., 2024) framework.
In line with prior work (Sun et al., 2023; Frantar & Alis-
tarh, 2023; Ma et al., 2024), we also report the perplexity of
the models on a language modeling task on the WikiText2
(Merity et al., 2016) dataset, provided in Appendix G.

Baselines. We compare SLIM against state-of-the-art one-
shot pruning methods, including Wanda (Sun et al., 2023),
SparseGPT (Frantar & Alistarh, 2023), and Magnitude Prun-
ing (Han et al., 2015), as well as one-shot quantization
techniques like OPTQ (Frantar et al., 2022), OmniQuant
(Shao et al., 2023), AffineQuant (Ma et al., 2024), L2QER
(Zhang et al., 2024a), and AbsMax. Additionally, we ex-
tend Joint Sparsification and Quantization (JSQ) (Guo et al.,
2024) to support 4-bit weight quantization and include it
in our experiments. To ensure fairness, we use the op-
timal hyperparameters reported for each method, or the
default hyperparameters if not explicitly reported. For a
thorough description of the notations used to show the dif-

3All the experiments in the paper were run at the University of
Toronto
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ferent variants of SLIM, please see Table 4 in Appendix A.
For more details about the hyperparameters used in different
experiments, please see Appendix T.

L2QER (Zhang et al., 2024a) and OATS (Zhang & Papyan,
2024) are the two independent and concurrent compression
methods utilizing zero-shot low-rank adapters to enhance
model accuracy. Our approach, SLIM, significantly di-
verges from them in several key aspects. First, we employ
saliency-based low-rank adapters to mitigate compression
loss in quantized and sparse models, whereas L2QER is
tailored exclusively for quantization, resulting in reduced
accuracy when combined with sparsity, as demonstrated
in the subsequent subsections, and OATS is designed for
unstructured sparsity only without quantization, which does
not have acceleration support on NVIDIA GPUs. Second,
we introduce SLIM-Quant , which lowers the overhead
and complexity of group quantization compared to methods
like L2QER. Finally, SLIM compresses and fine-tunes low-
rank adapters efficiently to minimize overhead. In contrast,
L2QER and OATS rely on full-precision low-rank adapters,
which incur additional overhead and do not benefit from the
parameter-efficient fine-tuning proposed in our work.

Accuracy Results. We evaluate the accuracy of SLIM and
other state-of-the-art pruning and quantization methods
across 2:4 and unstructured sparsity benchmarks, high-
lighting SLIM’s superiority in Table 1. SparseGPT and
Group OPTQ, designed to work together, achieve compet-
itive performance. For other advanced quantization meth-
ods, we pruned models using Wanda and quantized the
sparse checkpoints with Group AbsMax, AWQ, OmniQuant,
and AffineQuant, reporting the best results (detailed in Ap-
pendix H). In particular, methods such as OmniQuant and
AffineQuant struggle to quantize OPT-350M, often resulting
in NaN values. Moreover, AWQ, OmniQuant, AffineQuant,
and L2QER encounter out-of-memory (OOM) errors when
compressing models on a single A100-40GB GPU. While
JSQ performs well for the LLaMA-2 family, its difficulty
compressing the OPT family limits its broader applicability.

The progression from Naive-LoRA to SLIM-LoRA and
SLIM-LoRAQ demonstrates the benefits of incorporat-
ing weight saliency into low-rank adapters and applying
quantization for reducing overhead. While Naive-LoRA
improves model accuracy across different sizes, SLIM-
LoRA achieves additional gains by effectively leveraging
the saliency of the weights in the adapter design. Extending
this, SLIM-LoRAQ applies quantization to the low-rank
adapters, further minimizing overhead with minimal impact
on accuracy, adding negligible improvements or degradation
to the accuracy of the model.

Table 2 demonstrates how lightweight fine-tuning (FT)
improves the accuracy of both SLIM-LoRA and Naive-
LoRA, with SLIM-LoRA exhibiting greater gains due to

its saliency-aware design. Further details on the fine-tuning
process and its overhead are provided in Appendix K, il-
lustrating its practicality for enhancing compressed model
performance.

SLIM with MaskLLM. MaskLLM is the state-of-the-art
pruning method designed for 2:4 sparsity. It keeps the origi-
nal weights in the model intact, while finding the optimal
2:4 masks for the model through a mask training phase. As a
result, it can be combined with SLIM to boost the accuracy
of the models even further. Table 3 summarizes the average
accuracy results of MaskLLM on six zero-shot downstream
tasks and its perplexity on WikiText2 dataset.

Large Compressed vs. Small Dense Models. This section
compares large compressed models with dense models of
equivalent parameter size, offering guidelines for configu-
ration selection under hardware constraints. We focus on
2:4 sparsity due to its hardware acceleration support and
evaluate the OPT model family, which spans a wide range
of sizes for comprehensive analysis.

We analyze model performance by plotting average accuracy
against parameter size, calculated as detailed in Appendix L.
This visualization enables a direct performance comparison
between models with an equal number of bits.

Figure 2 presents the accuracy results of the OPT model
family across different compression methods. The x-axis
represents the model parameter size in gigabytes, while
the y-axis denotes accuracy (higher is better). The results
demonstrate that SLIM-LoRAQ, both with and without fine-
tuning, consistently outperforms dense models and other
compression techniques at the same parameter size. Notably,
compressed models achieve higher accuracy than dense
models of equivalent size, highlighting the effectiveness of
the proposed method. This trend underscores the advantage
of SLIM-LoRAQ in maximizing model efficiency under
strict hardware constraints.

Speedup. Leveraging sparsity and quantization enhances
GPU resource utilization, enabling faster model inference.
Following Wanda’s experimental setup, we evaluate the
speedup achieved across different model layers and sizes.
Similar to Wanda, AWQ, and QuaRot (Ashkboos et al.,
2024), we focus on consumer-grade GPUs and conduct our
experiments on NVIDIA RTX 3060 GPUs. Speedup results
for NVIDIA A100 GPUs are provided in Appendix J.

SLIM achieves notable speedups through optimized sparse
and quantized matrix multiplication, utilizing Sparse Marlin
(Frantar et al., 2024) integrated with vLLM (Kwon et al.,
2023). For inference, we adopt small batch sizes during
decoding, as recommended by prior works (Xia et al., 2023;
Zheng et al., 2022). Dense Quantized Marlin or PyTorch
kernels handle the low-rank adapters based on their quan-
tization status. Figure 3 highlights the speedup achieved
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Table 1. Average zero-shot accuracy of LLaMA-2 and OPT models with 50% sparsity and 4-bit weight quantization. Best Method∗

indicates the best quantization method out of Group AbsMax, AWQ, OmniQuant, and AffineQuant. ↑ indicates better performance.

Pruning/LoRA Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 35.9 37.1 43.4 45.5 48.3 48.7 56.6 60.8

2:4 Sparsity
Magnitude Group AbsMax 32.19 31.94 33.82 33.43 34.81 34.68 44.64 44.18
SparseGPT Group OPTQ 33.70 33.38 38.75 40.15 44.32 45.64 45.49 51.05
Wanda Best Method∗ 33.39 32.79 38.43 40.00 43.41 44.07 44.86 48.94
JSQ JSQ 32.30 31.84 35.23 32.89 38.06 37.24 44.80 50.20
L2QER Group AbsMax 33.34 31.68 36.68 38.11 41.37 OOM 43.77 OOM

Naive-LoRA SLIM-QuantW 34.28 33.38 38.36 41.21 44.91 45.25 48.45 51.94
SLIM-LoRA SLIM-QuantW 34.62 34.36 40.61 42.73 45.99 46.09 51.15 54.94
SLIM-LoRAQ SLIM-QuantW 34.43 34.30 40.11 42.37 46.33 46.24 51.02 53.55

50% Unstructured
Magnitude Group AbsMax 33.34 33.51 32.12 39.90 36.44 32.33 47.03 51.04
SparseGPT OPTQ 35.10 35.13 38.72 43.43 46.97 47.38 51.09 55.94
Wanda Best Method∗ 35.11 33.89 41.02 42.89 46.52 46.84 53.62 56.76
JSQ JSQ 32.14 30.34 38.86 35.48 42.75 30.73 52.25 57.00
L2QER Group AbsMax 34.45 34.45 38.38 41.28 45.08 OOM 50.60 OOM

Naive-LoRA SLIM-QuantW 34.77 34.23 40.40 43.37 46.64 47.30 51.52 55.33
SLIM-LoRA SLIM-QuantW 35.20 35.32 41.85 43.48 47.08 47.96 54.26 57.85
SLIM-LoRAQ SLIM-QuantW 35.35 35.13 41.74 43.63 47.16 47.86 54.18 57.33

Table 2. Effects of fine-tuning on the average zero-shot accuracy
of LLaMA-2 models with. ↑ indicates better performance.

Pruning/LoRA Weight LLaMA-2
Method Quantization 7B 13B

Dense - 56.6 60.8
50% 2:4
Naive-LoRA + FT SLIM-QuantW 50.89 55.70
SLIM-LoRA + FT SLIM-QuantW 52.12 56.60
SLIM-LoRAQ + FT SLIM-QuantW 48.31 56.50

50% Unstructured
Naive-LoRA + FT SLIM-QuantW 52.90 57.08
SLIM-LoRA + FT SLIM-QuantW 54.69 57.96
SLIM-LoRAQ + FT SLIM-QuantW 53.57 57.78

across different LLaMA-2 layers compared to dense, un-
quantized models. The breakdown of the speedup, showing
the contribution of the quantization and sparsity, is demon-
strated using brighter and darker colors respectively. Larger
matrices, such as those in feed-forward modules, consis-
tently yield greater speedups, aligning with trends detailed
in Appendix J.

Model Memory Reduction. We evaluate SLIM’s memory
reduction on A100 GPUs and our experiments show that
SLIMQ achieves 0.23× and 0.23× memory reduction on
LLaMA-2-7B and LLaMa-2-13B respectively. The reduc-
tions for SLIM are 0.33× and 0.34× respectively.

Table 3. Accuracy (Acc) and perplexity (PPL) of MaskLLM com-
bined with SLIM on LLaMA-2-7B.

Pruning/LoRA Weight LLaMA-2-7B
Method Quantization Acc PPL

Dense - 56.6 5.47

MaskLLM - 49.7 7.3
Naive-LoRA - 52.3 6.6
SLIM-LoRA - 52.2 7.0
Naive-LoRA + FT - 52.6 6.6
SLIM-LoRA + FT - 52.9 6.6

MaskLLM Group AbsMax 49.2 7.6
Naive-LoRA SLIM-Quant 50.5 7.3
SLIM-LoRA SLIM-Quant 51.4 7.5
Naive-LoRA + FT SLIM-Quant 51.2 6.9
SLIM-LoRA + FT SLIM-Quant 52.1 6.8

Additional Experiments. Due to the page limit, we provide
additional experiments for a comprehensive evaluation in
the appendix.

An evaluation of SLIM with input quantization using FP8
is provided in Input Quantizatoin (Appendix B) . The results
show that input quantization has a minimal impact on the
accuracy of the models using SLIM .

A comparison between weight error minimization and ac-
tivation error minimization in SLIM-Quant is provided in
SLIM-QuantW vs. SLIM-QuantO (Appendix C) . The exper-
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Figure 2. Accuracy results of the OPT family across different com-
pression methods (↑ indicates better performance). At equal pa-
rameter size, SLIM outperforms both dense models and other
compression techniques, demonstrating that model compression
with SLIM yields superior performance under the same budget.

iments show that the gap between output error minimization
and weight error minimization is not significant.

We evaluate SLIM on sparse-only and quantized-
only models to isolate their effectiveness. Re-
sults in Additional Sparse-only Results (Appendix D) and
Additional Quantization-only Results (Appendix E) demon-
strate that SLIM and SLIM-Quant consistently outperform
state-of-the-art compression methods.

The Language Modeling Experiments (Appendix G) evalu-
ates SLIM across sparse and quantized, sparse-only, and
quantized-only models on WikiText-2. The results align
with the accuracy trends reported in the main paper, further
validating the effectiveness of SLIM .

The Fine-tuning Costs (Appendix K) shows that SLIM re-
duces fine-tuning overhead from over 36 days for 13B pa-
rameter models to just 14 hours on a single GPU, demon-
strating its practicality and efficiency.

We provide a comparison between Sparsity vs.
Quantization (Appendix I) to show that combining
50% sparsity and 4-bit quantization helps achieve better
compression results in comparison to solely using 2-bit
quantization, while maintaining a similar compression ratio
(∼8×).

Additional speedup results for SLIM on NVIDIA
A100-40GB GPUs are provided in the Additional
Speedup Results (Appendix J) . A theoretical analysis
of computation and memory reductions can be found
in the Computation Reduction Analysis (Appendix M) and
Memory Reduction Analysis (Appendix L) , highlighting the
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Figure 3. LLaMA-2 family of models speedup (×) using
SLIM compared to original dense unquantized model on NVIDIA
RTX-3060. ↑ shows higher speedup. The brighter color shows the
contribution of quantization to the total speedup.

efficiency of SLIM.

Compression Costs (Appendix N) details the time re-
quired to compress models of various sizes across dif-
ferent methods. Rank Analysis (Appendix O) explores
how rank choices in low-rank adapters impact com-
putational and memory costs, as well as model accu-
racy. Sparsity Analysis (Appendix D) analyzes the ef-
fects of different sparsity ratios on model compression.
Lastly, Effects of Calibration Sample Count (Appendix P)
evaluates the influence of calibration sample counts on the
accuracy of calibration-based methods.

5. Conclusion
We introduced SLIM, a one-shot quantized sparse plus
low-rank approximation method for large language mod-
els, optimizing both efficiency and accuracy. By com-
bining quantization, sparsity, and saliency-based low-rank
adapters, SLIM achieves substantial reductions in memory
and computation while preserving competitive performance.
SLIM outperforms state-of-the-art methods in accuracy.
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Impact Statement
The SLIM framework advances model compression by
enabling efficient, one-shot quantization and sparsity for
large language models (LLMs) while maintaining accuracy
through low-rank approximation. This has the potential to
make LLMs more accessible and sustainable by reducing
their computational and energy requirements, thereby en-
abling deployment on a wider range of devices, such as
smartphones and edge computing platforms, and contribut-
ing to environmental sustainability. However, the increased
accessibility of compressed models raises important consid-
erations regarding potential accuracy trade-offs in critical
applications, such as healthcare or legal systems, and the eth-
ical implications of broader AI deployment, including risks
of bias propagation and misuse. To address these challenges,
it is crucial to ensure that efficiency gains do not compro-
mise model reliability and that appropriate safeguards, such
as transparency and rigorous evaluation, are in place for
responsible AI development.
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Appendix
A. Notations
Table 4 details the key notations, particularly for Section 4.

Table 4. Group quantization slow-down on different LLaMA-2 and LLaMA 3.1 models.
Term Description

Naive-LoRA A one-shot low-rank adapter that minimizes the norm of the difference between the
original and the compressed weights.

SLIM-LoRA A saliency-based one-shot low-rank adapter that minimizes the saliency of the differ-
ence between the original and the compressed weights.

Q (Superscript) Q indicates that the compression method quantizes the low-rank adapters as well.
+ FT + FT shows a short fine-tuning phase on 300,000 tokens from the C4 dataset.

B. Input Quantization
We evaluate SLIM with 8-bit input quantization to assess its impact on accuracy. We use AbsMax uniform quantization with
a single parameter per input tensor and apply FP8 format (Micikevicius et al., 2022) for weight quantization. The choice
between E4M3 and E5M2 depends on the tensor’s maximum value; if it exceeds E4M3’s range, we switch to E5M2 for
greater expressivity. Next, we examine how input quantization affects model accuracy.

Table 5 presents accuracy results for different SLIM variants with input quantization. A comparison with Table 9, which
reports accuracy without input quantization, reveals minimal accuracy loss, demonstrating SLIM’s robustness. For further
validation, we extend these experiments to language modeling tasks (Appendix G).

Table 5. Average zero-shot accuracy of LLaMA-2 and OPT models with 4-bit weight quantization and 8-bit input quantization with
50% weight sparsity. ↑ indicates better performance.

Pruning/LoRA Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 35.9 37.1 43.4 45.5 48.3 48.7 56.6 60.8

50% 2:4
SLIM-LoRA SLIM-QuantW 34.85 34.27 40.29 42.58 45.78 46.21 50.99 54.66
SLIM-LoRA + FT SLIM-QuantW 35.28 34.33 41.14 43.29 46.44 47.33 51.77 56.28
SLIM-LoRAQ SLIM-QuantW 34.30 33.85 39.92 41.99 46.08 45.94 50.70 53.56
SLIM-LoRAQ + FT SLIM-QuantW 34.92 34.80 41.66 43.69 46.03 46.87 50.26 56.28

50% Unstructured
SLIM-LoRA SLIM-QuantW 35.12 34.86 41.94 43.53 47.27 47.70 54.28 57.82
SLIM-LoRA + FT SLIM-QuantW 35.18 35.30 42.37 44.02 47.01 48.52 54.43 57.70
SLIM-LoRAQ SLIM-QuantW 35.26 34.67 41.48 43.46 47.25 47.76 53.91 57.16
SLIM-LoRAQ + FT SLIM-QuantW 35.52 35.31 42.66 44.50 47.08 48.53 53.23 57.55

C. SLIM-QuantW vs. SLIM-QuantO

Table 6 compares the average accuracy of different models when using SLIM-Quant with weight error minimization (SLIM-
QuantW ) and activation-aware output error minimization (SLIM-QuantO). SLIM-QuantO outperforms SLIM-QuantW by
a small gap, while adding computational overhead with irregular memory access patterns at inference time.
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Table 6. Average zero-shot accuracy of LLaMA-2 and OPT models with 50% sparsity and 4-bit weight quantization for SLIM-QuantW

and SLIM-QuantO .

Pruning/LoRA Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 35.9 37.1 43.4 45.5 48.3 48.7 56.6 60.8

2:4 Sparsity
SLIM-LoRA SLIM-QuantW 34.62 34.36 40.61 42.73 45.99 46.09 51.15 54.94
SLIM-LoRA SLIM-QuantO 34.63 34.36 40.29 42.45 45.71 46.24 51.22 55.05

50% Unstructured
SLIM-LoRA SLIM-QuantW 35.20 35.32 41.85 43.48 47.08 47.96 54.26 57.85
SLIM-LoRA SLIM-QuantO 35.20 34.78 41.29 43.31 47.09 47.86 54.46 57.97

D. Additional Sparse-only Results
To evaluate the isolated impact of sparsity on model accuracy, we disable quantization and benchmark Magnitude Pruning,
SparseGPT, and Wanda, alongside low-rank approximations like Wanda-SVD and SLIM . Our experiments assess both 50%
unstructured sparsity and 2:4 structured sparsity patterns.

Table 7 shows the accuracy results for sparse models. Magnitude Pruning performs the worst, while Wanda and SparseGPT
achieve comparable results, with larger accuracy gaps for semi-structured sparsity. Low-rank adapters improve accuracy,
with SLIM leveraging saliency-based approximation for superior performance. A brief fine-tuning phase further boosts the
accuracy of low-rank approximations.

Table 7. Average zero-shot accuracy of LLaMA-2 and OPT models with pruning. The quantization is disabled in this experiment. ↑
indicates better performance.

Pruning/LoRA OPT LLaMA-2
Method 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense 35.9 37.1 43.4 45.5 48.3 48.7 56.6 60.8

2:4 Sparsity
Magnitude 32.6 31.8 35.4 33.9 36.4 30.7 31.2 32.0
SparseGPT 33.8 33.2 37.7 41.3 45.2 45.6 47.3 52.3
Wanda 34.0 32.5 38.3 40.5 43.2 44.1 46.1 49.7
SLIM-Naive 34.1 34.1 40.4 42.8 46.0 45.9 51.6 55.8
SLIM-Naive + FT 34.8 34.5 41.3 43.4 46.5 47.2 52.4 56.9
SLIM-LoRA 34.5 32.9 40.7 43.1 46.4 46.3 51.4 56.1
SLIM-LoRA + FT 35.1 34.9 41.5 43.8 46.5 47.3 51.6 56.4

50% Unstructured
Magnitude 33.3 33.7 34.0 40.6 35.8 30.9 32.6 31.9
SparseGPT 35.5 35.1 39.6 43.5 47.4 47.8 53.3 57.3
Wanda 35.0 34.5 41.1 42.9 46.5 46.8 52.7 57.2
SLIM-Naive 35.3 35.2 41.9 44.1 47.5 47.8 54.9 58.5
SLIM-Naive + FT 35.74 35.7 42.7 44.6 47.8 48.4 54.9 58.7
SLIM -LoRA 35.2 35.1 42.0 44.1 47.7 48.2 55.0 58.8
SLIM -LoRA + FT 35.9 35.7 42.5 44.7 47.7 48.4 55.0 58.8
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E. Additional Quantization-only Results
To evaluate the impact of SLIM-Quant and low-rank compensation in SLIM, we conduct experiments without sparsity,
testing quantization schemes like Group AbsMax, OPTQ, AWQ, OmniQuant, AffineQuant, L2QER, and SLIM-Quant .
To enhance accuracy, we add low-rank adapters to SLIM-Quant and Group AbsMax, optimizing either error saliency
(SLIM-LoRA) or reconstruction error norm (Naive-LoRA). Other quantization methods cannot incorporate low-rank
adapters due to conflicting weight/activation update rules.

Table 8 presents the quantization results. Adding low-rank adapters to Group AbsMax significantly boosts model accuracy,
outperforming most advanced methods. While SLIM-Quant alone is not designed for high accuracy, its integration with
SLIM variants achieves results comparable to or better than Group AbsMax with low-rank adapters, highlighting the value of
co-design in compression methods. Furthermore, a lightweight fine-tuning phase with SLIM-Quant delivers state-of-the-art
accuracy.

Table 8. Average zero-shot accuracy of LLaMA-2 and OPT models with quantization. The sparsity is disabled in this experiment. ↑
indicates better performance.

Quantization Low-rank OPT LLaMA-2
Method Adapter 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 35.9 37.1 43.4 45.5 48.3 48.7 56.6 60.8

OPTQ - 35.64 36.46 42.83 44.20 47.46 48.24 53.53 59.80
AWQ - 36.16 31.83 42.98 45.28 48.45 48.76 53.97 OOM
OmniQuant - 35.46 NaN 42.15 44.71 46.65 OOM 54.33 OOM
AffineQuant - 35.73 NaN 42.62 44.92 47.91 OOM 54.52 OOM

Group AbsMax - 35.45 36.67 42.57 44.79 48.30 48.49 55.56 60.12
Group AbsMax L2QER 34.75 35.63 40.60 44.22 46.90 OOM 55.95 OOM
Group AbsMax SLIM-Naive 36.30 36.58 43.07 45.13 48.26 48.72 56.23 60.53
Group AbsMax SLIM-LoRA 36.18 36.72 42.89 45.65 48.45 48.89 55.99 60.16

SLIM-QuantW - 31.98 36.46 36.19 40.08 45.61 38.27 31.11 30.51
SLIM-QuantW SLIM-Naive 35.29 36.02 42.48 45.01 47.75 48.38 55.96 60.85
SLIM-QuantW SLIM-LoRA 35.69 36.42 42.59 45.26 48.18 48.52 56.26 60.59
SLIM-QuantW SLIM-LoRA + FT 35.91 36.61 43.29 45.58 48.29 49.04 56.51 60.65

F. Additional Fine-tuning Results
To complement the results in Section 4, we provide accuracy measurements for PEFT-based fine-tuning of low-rank adapters
on the OPT and LLaMA-2 model families in Table 9 while showing the accuracy results without fine-tuning for comparison.
The results confirm the previously observed trend: lightweight fine-tuning enhances the accuracy of all baselines, with
SLIM-LoRA achieving the most significant improvements due to its saliency-based design.

G. Language Modeling Experiments
We evaluate all benchmarks from Section 4 and Appendix B ,D, and E on the WikiText2 language modeling task. Tables
10 and 11 show perplexity results for 4-bit quantized models with 2:4 and unstructured sparsity, respectively. Table 12
summarizes the results for 8-bit input quantization. To examine sparsity and quantization independently, Tables 13 and
14 report results for pruning-only and quantization-only models. Consistent with Section 4, SLIM achieves superior
performance across all settings.
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Table 9. Effects of fine-tuning on the average zero-shot accuracy of LLaMA-2 and OPT models with. ↑ indicates better performance.

Pruning/LoRA Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 35.9 37.1 43.4 45.5 48.3 48.7 56.6 60.8

50% 2:4
Naive-LoRA SLIM-QuantW 34.28 33.38 38.36 41.21 44.91 45.25 48.45 51.94
Naive-LoRA + FT SLIM-QuantW 34.41 34.70 39.72 42.88 46.16 46.76 50.89 55.70
SLIM-LoRA SLIM-QuantW 34.62 34.36 40.61 42.73 45.99 46.09 51.15 54.94
SLIM-LoRA + FT SLIM-QuantW 35.03 34.58 41.11 43.35 46.71 47.25 52.12 56.60
SLIM-LoRAQ SLIM-QuantW 34.43 34.30 40.11 42.37 46.33 46.24 51.02 53.55
SLIM-LoRAQ + FT SLIM-QuantW 34.92 34.85 41.84 43.87 46.31 46.91 48.31 56.50

50% Unstructured
Naive-LoRA SLIM-QuantW 34.77 34.23 40.40 43.37 46.64 47.30 51.52 55.33
Naive-LoRA + FT SLIM-QuantW 35.70 35.47 41.89 44.16 47.08 47.78 52.90 57.08
SLIM-LoRA SLIM-QuantW 35.20 35.32 41.85 43.48 47.08 47.96 54.26 57.85
SLIM-LoRA + FT SLIM-QuantW 35.59 35.71 42.37 44.58 47.69 48.26 54.69 57.96
SLIM-LoRAQ SLIM-QuantW 35.35 35.13 41.74 43.63 47.16 47.86 54.18 57.33
SLIM-LoRAQ + FT SLIM-QuantW 35.65 35.67 42.74 44.54 47.48 48.40 53.57 57.78

Table 10. Perplexity of LLaMA-2 and OPT models with 2:4 sparsity and 4-bit weight quantization on WikiText-2 dataset language
modeling task. ↓ indicates better performance.

Pruning/LoRA Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 27.66 22.00 14.62 12.47 10.86 10.13 5.47 4.89

Magnitude Group AbsMax 5.1E2 4.4E2 1.2E3 1.3E3 3.6E2 4.9E2 86.34 8.98
SparseGPT Group OPTQ 78.18 59.86 27.36 18.62 15.31 13.25 12.07 9.46
Wanda Group AbsMax 1.8E2 1.3E2 32.76 24.48 17.29 16.86 14.36 9.38
Wanda AWQ 9.3E1 8.1E5 29.56 22.91 16.28 16.72 12.79 OOM
Wanda OmniQuant 9.7E1 NaN 33.61 25.89 19.09 OOM 12.77 OOM
Wanda AffineQuant 9.7E1 NaN 30.32 1.6E3 16.85 OOM 12.21 OOM
JSQ JSQ 3.5E3 1.7E4 1.1E2 6.6E2 36.94 2.3E2 12.68 8.70

Naive-LoRA Group AbsMax 69.23 50.02 20.52 16.05 12.83 13.12 8.04 6.38
Naive-LoRA SLIM-QuantW 83.08 58.69 27.06 20.92 14.29 13.20 8.19 7.09
Naive-LoRA + FT SLIM-QuantW 51.82 38.84 20.59 16.19 13.13 12.55 6.96 6.01

SLIM-LoRA SLIM-QuantW 57.91 50.09 19.64 15.65 12.71 12.13 7.77 6.80
SLIM-LoRA + FT SLIM-QuantW 44.03 37.32 18.25 14.89 12.68 12.06 6.70 6.60
SLIM-LoRAQ SLIM-QuantW 53.09 46.96 19.62 16.01 12.48 12.15 7.75 6.96
SLIM-LoRAQ + FT SLIM-QuantW 42.80 37.39 18.38 15.40 12.65 12.35 7.08 6.36
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Table 11. Perplexity of LLaMA-2 and OPT models with unstructured sparsity and 4-bit weight quantization on WikiText-2 dataset
language modeling task. ↓ indicates better performance.

Pruning/LoRA Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 27.66 22.00 14.62 12.47 10.86 10.13 5.47 4.89

Magnitude Group AbsMax 3.2E2 1.1E2 3.2E3 3.6E2 7.2E2 5.4E3 17.18 6.77
SparseGPT Group OPTQ 42.60 34.19 21.41 14.30 12.15 11.26 8.28 5.92
Wanda Group AbsMax 62.64 39.60 19.93 15.01 12.31 12.46 6.80 5.75
Wanda AWQ 42.49 3.8E5 18.80 14.67 12.17 12.34 7.28 OOM
Wanda OmniQuant 43.55 NaN 20.58 15.82 13.29 OOM 7.40 OOM
Wanda AffineQuant 43.66 NaN 19.40 14.94 12.39 OOM 7.21 OOM
JSQ JSQ 4.2E3 3.3E4 31.78 1.7E2 19.97 8.9E5 7.17 6.19

Naive-LoRA Group AbsMax 40.37 30.99 17.02 13.91 11.68 11.38 6.12 5.28
Naive-LoRA SLIM-QuantW 46.66 33.90 19.46 15.36 12.16 11.41 6.56 5.58
Naive-LoRA + FT SLIM-QuantW 38.05 29.27 17.52 14.39 12.28 11.84 6.10 5.28

SLIM-LoRA SLIM-QuantW 39.62 31.51 16.52 13.65 11.42 10.82 6.16 5.36
SLIM-LoRA + FT SLIM-QuantW 34.92 28.67 16.16 13.66 11.83 11.47 5.36 5.19
SLIM-LoRAQ SLIM-QuantW 38.79 30.16 16.64 13.82 11.43 10.80 6.26 5.58
SLIM-LoRAQ + FT SLIM-QuantW 35.17 28.31 16.46 13.96 11.42 10.80 5.94 5.46

Table 12. Perplexity of LLaMA-2 and OPT models with 4-bit weight quantization and 8-bit input quantization. ↓ indicates better
performance.

Pruning/LoRA Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 27.66 22.00 14.62 12.47 10.86 10.13 5.47 4.89

50% 2:4
SLIM-LoRA SLIM-QuantW 48.4 49.6 16.6 16.2 12.9 12.3 7.2 6.5
SLIM-LoRA + FT SLIM-QuantW 39.8 37.5 18.3 15.5 12.8 12.1 6.6 5.8
SLIM-LoRAQ SLIM-QuantW 54.2 50.8 20.8 16.8 13.0 12.4 7.8 7.0
SLIM-LoRAQ + FT SLIM-QuantW 43.4 39.1 19.3 16.0 13.1 12.6 7.1 5.8

50% Unstructured
SLIM-LoRA SLIM-QuantW 36.8 31.1 16.8 14.0 11.7 10.9 6.1 5.4
SLIM-LoRA + FT SLIM-QuantW 33.8 28.6 16.5 14.0 12.0 11.5 5.9 5.2
SLIM-LoRAQ SLIM-QuantW 39.5 31.3 17.3 14.2 11.8 10.9 6.3 5.6
SLIM-LoRAQ + FT SLIM-QuantW 35.6 29.1 17.0 14.3 12.2 11.7 6.2 5.5
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Table 13. Perplexity of LLaMA-2 and OPT models with pruning on WikiText-2 dataset language modeling task. The quantization is
disabled in this experiment. ↓ indicates better performance.

Pruning/LoRA OPT LLaMA-2
Method 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense 27.66 22.00 14.62 12.47 10.86 10.13 5.47 4.89

2:4 Sparsity
Magnitude 341.5 417.1 427.2 1.2E3 264.1 4.0E4 9.1E4 2.0E5
SparseGPT 60.7 50.7 23.8 17.2 14.1 12.9 10.2 8.3
Wanda 81.6 116.0 27.8 21.4 16.0 16.4 12.0 8.5
Naive-LoRA 46.9 45.0 18.8 15.2 12.5 12.9 8.1 6.5
Naive-LoRA + FT 39.6 35.1 15.0 16.3 12.7 12.3 6.5 5.7
SLIM-LoRA 45.2 43.6 18.6 15.0 12.4 12.6 7.3 6.2
SLIM-LoRA + FT 37.1 33.7 17.0 14.2 12.4 12.1 6.4 5.8

50% Unstructured
Magnitude 193.4 97.8 1.7E3 265.2 968.7 2.4E4 9.9E4 1.1E5
SparseGPT 36.7 31.8 17.6 13.4 11.5 11.1 6.5 5.6
Wanda 39.3 36.4 18.3 14.3 12.0 12.3 6.4 5.4
Naive-LoRA 33.3 29.1 16.3 13.5 11.5 11.2 6.2 5.4
Naive-LoRA + FT 31.9 27.5 16.3 13.8 12.0 11.6 5.8 5.1
SLIM -LoRA 32.7 29.0 15.9 13.2 11.2 10.8 5.9 5.2
SLIM -LoRA + FT 31.0 26.8 15.5 13.1 11.6 11.0 5.8 4.7

Table 14. Perplexity of LLaMA-2 and OPT models with quantization on WikiText-2 dataset language modeling task. The sparsity is
disabled in this experiment. ↑ indicates better performance.

Quantization Low-rank OPT LLaMA-2
Method Adapter 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 27.66 22.00 14.62 12.47 10.86 10.13 5.47 4.89

OPTQ - 33.0 24.4 16.0 13.0 11.3 10.3 6.1 4.9
AWQ - 29.1 2.7E5 14.9 12.7 11.0 10.2 6.0 OOM
OmniQuant - 30.2 NaN 15.8 13.3 11.6 OOM 5.7 OOM
AffineQuant - 28.7 NaN 14.9 12.6 11.0 OOM 5.7 OOM

Group AbsMax - 35.1 23.3 15.5 12.9 11.1 10.3 5.4 4.7
Group AbsMax Naive-LoRA 30.4 22.9 15.1 12.7 11.0 10.2 5.3 4.7
Group AbsMax SLIM-LoRA 29.3 22.8 15.0 12.7 10.9 10.2 5.2 4.7

SLIM-QuantW - 1.4E3 26.0 1.7E3 33.1 31.0 6.7E2 1.3E5 7.8E4
SLIM-QuantW Naive-LoRA 32.1 24.1 15.6 13.4 11.2 10.5 5.4 4.8
SLIM-QuantW SLIM-LoRA 30.8 23.1 15.2 12.9 11.1 10.3 5.4 4.8
SLIM-QuantW SLIM-LoRA + FT 30.7 23.5 15.3 13.3 11.6 10.0 5.3 4.7

H. Additional Sparse and Quantized Results
In Section 4, we provided the accuracy results for different pruning and quantization methods. When using Wanda for
pruning, we only reported the best quantization method out of Group AbsMax, AWQ, OmniQuant, and AffineQuant. For
completeness, we have provided the accuracy achieved by each of these quantization methods separately in Table 15.

18



SLIM : One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression

Methods like OmniQuant and AffineQuant encounter difficulties in quantizing OPT-350M, resulting in NaN values.
Additionally, approaches such as AWQ, OmniQuant, and AffineQuant cause memory issues (OOM) when attempting to
compress the models on a single A100-40GB GPU.

Table 15. Average zero-shot accuracy of LLaMA-2 and OPT models with 2:4 sparsity and 4-bit weight quantization. ↑ indicates better
performance.

Pruning/LoRA Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 35.9 37.1 43.4 45.5 48.3 48.7 56.6 60.8

2:4 Sparsity
Wanda Group AbsMax 33.27 32.79 37.47 39.45 42.95 43.64 43.89 48.94
Wanda AWQ 33.33 31.50 38.43 40.00 43.41 44.07 44.86 OOM
Wanda OmniQuant 33.37 NaN 37.35 39.39 41.50 OOM 43.95 OOM
Wanda AffineQuant 33.39 NaN 37.48 33.51 42.88 OOM 44.62 OOM

50% Unstructured
Wanda Group AbsMax 34.67 33.89 40.38 42.77 45.88 46.60 51.76 56.76
Wanda AWQ 35.11 31.57 41.02 42.89 46.52 46.84 50.68 OOM
Wanda OmniQuant 34.85 NaN 39.84 42.16 44.67 OOM 50.51 OOM
Wanda AffineQuant 34.64 NaN 41.23 42.68 46.05 OOM 53.62 OOM

I. Sparsity vs. Quantization
A natural question that arises compressing models is whether it is more efficient to reduce the model size through pruning or
quantization. To answer this question, we conduct a set of experiments, which evaluate the perplexity of different models
under three different conditions, all with around 8× model size reduction factor: (1) 2-bit weight quantization with no
sparsity, (2) 4-bit weight quantization with 50% unstructured sparsity, and (3) 4-bit weight quantization with 50% 2:4
sparsity. We have used SLIM-LoRA with SLIM-Quant in all the experiments. The accuracy and perplexity results of these
experiments are summarized in Tables 16 and 17, showing that combining sparsity and quantization yields better results in
comparison to quantization-only settings with lower bitwidth.

Table 16. Average accuracy of different models on WikiText-2 dataset using different pruning and quantization schemes. ↑ indicates better
performance. Combining sparsity and quantization provides better accuracy results in comparison to solely using quantization.

OPT LLaMA-2
Quantization Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

2-bit - 33.5 32.5 38.5 39.2 43.8 44.4 42.4 44.9
4-bit 2:4 34.6 34.4 40.6 42.7 46.0 46.1 51.2 54.9
4-bit 50% Unstructured 35.2 35.3 41.9 43.5 47.1 48.0 54.3 57.9

Table 17. Perplexity of different models on WikiText-2 dataset using different pruning and quantization schemes. ↓ indicates better
performance. Combining sparsity and quantization provides better accuracy results in comparison to solely using quantization.

OPT LLaMA-2
Quantization Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

2-bit - 116.2 169.7 35.1 27.1 16.2 15.0 12.5 11.7
4-bit 2:4 47.5 45.6 18.8 15.7 12.4 12.1 7.2 6.5
4-bit 50% Unstructured 36.3 29.9 16.3 13.7 11.4 10.8 6.0 5.4
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J. Additional Speedup Results
Section 4 presents the speedup of SLIM on consumer-grade GPUs, while this section provides results on NVIDIA
A100-40GB GPUs. Figure 4 summarizes the speedup for the LLaMA-2 and LLaMA-3.1 model families, including LLaMA-
3.1-405B, highlighting SLIM ’ scalability to large models. As with consumer-grade devices, larger models achieve higher
speedups.

Additionally, the breakdown of the speedup, showing the contribution of quantization and sparsity, is demonstrated using
brighter and darker colors, respectively.
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Figure 4. SLIM speedup for LLaMA-2 family of models on NVIDIA A100-40GB GPUs. The brighter color shows the contribution of
quantization to the total speedup.
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K. Fine-tuning Costs
Fine-tuning compressed models can recover lost accuracy, but the high parameter count leads to substantial time and memory
costs. In our experiments, we fine-tuned models with low-rank adapters, where the quantized weights are frozen and only
the adapters are fine-tuned. This results in a more parameter-efficient approach, reducing both memory and computational
costs. When no low-rank adapter is used, the straight-through estimator (STE) fine-tunes the quantized weights.

Table 18 presents the fine-tuning results for 300,000 tokens from the C4 dataset, using a batch size of 64 and sequence
length of 1024 on a single H100 GPU. Fine-tuning models without low-rank adapters took 12 hours for 125M parameter
models and over 36 days for 13B parameter models. Given these high costs, completing fine-tuning was challenging with
our limited resources. In contrast, using low-rank adapters and freezing the sparse quantized weights made fine-tuning more
efficient, enabling us to report accuracy results in Table 1.

Table 18. The required time for fine-tuning the models with a single H100 GPU on 300,000 tokens from the C4 dataset with a batch size
of 64 and a sequence length of 1024.

Pruning Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Magnitude Group AbsMax
SparseGPT OPTQ 12h 43h 164h 361h 866h 867h 842h 844h
Wanda Group AbsMax

SLIM-Naive SLIM-QuantW 1.5h 3h 6h 8h 16h 18h 14h 14hSLIM-LoRA SLIM-QuantW

L. Memory Reduction Analysis
SLIM prunes and quantizes the models and adds additional low-rank adapters to them. Additionally, it supports quantization
methods for the low-rank adapters to reduce their overhead. In the following, we propose an analysis of the reduced memory
when using SLIM and other pruning and quantization methods.

Assuming the hidden dimension of a model is d and the low-rank adapter ratio used in the model is of rank r < 1.
Furthermore, by denoting the number of transformer blocks with n and the vocabulary size of the model by V and by
denoting the ratio of the up-projection and down-projection layers in the model by a, we can get the memory reduction as
the ratio of Compressed Model Size

Dense Model Size from equation 12.

Memory Reduction =
n(4d2 + 2d2a) + dV

n(4d2/2 + 4× 2d2r + 2d2a/2 + 2d(dr + dra)) + dV
(12)

Table 19 summarizes the memory reduction of different pruning and quantization methods. Please note that when using
low-rank adapters (in Naive-LoRA and SLIM-LoRA), we assume a rank of r = 0.1.

Table 19. Theoretical memory reduction (×) of different compression methods across various OPT and LLaMA models. In Quantized
SLIM , the low-rank adapters are also quantized.(↓ indicates better performance.)

Compression OPT LLaMA-2
Method 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

SparseGPT + OPTQ 0.40 0.30 0.25 0.17 0.15 0.14 0.15 0.14
Wanda + AbsMax 0.40 0.30 0.25 0.17 0.15 0.14 0.15 0.14
Naive-LoRA + AbsMax 0.50 0.42 0.38 0.31 0.30 0.29 0.31 0.30
SLIM-LoRA + SLIM-Quant 0.50 0.42 0.38 0.31 0.30 0.29 0.31 0.30
SLIM-LoRAQ + SLIM-Quant 0.42 0.33 0.28 0.20 0.19 0.18 0.19 0.18
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M. Computation Reduction Analysis
SLIM and other compression methods reduce the number of floating point operations (FLOPs) at the inference of models.
Additionally, the low-rank adapters used in SLIM and Wanda SVD can add additional computational overheads to the
inference of the models. Following JSQ (Guo et al., 2024), in this section, we provide an analysis on the FLOP reduction
in the inference of different methods. It is noteworthy that even though quantization can reduce the memory overhead of
models, since all the computations are done in floating point format, it does not lead to a reduction in the computation of the
inference.

Assuming the hidden dimension of a model is d and the low-rank adapter ratio used in the model is of rank r < 1.
Furthermore, by denoting the number of transformer blocks with n and the vocabulary size of the model by V and by
denoting the ratio of the up-projection and down-projection layers in the model by a, we can get the memory reduction as
the ratio of Dense Inference FLOP Count

Compressed Inference FLOP Count from equation 13, where b is the batch size, and is canceled in the numerator and the
denominator of the equation.

FLOP Reduction =
n(4bd2 + 2bd2a) + bdV

n(4bd2/2 + 4× 2bd2r + 2bd2a/2 + 2b(d2r + d2ra)) + bdV
(13)

Table 20 summarizes the FLOP reduction of different compression methods. As it can be seen, the overhead of adding the
low-rank adapters (r = 0.1) in SLIM-LoRA and Naive-LoRA is not significant.

Table 20. Compute (FLOP) reduction ratios (×) of different compression methods across various OPT and LLaMA models. In Quantized
SLIM , the low-rank adapters are also quantized. (↑ indicates better performance.)

Compression OPT LLaMA-2
Method 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

SparseGPT + OPTQ 1.52 1.66 1.75 1.91 1.94 1.96 1.95 1.97
Wanda + AbsMax 1.52 1.66 1.75 1.91 1.94 1.96 1.95 1.97
Naive-LoRA + AbsMax 1.32 1.39 1.43 1.50 1.51 1.52 1.49 1.49
SLIM-LoRA + SLIM-Quant 1.32 1.39 1.43 1.50 1.51 1.52 1.49 1.49
SLIM-LoRAQ + SLIM-Quant 1.32 1.39 1.43 1.50 1.51 1.52 1.49 1.49

N. Compression Costs
The computational cost of compression methods varies depending on their complexity. While all approaches can compress
a single layer at a time, the memory usage is similar across methods, as each stores only one layer in the GPU’s global
memory. Techniques like Wanda, which rely on matrix multiplication, are faster than more complex methods like SparseGPT,
which computes the inverse Hessian matrix for each layer. Adding low-rank adapters to Wanda-SVD and SLIM increases
computational complexity due to the need for singular value decomposition (SVD), making them comparable to SparseGPT
in terms of computation.

Table 21 summarizes the time required to compress various models using the discussed methods. Methods incorporating
low-rank adapters (SLIM and Wanda-SVD) generally take longer to compress due to their higher complexity. Interestingly,
SparseGPT’s compression time is comparable to methods with low-rank adapters, despite only performing pruning and
quantization. The saliency-based approach in SLIM does not add significant overhead compared to Wanda-SVD, maintaining
efficiency despite its added complexity.
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Table 21. The required compresion time for different models and compression methods using a single H100 GPU.
Pruning Weight OPT LLaMA-2
Method Quantization 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

Magnitude AbsMax 1s 1s 1s 1s 2s 4s 2s 4s
SparseGPT OPTQ 1m 2m 5m 11m 22m 41m 25m 46m
Wanda SLIM-Quant 0.5m 1m 3m 5m 8m 13m 8m 14m

Wanda-SVD SLIM-Quant 1m 2m 7m 13m 33m 60m 38m 67m
SLIM SLIM-Quant 1m 2m 7m 13m 34m 63m 39m 68m

O. Rank Analysis
The key hyperparameter in low-rank approximation is the rank of the adapters. While increasing the rank reduces
approximation error, it also leads to higher computational and memory overhead. Therefore, it is crucial to analyze the
trade-off between the accuracy improvements and the overhead introduced by the chosen approximation rank.

Assuming the rank of the low-rank adapter is rd, where r < 1 is a fixed factor and d is the dimension of the weights in
a square feed-forward layer, the low-rank adapters are represented as L,RT ∈ Rd×rd, resulting in a memory overhead
of O(2rd2) for storing them. To compute XLR, where X ∈ Rb×d is the input with a batch size of b, the computational
complexity is O(2brd2). Given that the original memory and computational complexity of the layer are O(d2) and O(bd2),
respectively, the overhead introduced by the low-rank adapters becomes negligible when r ≪ 1.

Figure O-a shows the average zero-shot accuracy of the OPT-6.7B and LLaMA-2-7B models for various ranks. As expected,
increasing the rank leads to improved model accuracy. Based on these results, a rank of r = 0.1 provides a substantial boost
in accuracy without introducing significant overhead to inference.
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Figure 5. Sensitivity analysis for the rank of the adapter (a) and the number of calibration samples (b) for different one-shot compression
methods. For Naive-LoRA and SLIM-LoRA, we have used the SLIM-Quant quantization method, and for the SparseGPT, we have used
the Group quantization version of OPTQ.

P. Effects of Calibration Sample Count
Similar to previous work (SparseGPT, Wanda, AWQ, OmniQuant, and AffineQuant), SLIM leverages a set of calibration
data from the C4 dataset to assess weight saliency for pruning and low-rank approximations. Figure O-b illustrates the
perplexity of LLaMA-2-7B using varying numbers of calibration samples. As shown, SLIM demonstrates low sensitivity to
the number of calibration samples, making it effective even in scenarios with limited data.
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Q. Sensitivity to Calibration Dataset
Similar to other pruning and quantization methods such as Wanda, SparseGPT, OPTQ, and AWQ, SLIM relies on a
calibration dataset to evaluate weight saliency. The C4 (Raffel et al., 2019) and SlimPajama (Soboleva et al., 2023) datasets
are among the most commonly used calibration sets for LLM compression. Table 22 presents the perplexity results for
SLIM-LoRA and SLIM-Quant across different calibration datasets. The results indicate that SLIM is largely insensitive to
the choice of dataset, achieving comparable accuracy regardless of the calibration dataset used.

Table 22. Perplexity of different models on WikiText-2 dataset using SLIM-LoRA with 4-bit quantization using SLIM-Quant with
different calibration datasets. ↓ indicates better performance.

Calibration OPT LLaMA-2
Dataset 125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

50% 2:4
C4 57.91 50.09 19.64 15.65 12.71 12.13 7.56 6.50
SlimPajama 46.27 44.77 19.35 16.04 12.56 12.32 7.15 6.49

50% Unstructured
C4 39.62 31.51 16.52 13.65 11.42 10.82 6.16 5.36
SlimPajama 36.49 29.94 16.64 14.08 11.61 11.02 5.99 5.34

R. Sparsity Analysis
To analyze the impact of sparsity on model accuracy, we conduct experiments on LLaMA-2-13B with 4-bit quantization,
pruning it to varying sparsity ratios. Figure 6 presents the perplexity results for SLIM-LoRA with SLIM-Quant , SparseGPT
with OPTQ, and Wanda with Group AbsMax. As expected, increasing the sparsity ratio leads to higher perplexity, indicating
a trade-off between compression and accuracy. Notably, SLIM-LoRA combined with SLIM-Quant maintains competitive
accuracy up to 60% sparsity, whereas other methods experience noticeable degradation at lower sparsity levels.
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Figure 6. Sparsity analysis on LLaMA-2-13B model using perplexity on WikiText-2 dataset. ↓ indicates better performance.

S. Related Work
SLIM combines model pruning and quantization for compression, complemented by zero-shot low-rank adapters to recover
lost accuracy. This section reviews related work on these topics.
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S.1. Pruning

Eliminating redundant weights reduces computation and memory costs during inference. Optimal Brain Damage (OBD)
(LeCun et al., 1989) leverages second-order information of the loss function to identify the least important weights but is
computationally prohibitive for large language models (LLMs) (Mozaffari et al., 2023). WoodFisher (Singh & Alistarh,
2020) approximates the Hessian matrix using Kronecker Factorization to mitigate this overhead but struggles to scale to
LLMs.

Optimal Brain Surgeon (OBS) (Hassibi et al., 1993) evaluates weight matrices layer-wise using the layer-wise Hessian
matrix to preserve layer outputs. However, the cubic growth in the cost of inverting the layer-wise Hessian with model
size renders this approach impractical for LLMs. Optimal Brain Compression (OBC) (Frantar & Alistarh, 2022) addresses
the OBS-defined compression problem using a greedy algorithm, while SparseGPT reformulates it as a sparse regression
problem. Wanda introduces a lightweight method based on weight and activation magnitudes to identify unimportant
weights without updating their values.

In addition to post-training sparsity, a recent line of work targets sparsity during training (Lu et al., 2023; Mozaffari et al.,
2024; Bambhaniya et al., 2024); however, their applicability is limited because of the expensive costs of training.

S.2. Quantization

Quantizing all elements in a matrix is challenging due to the significant impact of outliers on the model (Dettmers et al.,
2022). Group quantization (Alistarh et al., 2017; Gunho et al., 2022) addresses this by quantizing small groups of a weight
matrix with a shared quantization parameter, but it introduces challenges discussed in Appendix U.

AbsMax (Jacob et al., 2018) with round-to-nearest (RTN) is the simplest quantization scheme for matrix elements. OPTQ
(Frantar et al., 2022) minimizes layer-wise error using an approach akin to OBS. AWQ (Lin et al., 2024) shifts the challenge
of quantizing salient weights to activations, while SmoothQuant (Xiao et al., 2023) balances quantization error between
weights and activations, enabling input quantization. OmniQuant (Shao et al., 2023) improves accuracy with learnable
clipping and channel scaling. AffineQuant leverages equivalent affine transformations to reduce quantization error, and
QuaRot (Ashkboos et al., 2024) uses rotations to eliminate outliers during quantization.

Advanced methods like JSQ (Guo et al., 2024) jointly prune and quantize weights to 8 bits but struggle to recover accuracy
in low bit-width quantization, limiting their utility. An analysis of the interplay between sparsity and quantization can be
found in (Harma et al., 2024).

S.3. Low-rank Adapters

Low-rank adapters were first introduced to LLMs to reduce the overhead of fine-tuning (Hu et al., 2021; Mozaffari et al.,
2024). Q-LoRA (Dettmers et al., 2023) extended this approach by quantizing weights before fine-tuning, allowing the
process to recover accuracy lost during quantization. LQ-LoRA (Guo et al., 2023) further improved Q-LoRA by initializing
the adapters using the SVD of the quantization error. LoSparse (Li et al., 2023) has a similar approach as LQ-LoRA, but for
sparsity, initializing the low-rank adapters to the norm of the pruning error. RoSA (Nikdan et al., 2024) expands the learning
capability of the model by adding both low-rank and sparse adapters to the model. This approach adds an extra sparse matrix
multiplication to the inference, increasing the adapter overhead even further. However, all these methods require hundreds
of millions of tokens for fine-tuning, making them costly and not comparable to one-shot pruning and quantization methods,
or methods that use much shorter fine-tuning phases.

L2QER (Zhang et al., 2024a) avoids fine-tuning by using one-shot low-rank adapters to mitigate quantization error. However,
it performs poorly when combined with sparsity, resulting in a significant accuracy gap between the compressed and dense
models. More recent methods, QERA (Zhang et al., 2024b) and CALDERA (Saha et al., 2024) find closed-form solutions to
the problem discussed in L2QER, but they still do not support sparsity.

T. Settings and Hyperparameters
To ensure a fair comparison and robust performance, SLIM utilizes calibration data and fine-tuning datasets under the same
conditions as leading one-shot pruning and quantization methods. Similar to Wanda, SparseGPT, and OPTQ, SLIM leverages
calibration data to extract statistics and assess weight saliency. Specifically, we use 128 sequences sampled from the widely-
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used C4 (Raffel et al., 2019) dataset for calibration. Additionally, for all fine-tuning experiments, we employ 300,000
tokens from the C4 dataset to improve model accuracy post-compression. This standardized approach to data usage ensures
that SLIM operates under the same conditions as its peers, enabling a fair evaluation of its compression and fine-tuning
performance.

SLIM-Quant uses the histogram of the weight elements to find the optimal scaling factor. The use of the histogram reduces
the overhead of finding the optimal parameter by sharing the error computations between the elements that fall into the same
histogram bin. The number of histogram bins provides a trade-off between the computational overhead and the accuracy of
the integration. We set the number of bins in the histogram to max(512,min(din×dout

1000 , 20, 000)) to achieve an accurate
approximation of the PDF of the data.

We standardize our experimental setup by detailing the quantization scheme, group quantization parameters, and low-
rank adapter configurations to ensure reproducibility and comparability across methods. All quantization methods in the
experiments follow a 4-bit weight-only quantization scheme. Consistent with prior work (OPTQ, OmniQuant, AffineQuant,
etc.), group quantization uses a group size of 128. For experiments involving Naive-LoRA and SLIM-LoRA, we set the
adapter rank to 10% of the model’s hidden dimension unless stated otherwise. These standardized configurations ensure
consistency with prior work and enable a fair comparison of SLIM against baseline methods.

For fine-tuning the models, we utilized the Hugging Face Trainer (Wolf, 2019). The AdaFactor (Shazeer & Stern, 2018)
optimizer was employed during the fine-tuning process, accompanied by linear learning rate scheduling. The optimization
and learning rate scheduling parameters were set to their default values in the Hugging Face Trainer. To prevent numerical
overflow and divergence, we used BFloat-16 data types (Wang & Kanwar, 2019) available on NVIDIA A100 GPUs during
fine-tuning. The training was conducted with a local batch size of 1 and a gradient accumulation factor of 64 to reduce
memory overhead. Weight updates for the sparse and/or quantized weights, as well as the corresponding biases, were
disabled. Due to our limited resources, we did not tune any of the hyperparameters aimed at improving fine-tuning speed or
accuracy; tuning these parameters is planned for future work.

U. Group Quantization Challenges
Group quantization allows sharing the same quantization parameters for a small group of the elements in the quantized
matrix, leading to smaller errors. But, using group quantization adds additional challenges to the training and inference of
the model, e.g. more complicated implementation and additional memory and compute overheads.

The state-of-the-art group quantization GPU kernel, dense and sparse Marlin (Frantar et al., 2024), consists of thousands of
lines of CUDA code optimized for only a limited number of GPU architectures, showcasing the amount of effort needed to
implement a version of group quantization. Furthermore, other libraries and frameworks, such as Triton (Tillet et al., 2019)
and CUTLASS (NVIDIA Corporation, 2025) do not provide support for 4-bit group quantization, limiting its flexibility and
possibility of modification.

Furthermore, using group quantization can lead to an additional overhead during matrix multiplication, since more parameters
need to be loaded for dequantizing each group. As an example, Table 23 shows the slow-down of using group quantization
on the down-projection matrices in different LLaMA-2 and LLaMA-3.1 models on a NVIDIA A100-40GB GPU, with a
batch size of 16.

Table 23. Group quantization slow-down (×) on different LLaMA-2 and LLaMA 3.1 models. ↓ indicates worse.
Model LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B LLaMA-3.1-405B

Slow-Down (×) 0.94 0.95 0.95 0.94

26


