
Under review as a conference paper at ICLR 2023

JOINT EDGE-MODEL SPARSE LEARNING IS PROVABLY
EFFICIENT FOR GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the significant computational challenge of training large-scale graph neural
networks (GNNs), various sparse learning techniques have been exploited to reduce
memory and storage costs. Examples include graph sparsification that samples
a subgraph to reduce the amount of data aggregation and model sparsification
that prunes the neural network to reduce the number of trainable weights. De-
spite the empirical successes in reducing the training cost while maintaining the
test accuracy, the theoretical generalization analysis of sparse learning for GNNs
remains elusive. To the best of our knowledge, this paper provides the first theoreti-
cal characterization of joint edge-model sparse learning from the perspective of
sample complexity and convergence rate in achieving zero generalization error. It
proves analytically that both sampling important nodes and pruning neurons with
lowest-magnitude can reduce the sample complexity and improve convergence
without compromising the test accuracy. Although the analysis is centered on
two-layer GNNs with structural constraints on data, the insights are applicable to
more general setups and justified by both synthetic and practical citation datasets.

1 INTRODUCTION

Graph neural networks (GNNs) can represent graph structured data effectively and find applications
in objective detection (Shi & Rajkumar, 2020; Yan et al., 2018), recommendation system (Ying
et al., 2018; Zheng et al., 2021), rational learning (Schlichtkrull et al., 2018), and machine translation
(Wu et al., 2020; 2016). However, training GNNs directly on large-scale graphs such as scientific
citation networks (Hull & King, 1987; Hamilton et al., 2017; Xu et al., 2018), social networks (Kipf
& Welling, 2017; Sandryhaila & Moura, 2014; Jackson, 2010), and symbolic networks (Riegel et al.,
2020) becomes computationally challenging or even infeasible, resulting from both the exponential
aggregation of neighboring features and the excessive model complexity, e.g., training a two-layer
GNN on Reddit data (Tailor et al., 2020) containing 232,965 nodes with an average degree of 492
can be twice as costly as ResNet-50 on ImageNet (Canziani et al., 2016) in computation resources.

The approaches to accelerate GNN training can be categorized into two paradigms: (i) sparsifying the
graph topology (Hamilton et al., 2017; Chen et al., 2018; Perozzi et al., 2014), and (ii) sparsifying the
network model (Zou et al., 2019; Chen et al., 2021b; You et al., 2022). Sparsifying the graph topology
means selecting a subgraph instead of the original graph to reduce the computation of neighborhood
aggregation. One could either use a fixed subgraph (e.g., the graph typology (Hübler et al., 2008),
graph shift operator (Adhikari et al., 2017; Chakeri et al., 2016), or the degree distribution (Leskovec &
Faloutsos, 2006; Voudigari et al., 2016; Eden et al., 2018) is preserved) or apply sampling algorithms,
such as edge sparsification (Hamilton et al., 2017), or node sparsification (Chen et al., 2018; Zou
et al., 2019) to select a different subgraph in each iteration. Sparsifying the network model means
reducing the complexity of the neural network model, including removing the non-linear activation
(Wu et al., 2019; He et al., 2020), quantizing neuron weights (Tailor et al., 2020; Bahri et al., 2021)
and output of the intermediate layer (Liu et al., 2021), pruning network (Frankle & Carbin, 2019), or
knowledge distillation (Yang et al., 2020; Hinton et al., 2015; Yao et al., 2020; Jaiswal et al., 2021).
Both sparsification frameworks can be combined, such as joint edge sampling and network model
pruning in (Chen et al., 2021b; You et al., 2022).

Despite many empirical successes in accelerating GNN training without sacrificing test accuracy, the
theoretical evaluation of training GNNs with sparsification techniques remains largely unexplored.
Most theoretical analyses are centered on the expressive power of sampled graphs (Hamilton et al.,

1

Under review as a conference paper at ICLR 2023

2017; Cong et al., 2021; Chen et al., 2018; Zou et al., 2019) or pruned networks (Malach et al., 2020;
Zhang et al., 2021; da Cunha et al., 2022). However, there is limited generalization analysis, i.e.,
whether the learned model performs well on testing data. Most existing generalization analyses are
limited to two-layer cases, even for the simplest form of feed-forward neural networks (NNs), see,
e.g., (Zhang et al., 2020; Oymak & Soltanolkotabi, 2020; Huang et al., 2021; Shi et al., 2022) as
examples. To the best of our knowledge, only Li et al. (2022); Allen-Zhu et al. (2019a) go beyond
two layers by considering three-layer GNNs and NNs, respectively. However, Li et al. (2022) requires
a strong assumption, which cannot be justified empirically or theoretically, that the sampled graph
indeed presents the mapping from data to labels. Moreover, Li et al. (2022); Allen-Zhu et al. (2019a)
focus on a linearized model around the initialization, and the learned weights only stay near the
initialization Allen-Zhu & Li (2022). The linearized model cannot justify the advantages of using
multi-layer (G)NNs and network pruning. As far as we know, there is no finite-sample generalization
analysis for the joint sparsification, even for two-layer GNNs.

Contributions. This paper provides the first theoretical generalization analysis of joint topology-
model sparsification in training GNNs, including (1) explicit bounds of the required number of known
labels, referred to as the sample complexity, and the convergence rate of stochastic gradient descent
(SGD) to return a model that predicts the unknown labels accurately; (2) quantitative proof for that
joint topology and model sparsification is a win-win strategy in improving the learning performance
from the sample complexity and convergence rate perspectives.

We consider the following problem setup to establish our theoretical analysis: node classification
on a two-layer GNN, assuming that some node features are class-relevant (Shi et al., 2022), which
determines the labels, while some node features are class-irrelevant, which contains only irrelevant
information for labeling, and the labels of nodes are affected by the class-relevant features of their
neighbors. The data model with this structural constraint characterizes the phenomenon that some
nodes are more influential than other nodes, such as in social networks (Chen et al., 2018; Veličković
et al., 2018), or the case where the graph contains redundancy information (Zheng et al., 2020).

Specifically, the sample complexity is quadratic in (1− β)/α, where α in (0, 1] is the probability of
sampling nodes of class-relevant features, and a larger α means class-relevant features are sampled
more frequently. β in [0, 1) is the fraction of pruned neurons in the network model using the
magnitude-based pruning method such as (Frankle & Carbin, 2019). The number of SGD iterations
to reach a desirable model is linear in (1− β)/α. Therefore, our results formally prove that graph
sampling reduces both the sample complexity and number of iterations more significantly provided
that nodes with class-relevant features are sampled more frequently. The intuition is that importance
sampling helps the algorithm learns the class-relevant features more efficiently and thus reduces the
sample requirement and convergence time. The same learning improvement is also observed when
the pruning rate increases as long as β does not exceed a threshold close to 1. Although derived under
a specific setup, our theoretical insights apply to different GNN models and real-world data and serve
as an initial step in building the theoretical foundation of efficient GNN training.

1.1 RELATED WORKS

Generalization analysis of GNNs. Two recent papers (Du et al., 2019; Xu et al., 2021) exploit the
neural tangent kernel (NTK) framework (Malach et al., 2020; Allen-Zhu et al., 2019b; Jacot et al.,
2018; Du et al., 2018; Lee et al., 2018) for the generalization analysis of GNNs. It is shown in (Du
et al., 2019) that the graph neural tangent kernel (GNTK) achieves a bounded generalization error if
the labels are generated through linear or even functions. (Xu et al., 2021) analyzes the generalization
of deep linear GNNs with skip connections. The NTK approach considers the regime that the model
is sufficiently over-parameterized, i.e., the number of neurons is a polynomial function of the sample
amount, such that the landscape of the risk function becomes almost convex near any initialization.
The required model complexity is much more significant than the practical case, and the results are
irrelevant of the data distribution. As the neural network learning process is strongly correlated with
the input structure (Shi et al., 2022), distribution-free analysis, such as NTK, might not accurately
explain the learning performance on data with special structures. (Zhang et al., 2020) analyzes the
generalization of one-hidden-layer GNNs assuming the features follow Gaussian distribution, but the
analysis requires a special tensor initialization method and does not explain the practical success of
SGD with random initialization. Besides these, the generalization gap between the training and test
errors is characterized through the classical Rademacher complexity in (Scarselli et al., 2018; Garg
et al., 2020) and uniform stability framework in (Verma & Zhang, 2019; Zhou & Wang, 2021).

2

Under review as a conference paper at ICLR 2023

Generalization analysis with structural constraints on data. Assuming the data come from
mixtures of well-separated distributions, (Li & Liang, 2018) analyzes the generalization of one-hidden-
layer fully-connected neural networks. Recent works (Shi et al., 2022; Brutzkus & Globerson, 2021;
Allen-Zhu & Li, 2022; Karp et al., 2021; Wen & Li, 2021) analyze one-hidden-layer neural networks
assuming the data can be divided into discriminative and background patterns. Neural networks
with non-linear activation functions memorize the discriminative features and have guaranteed
generalization in the unseen data with same structural constraints, while no linear classifier with
random initialization can learn the data mapping in polynomial sizes and time (Shi et al., 2022;
Daniely & Malach, 2020). Nevertheless, none of them has considered GNNs or sparsification.

2 GRAPH NEURAL NETWORKS: FORMULATION AND ALGORITHM

2.1 PROBLEM FORMULATION

Hidden Layer
Output
Layer

𝑦𝑦𝑣𝑣

𝑾𝑾
𝒃𝒃

Aggregator

𝒙𝒙𝑣𝑣
𝑿𝑿𝒩𝒩(𝑣𝑣)

ReLU

Positive label
Negative label
Unknown label

Figure 1: Illustration of node classification in the GNN

Given an undirected graph G(V, E), where
V is the set of nodes, E is the set of
edges. Let R denote the maximum node
degree. For any node v ∈ V , let xv ∈ Rd

and yv ∈ {+1,−1} denote its input fea-
ture and corresponding label1, respectively.
Given all node features {xv}v∈V and par-
tially known labels {yv}v∈D for nodes in
D ⊂ V , the semi-supervised node classifi-
cation problem aims to predict all unknown labels yv for v ∈ V/D.

This paper considers a graph neural network with non-linear aggregator functions, as shown in Figure
1. The weights of the K neurons in the hidden layer are denoted as {wk ∈ Rd}Kk=1, and the weights
in the linear layer are denoted as {bk ∈ R}Kk=1. Let W ∈ Rd×K and b ∈ RK be the concatenation of
{wk}Kk=1 and {bk}Kk=1, respectively. For any node v, let N (v) denote the set of its (1-hop) neighbors
(with self-connection), and XN (v) ∈ Rd×|N (v)| contains features in N (v).

Therefore, the output of the GNN for node v can be written as:

g(W , b;XN (v)) =
1

K

K∑
k=1

bk · AGG(XN (v),wk), (1)

where AGG(XN (v),w) denotes a general aggregator using features XN (v) and weight w, e.g.,
weighted sum of neighbor nodes (Veličković et al., 2018), max-pooling (Hamilton et al., 2017), or
min-pooling (Corso et al., 2020) with some non-linear activation function. We consider ReLU as
ϕ(·) = max{·, 0}. Given the GNN, the label yv at node v is predicted by sign(g(W , b;XN (v))).

We only update W due to the homogeneous of ReLU function, which is a common practice to
simplify the analysis (Allen-Zhu et al., 2019a; Arora et al., 2019; Oymak & Soltanolkotabi, 2020;
Huang et al., 2021). The training problem minimizes the following empirical risk function (ERF):

min
W

: f̂D(W , b(0)) :=− 1

|D|
∑
v∈D

yv · g
(
W , b(0);XN (v)

)
. (2)

The test error is evaluated by the following generalization error function:

I(g(W , b)) =
1

|V|
∑
v∈V

max
{
1− yv · g

(
W , b;XN (v)

)
, 0
}
. (3)

If I(g(W , b)) = 0, yv = sign(g(W , b;XN (v))) for all v, indicating zero test error.

Albeit different from practical GNNs, the model considered in this paper can be viewed as a one-
hidden-layer GNN, which is the state-of-the-art practice in generalization and convergence analyses
with structural data (Brutzkus & Globerson, 2021; Damian et al., 2022; Shi et al., 2022; Allen-Zhu
& Li, 2022). Moreover, the optimization problem of (2) is already highly non-convex due to the
non-linearity of ReLU functions. For example, as indicated in (Liang et al., 2018; Safran & Shamir,
2018), one-hidden-layer (G)NNs contains intractably many spurious local minima. In addition, the
VC dimension of the GNN model and data distribution considered in this paper is proved to be at
least an exponential function of the data dimension (see Appendix F for the proof). This model is
highly expressive, and it is extremely nontrivial to obtain a polynomial sample complexity, which is
one contribution of this paper.

1The analysis can be extended to multi-class classification, see Appendix I.

3

Under review as a conference paper at ICLR 2023

2.2 GNN LEARNING ALGORITHM VIA JOINT EDGE AND MODEL SPARSIFICATION

The GNN learning problem (2) is solved via a mini-batch SGD algorithm, as summarized in Algorithm
1. The coefficients bk’s are randomly selected from +1 or −1 and remain unchanged during training.
The weights wk in the hidden layer are initialized from a multi-variate Gaussian N (0, δ2Id) with
a small constant δ, e.g. δ = 0.1. The training data are divided into disjoint subsets, and one subset
is used in each iteration to update W through SGD. Algorithm 1 contains two training stages:
pre-training on W (lines 1-4) with few iterations, and re-training on the pruned model M ⊙ W
(lines 5-8), where ⊙ stands for entry-wise multiplication. Here neuron-wise magnitude pruning is
used to obtain a weight mask M and graph topology sparsification is achieved by node sampling
(line 8). During each iteration, only part of the neighbor nodes is fed into the aggregator function in
(1) at each iteration, where N (s)(t) denotes the sampled subset of neighbors of node v at iteration t.

Algorithm 1 Training GNN via Joint Edge and Model Sparsification

Input: Node features X , known node labels{yv}v∈D , step size cη = 10δ with constant δ, the number of
sampled edges r, the pruning rate β, the pre-training iterations T ′ = ∥X∥∞/cη , the number of iterations
T .

Initialization: W (0), b(0) as w(0)
k ∼ N (0, δ2Id) and b

(0)
k ∼ Uniform({−1,+1}) for k ∈ [K];

Pre-training: update model weights W through mini-batch SGD with edge sampling
1: Divide D into disjoint subsets {D(t′)}T

′

t′=1

2: for t′ = 0, 1, 2, · · · , T ′ − 1 do
3: Sample N (t′)

s (v) for every node v in D(t′);
4: W (t′+1) = W (t′) − cη · ∇W f̂

(t)
D (W (t′), b(0));

5: end for
Pruning: set β fraction of neurons in W (T ′) with the lowest magnitude weights to 0, and obtain the corre-

sponding binary mask M ;
Re-training: rewind the weights to the original initialization as M ⊙W (0), and update model weights through

SGD with edge sampling;
6: Divide D into disjoint subsets {D(t)}Tt=1

7: for t = 0, 1, 2, · · · , T do
8: Sample N (t)

s (v) for every node v in D(t);
9: W (t+1) = W (t) − cη · ∇W f̂

(t)

D(t)(M ⊙W (t), b(0));
10: end for
Return: W (T) and b(0).

Edge sparsification samples a subset of neighbors, rather than the entire N (v), for every node
v in computing (1) to reduce the per-iteration computational complexity. This paper follows the
GraphSAGE framework (Hamilton et al., 2017), where r (r ≪ R) neighbors are sampled (all these
neighbors are sampled if |N (v)| ≤ r) for each node at each iteration. At iteration t, the gradient is

∇f̂
(t)
D (W , b(0)) =− 1

|D|
∑
v∈D

yv · ∇W g
(
W , b(0);XN (t)

s (v)

)
. (4)

The aggregator function used in this paper is the max-pooling function, i.e.,
AGG(XN (t)

s (v)
,w) = max

n∈N (t)
s (v)

ϕ(⟨ w , xn ⟩), (5)

which has been widely used in GraphSAGE (Hamilton et al., 2017) and its variants (Guo et al., 2021;
Oh et al., 2019; Zhang et al., 2022; Lo et al., 2022). This paper considers an importance sampling
strategy with the idea that some nodes are sampled with a higher probability than other nodes, like
the sampling strategy in (Chen et al., 2018; Zou et al., 2019; Chen et al., 2021b).

Model sparsification first pre-trains the neural network (often by only a few iterations) and then
prunes the network by setting some neuron weights to zero. It then re-trains the pruned model
with fewer parameters and is less computationally expensive to train. Existing pruning methods
include neuron pruning and weight pruning. The former sets all entries of a neuron wk to zeros
simultaneously, while the latter sets entries of wk to zeros independently.

This paper considers neuron pruning. Similar to (Chen et al., 2021b), we first train the original
GNN until the algorithm converges. Then, magnitude pruning is applied to neurons via removing
a β (β ∈ [0, 1)) ratio of neurons with the smallest norm. Let M ∈ {0, 1}d×K be the binary mask
matrix with all zeros in column k if neuron k is removed. Then, we rewind the remaining GNN to
the original initialization (i.e., M ⊙W (0)) and re-train on the model M ⊙W .

4

Under review as a conference paper at ICLR 2023

3 THEORETICAL ANALYSIS

3.1 TAKEAWAYS OF THE THEORETICAL FINDINGS

Before formally presenting our data model and theoretical results, we first briefly introduce the key
takeaways of our results. We consider the general setup that the node features as a union of the noisy
realizations of some class-relevant features and class-irrelevant ones, and δ denotes the upper bound
of the additive noise. The label yv of node v is determined by class-relevant features in N (v). We
assume for simplicity that N (v) contains the class-relevant features for exactly one class. Some
major parameters are summarized in Table 1. The highlights include:

Table 1: Some Important Notations

K Number of neurons in the hidden layer; σ Upper bound of additive noise in input features;
r Number of sampled edges for each node; R The maximum degree of original graph G;
α the probability of containing class-relevant nodes in the sampled neighbors of one node;
β Pruning rate of model weights; β ∈ [0, 1− 1/L); β = 0 means no pruning;

(T1) Sample complexity and convergence analysis for zero generalization error. We prove that
the learned model (with or without any sparsification) can achieve zero generalization with high
probability over the randomness in the initialization and the SGD steps. The sample complexity
is linear in σ2 and K−1. The number of iterations is linear in σ and K−1/2. Thus, the learning
performance is enhanced in terms of smaller sample complexity and faster convergence if the neural
network is slightly over-parameterized.

(T2) Edge sparsification and importance sampling improve the learning performance. The
sample complexity is a quadratic function of r, indicating that edge sparsification reduces the sample
complexity. The intuition is that edge sparsification reduces the level of aggregation of class-relevant
with class-irrelevant features, making it easier to learn class-relevant patterns for the considered
data model, which improves the learning performance. The sample complexity and the number of
iterations are quadratic and linear in α−1, respectively. As a larger α means the class-relevant features
are sampled with a higher probability, this result is consistent with the intuition that a successful
importance sampling strategy helps to learn the class-relevant features faster with fewer samples.

(T3) Magnitude-based model pruning improves the learning performance. Both the sample
complexity and the computational time are linear in (1− β)2, indicating that if more neurons with
small magnitude are pruned, the sample complexity and the computational time are reduced. The
intuition is that neurons that accurately learn class-relevant features tend to have a larger magnitude
than other neurons’, and removing other neurons makes learning more efficient.

(T4) Edge and model sparsification is a win-win strategy in GNN learning. Our theorem provides
a theoretical validation for the success of joint edge-model sparsification. The sample complexity and
the number of iterations are quadratic and linear in 1−β

α , respectively, indicating that both techniques
can be applied together to effectively enhance learning performance.

3.2 FORMAL THEORETICAL RESULTS

Data model. Let P = {pi}Li=1 (∀L ≤ d) denote an arbitrary set of orthogonal vectors2 in Rd. Let
p+ := p1 and p− := p2 be the positive-class and negative-class pattern, respectively, which bear the
causal relation with the labels. The remaining vectors in P are class irrelevant patterns. The node
feature xv of every node v is a noisy version of one of these patterns, i.e., xv = pv +zv,where pv ∈
P , and zv is an arbitrary noise at node v with ∥z∥2 ≤ σ for some σ.

yv is +1 (or −1) if node v or any of its neighbors contains p+ (or p−). Specifically, divide V into four
disjoint sets V+, V−, VN+ and VN− based on whether the node feature is relevant or not (N in the
subscript) and the label, i.e., pv = p+, ∀v ∈ V+; pv = p−, ∀v ∈ V−; and pv ∈ {p3, ...,pL}, ∀v ∈
VN+ ∪ VN−. Then, we have yv = 1,∀v ∈ V+ ∪ VN+, and yv = −1,∀v ∈ V− ∪ VN−.

2The orthogonality constraint simplifies the analysis and has been employed in (Brutzkus & Globerson,
2021). We relaxed this constraint in the experiments on the synthetic data in Section 4.

5

Under review as a conference paper at ICLR 2023

1 42 3
𝒱𝒱+ 𝒱𝒱𝑁𝑁+ 𝒱𝒱−𝒱𝒱𝑁𝑁−

Figure 2: Toy example of the data model.
Node 1 and 2 have label +1. Nodes 3 and 4
are labeled as −1. Nodes 1 and 4 have class-
relevant features. Nodes 2 and 3 have class-
irrelevant features. V+ = {1}, VN+ = {2},
VN− = {3}, V− = {4}

We assume

(A1) Every v in VN+ (or VN−) is connected to at least one
node in V+ (or V−). There is no edge between V+ and
VN−. There is no edge between V− and VN+.

(A2) The positive and negative labels in D are balanced,
i.e.,

∣∣|D∩(V+∪VN+)|−|D∩(V−∪VN−)|
∣∣ = O(

√
|D|).

(A1) indicates that connected nodes in the graph tend to
have the same labels and eliminates the case that node v is
connected to both p+ and p− to simplify the analysis. A
numerical justification of such an assumption in Cora dataset can be found in Appendix E.2. (A2)
can be relaxed to the case that the observed labels are unbalanced. One only needs to up-weight the
minority class in the ERF in (2) accordingly, which is a common trick in imbalance GNN learning
(Chen et al., 2021a), and our analysis holds with minor modification. The data model of orthogonal
patterns is introduced in (Brutzkus & Globerson, 2021) to analyze the advantage of CNNs over fully
connected neural networks. It simplifies the analysis by eliminating the interaction of class-relevant
and class-irrelevant patterns. Here we generalize to the case that the node features contain additional
noise and are no longer orthogonal.

To analyze the impact of importance sampling quantitatively, let α denote a lower bound of the
probability that the sampled neighbors of v contain at least one node in V+ or V− for any node v (see
Table 1). Clearly, α = r/R is a lower bound for uniform sampling 3. A larger α indicates that the
sampling strategy indeed selects nodes with class-relevant features more frequently.

Theorem 1 concludes the sample complexity (C1) and convergence rate (C2) of Algorithm 1 in
learning graph-structured data via graph sparsification. Specifically, the returned model achieves zero
generalization error (from (8)) with enough samples (C1) after enough number of iterations (C2).
Theorem 1. Let the step size cη be some positive constant and the pruning rate β ∈ [0, 1− 1/L).
Given the bounded noise such that σ < 1/L and sufficient large model such that K > L2 · log q for
some constant q > 0. Then, with probability at least 1− q−10, when

(C1) the number of labeled nodes satisfies
|D| = Ω

(
(1 + L2σ2 +K−1) · α−2 · (1 + r2) · (1− β)2 · L2 · log q

)
, (6)

(C2) the number of iterations in the re-training stage satisfies
T = Ω

(
c−1
η (1 + |D|−1/2) · (1 + Lσ +K−1/2) · (1− β) · α−1 · L

)
, (7)

the model returned by Algorithm 1 achieves zero generalization error, i.e.,

I
(
g(W (T),U (T))

)
= 0. (8)

3.3 COMPARISON WITH EXISTING WORKS

Although our data model is inspired by the feature learning framework of analyzing CNNs (Brutzkus
& Globerson, 2021), the technical framework in analyzing the learning dynamics differs from existing
ones in the following aspects. First, our work considers the noisy patterns and provides the first
sample complexity bound in (6) that characterizes the dependence of the parameters quantitatively.
Second, our work, for the first time, characterizes the phenomenon that some neurons that learn class-
relevant features have a larger magnitude than the other neurons, which is the theoretical foundation in
characterizing the benefits of model pruning. Third, edge sampling breaks the dependence between the
labels and pattern distributions, which leads to uncharacterizable distribution shift. We characterize
groups of special data as the reference such that they maintain a fixed dependence with labels and
have a controllable distribution shift to the sampled data.

Next, we compare with existing frameworks in analyzing the generalization of GNNs. First, this
paper considers medium-level overparameterization with K = Ω(L2), in contrast to the significant
over-parameterization in the NTK approach (Du et al., 2019; Xu et al., 2021; Li et al., 2022), where
K is a high-order polynomial of |D|. Second, compared with the model recovery framework (Zhang
et al., 2020), our analysis applies to random initialization and does not require the data to follow
Gaussian distribution. Third, our work characterizes the gradient dynamic and justifies the relation of
learned model weights and the data features, which existing approaches cannot justify.

3The lower bounds of α for some sampling strategy are provided in Appendix G.

6

Under review as a conference paper at ICLR 2023

3.4 THE PROOF SKETCH

Here we briefly introduce the roadmap of the proof, and all the propositions below hold with some
high probability (exact statement is in Appendix C). We will prove that, for every node v with yv = 1,
the prediction by the learned weights W (T) is accurate, i.e., g(M ⊙W (T), b(0);XN (v)) > 1. The
arguments for nodes with negative labels are exactly the same. Then, the zero test error is achieved
from the defined generalization error in (3).

Divide the neurons into two subsets B+ = {k | b(0)k = +1} and B− = {k | b(0)k = −1}. We first
show that there exist some neurons i in B+ with weights w(t)

i that are close to p+ for all iterations
t ≥ 0. These neurons, referred to as “lucky neurons,” play a dominating role in classifying v, and the
fraction of these neurons is at least close to 1/L. Formally,
Proposition 1. Let K+ ⊆ B+ denote the set of “lucky neurons” that for any i in K+,

min
∥z∥2≤σ

⟨ w(t)
i , p+ + z ⟩ ≥ max

p∈P/p+,∥z∥2≤σ
⟨ w(t)

i , p+ z ⟩ for all t. (9)

Then it holds that
|K+|/K ≥ (1−K−1/2 − Lσ)/L. (10)

We next show in Proposition 2 that when |D| is large enough, the projection of the weight w(t)
i of a

lucky neuron i on p+ grows at a rate of cηα. Then importance sampling with a large α corresponds
to a high rate. In contrast, the neurons in B− increase much slower in all directions except for p−.
Proposition 2.

⟨ w(t)
i , p+ ⟩ ≥ cη

(
α− σ

√
(1 + r2)/|D|

)
t, ∀i ∈ K+,∀t

|⟨ w(t)
j , p ⟩| ≤ cη(1 + σ)

√
(1 + r2)/|D| · t, ∀j ∈ B−,∀p ∈ P/p−,∀t.

(11)

Proposition 3 shows that the weights magnitude of a “lucky neuron” in K+ is larger than that of a
neuron in B+/K+. Combined with (10), “lucky neurons” will not be pruned by magnitude pruning,
as long as β < 1− 1/L. Let Kβ denote the set of neurons after pruning with |Kβ | = (1− β)K.
Proposition 3. There exists a small positive integer C such that

∥w(t)
i ∥2 > ∥w(t)

j ∥2, ∀i ∈ K+,∀j ∈ B+/K+,∀t ≥ C. (12)

Moreover, Kβ ∩ K+ = K+ for all β ≤ 1− 1/L.

Therefore, with a sufficiently large number of samples, the magnitudes of lucky neurons increase
much faster than those of other neurons (from proposition 2). Given a sufficiently large fraction
of lucky neurons (from proposition 1), the outputs of the learned model will be strictly positive.
Moreover, with a proper pruning rate, the fraction of lucky neurons can be further improved (from
proposition 3), which leads to a reduced sample complexity and faster convergence rate.

In the end, we consider the case of no feature noise to illustrate the main computation
g(M ⊙W (T),M ⊙ b(0);XN (v))

= 1
K

(∑
i∈B+∩Kβ

maxu∈N (v) ϕ(⟨ w(T)
i , xu ⟩)−

∑
j∈B−∩Kβ

maxu∈N (v) ϕ(⟨w(T)
j , xu ⟩)

)
≥ 1

K

∑
i∈K+

max
u∈N (v)

ϕ(⟨w(T)
i , xu ⟩)− 1

K

∑
j∈B−∩Kβ

max
p∈P/p−

|⟨w(T)
j , p ⟩|

≥
[
α|K+|/K − (1− β)(1 + σ)

√
(1 + r2)/|D|

]
cηT > 1,

(13)

where the first inequality follows from the fact that Kβ ∩ K+ = K+, ϕ is the nonnegative ReLU
function, and N (v) does not contain p− for a node v with yv = +1. The second inequality follows
from Proposition 2. The last inequality follows from (10), and conclusions (C1) & (C2). That
completes the proof. Please see the supplementary material for details.

4 NUMERICAL EXPERIMENTS

4.1 SYNTHETIC DATA EXPERIMENTS

We generate a graph with 10000 nodes, and the node degree is 30. The one-hot vectors e1 and e2
are selected as p+ and p−, respectively. The class-irrelevant patterns are randomly selected from
the null space of p+ and p−. That is relaxed from the orthogonality constraint in the data model.

7

Under review as a conference paper at ICLR 2023

∥p∥2 is normalized to 1 for all patterns. The noise zv belongs to Gaussian N (0, σ2). The node
features and labels satisfy (A1) and (A2) in Section 3.2, and details of the construction can be found
in Appendix E. We use full batch gradient descent for synthetic data. Algorithm 1 terminates if the
training error becomes zero or or the maximum of iteration 500 is reached. The test (classification)
error is the percentage of incorrect predictions of unknown labels. The learning process is considered
as a success if the returned model achieves zero test error. If not otherwise specified, δ = 0.1, cη = 1,
r = 20, α = 1, β = 0.2, d = 50, L = 200, and |D| = 100 with the rest of nodes being test data.

Sample Complexity. We first verify our sample complexity bound in (6). Every result is averaged
over 100 independent trials. A white block indicates that all the trials are successful, while a black
block means all failures. In these experiments, we vary one parameter and fix all others.

Figure 3 shows the phase transition of the sample complexity when K changes. The sample
complexity is almost a linear function of K. Figure 4 shows that the sample complexity increases as
a linear function of σ2, which is the noise level in the features. In Figure 5, α is fixed at 0.8 while
increasing the number of sampled neighbors r. The sample complexity is linear in r2. In Figure 6,
r = 15 and we vary the importance sampling probability α. The sample complexity is linear in α−2.
Figure 7 indicates that the sample complexity is almost linear in (1− β)2, where β is the pruning
rate. All these are consistent with our theoretical predictions in (6).

0.1 0.08 0.06 0.04 0.02

80

140

200

260

Figure 3: |D| against the number
of neurons K

0.04 0.12 0.20 0.28 0.36
2

20
80
140
200
260
320
380

Figure 4: |D| against the noise
level σ2.

100 420 740 10601380
40
80
120
160
200
240

Figure 5: |D| against the number
of sampled neighbors r

4 3.1 2.2 1

70

130

190

250

Figure 6: |D| against the impor-
tance sampling probability α

1 0.8 0.6 0.4 0.2
(1-)2

45
75
105
135
165

Figure 7: |D| against the pruning
rate β

1 1.2 1.4
-1

40

60

80

N
um

be
r

of
 it

er
at

io
ns = 0

 = 0.05
 = 0.10

Figure 8: The number of iterations
against α

Training Convergence Rate. Next, we evaluate how sampling and pruning reduce the required
number of iterations to reach zero generalization error. Figure 8 shows the required number of
iterations for different α under different noise level σ. Each point is averaged over 1000 independent
realizations, and the regions in low transparency denote the error bars with one standard derivation.
We can see that the number of iterations is linear in 1/α, which verifies our theoretical findings in (6).
Thus, importance sampling reduces the number of iterations for convergence.

Figure 9 illustrates the required number of iterations for convergence with various pruning rates. The
baseline is the average iterations of training the dense networks. The required number of iterations by
magnitude pruning is almost linear in β, which verifies our theoretical findings in (7). In comparison,
random pruning degrades the performance by requiring more iterations than the baseline to converge.

Magnitude pruning removes neurons with irrelevant information. Figure 10 shows the distribu-
tion of neuron weights after the algorithm converges. There are 104 points by collecting the neurons
in 100 independent trials. The y-axis is the norm of the neuron weights wk, and the y-axis stands for
the angle of the neuron weights between p+ (bottom) or p− (top). The blue points in cross represent
wk’s with bk = 1, and the red ones in circle represent wk’s with bk = −1. In both cases, wk with a
small norm indeed has a large angle with p+ (or p−) and thus, contains class-irrelevant information
for classifying class +1 (or −1). Figure 10 verifies Proposition 3 showing that magnitude pruning
removes neurons with class-irrelavant information.

8

Under review as a conference paper at ICLR 2023

0 0.2 0.4 0.6 0.8
0

50

100

150

N
um

be
r

of
 it

er
at

io
ns

Magnitude pruning
Random pruning
Baseline

Figure 9: Number of iterations
against the pruning rate β

0 /2
0

50

100

0/2

Figure 10: Distribution of the neu-
ron weights

0 0.15 0.30 0.45

1.00

1.15

1.30

1.45

Figure 11: Learning success rate of
join edge-model sparsification

Performance enhancement with joint edge-model sparsification. Figure 11 illustrates the learning
success rate when the importance sampling probability α and the pruning ratio β change. For each
pair of α and β, the result is averaged over 100 independent trials. We can observe when either α or
β increases, it becomes more likely to learn a desirable model.

4.2 JOINT-SPARSIFICATION ON REAL CITATION DATASETS

We evaluate the joint edge-model sparsification algorithms in real citation datasets (Cora, Citeseer,
and Pubmed) (Sen et al., 2008) on the standard GCN (a two-message passing GNN) (Kipf & Welling,
2017). The Unified GNN Sparsification (UGS) in (Chen et al., 2021b) is implemented here as the
edge sampling method, and the model pruning approach is magnitude-based pruning.

Figure 12 shows the performance of node classification on Cora dataset. As we can see, the joint
sparsification helps reduce the sample complexity required to meet the same test error of the original
model. For example, P2, with the joint rates of sampled edges and pruned neurons as (0.90,0.49),
and P3, with the joint rates of sampled edges and pruned neurons as (0.81,0.60), return models that
have better testing performance than the original model (P1) trained on a larger data set. By varying
the training sample size, we find the characteristic behavior of our proposed theory: the sample
complexity reduces with the joint sparsification.

Figure 13 shows the test errors on the Citeseer dataset under different sparsification rates, and darker
colors denote lower errors. In both figures, we observe that the joint edge sampling and pruning
can reduce the test error even when more than 90% of neurons are pruned and 25% of edges are
samples, which justifies the efficiency of joint edge-model sparsification. In addition, joint model-
edge sparsification with a smaller number of training samples can achieve similar or even better
performance than that without sparsification. For instance, when we have 120 training samples, the
test error is 30.4% without any specification. However, the joint sparsification can improve the test
error to 28.7% with only 96 training samples. We only include partial results due to the space limit.
Please see the supplementary materials for more experiments on synthetic and real datasets.

(1.00, 0.00) (0.85, 0.49) (0.72, 0.74) (0.62, 0.87)
Rate of sampled edges Rate of pruned neurons

0.19

0.2

0.21

0.22

T
es

t e
rr

or

Node classification on Cora

Figure 12: Test error on Cora.

1
0.9

5 0.9 0.8
6

0.8
1

0.7
7

0.7
3

Rate of sampled edges

0

0.36

0.6

0.74

0.84

0.89

0.93

R
at

e
of

 p
ru

ne
d

ne
ur

on
s

(l
og

 s
ca

le
) Citeseer (|D| = 120)

0.304

0.287

0.289

0.297

0.296

0.299

0.299

0.281

0.276

0.293

0.304

0.308

0.298

0.301

0.288

0.285

0.289

0.296

0.295

0.302

0.297

0.283

0.279

0.279

0.286

0.288

0.291

0.302

0.285

0.28

0.276

0.281

0.284

0.291

0.287

0.291

0.279

0.277

0.284

0.291

0.289

0.289

0.292

0.279

0.284

0.286

0.296

0.292

0.293

1
0.9

5 0.9 0.8
6

0.8
1

0.7
7

0.7
3

Rate of sampled edges

0

0.36

0.6

0.74

0.84

0.89

0.93

Citeseer (|D|=96)

0.309

0.292

0.294

0.302

0.301

0.304

0.304

0.298

0.303

0.298

0.309

0.313

0.303

0.306

0.3

0.296

0.294

0.301

0.3

0.307

0.302

0.288

0.293

0.287

0.299

0.293

0.296

0.307

0.29

0.295

0.297

0.296

0.289

0.296

0.292

0.296

0.304

0.293

0.293

0.296

0.294

0.294

0.297

0.299

0.303

0.299

0.301

0.297

0.298

Figure 13: Heatmaps depicting the test error on Citeseer with 96
and 120 training nodes.

5 CONCLUSIONS

Encouraged by the empirical success of sparse learners in accelerating GNN training, this paper
characterizes the impact of graph sampling and neuron pruning on the sample complexity and
convergence rate for a desirable test accuracy quantitatively. To the best of our knowledge, this is the
first theoretical generalization analysis of joint edge-model sparsification in training GNNs. Future
directions include generalizing the analysis to multi-layer cases, other graph sampling strategies, e.g.,
FastGCN (Chen et al., 2018), or link-based classification problems.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

For the theoretical results in Section 3.2, we provide the necessary lemmas in Appendix C and a
complete proof of the major theorems based on the lemmas in Appendix D. The proof of all the
lemmas are included in Appendix H. For experiments in Section 4, the implementation details in
generating the data and figures are summarized in the Appendix E, and the source code can be found
in the supplementary material.

REFERENCES

Bijaya Adhikari, Yao Zhang, Sorour E Amiri, Aditya Bharadwaj, and B Aditya Prakash. Propagation-
based temporal network summarization. IEEE Transactions on Knowledge and Data Engineering,
30(4):729–742, 2017.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 977–988. IEEE, 2022.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. In Advances in Neural Information Processing Systems,
pp. 6158–6169, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019.

Mehdi Bahri, Gaétan Bahl, and Stefanos Zafeiriou. Binary graph neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9492–9501, 2021.

Alon Brutzkus and Amir Globerson. An optimization and generalization analysis for max-pooling
networks. In Uncertainty in Artificial Intelligence, pp. 1650–1660. PMLR, 2021.

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural network
models for practical applications. arXiv preprint arXiv:1605.07678, 2016.

Alireza Chakeri, Hamidreza Farhidzadeh, and Lawrence O Hall. Spectral sparsification in spectral
clustering. In 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2301–2306.
IEEE, 2016.

Deli Chen, Yankai Lin, Guangxiang Zhao, Xuancheng Ren, Peng Li, Jie Zhou, and Xu Sun. Topology-
imbalance learning for semi-supervised node classification. Advances in Neural Information
Processing Systems, 34:29885–29897, 2021a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International Conference on Machine Learning, pp.
1695–1706. PMLR, 2021b.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in train-
ing graph convolutional networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=r-oRRT-ElX.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

10

https://openreview.net/forum?id=r-oRRT-ElX
https://openreview.net/forum?id=r-oRRT-ElX

Under review as a conference paper at ICLR 2023

Arthur da Cunha, Emanuele Natale, and Laurent Viennot. Proving the strong lottery ticket hypothesis
for convolutional neural networks. In International Conference on Learning Representations,
2022.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural
Information Processing Systems, 33:20356–20365, 2020.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2018.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In Advances
in Neural Information Processing Systems, pp. 5724–5734, 2019.

Talya Eden, Shweta Jain, Ali Pinar, Dana Ron, and C Seshadhri. Provable and practical approxima-
tions for the degree distribution using sublinear graph samples. In Proceedings of the 2018 World
Wide Web Conference, pp. 449–458, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning, pp. 3419–3430. PMLR,
2020.

Fangtai Guo, Zaixing He, Shuyou Zhang, Xinyue Zhao, Jinhui Fang, and Jianrong Tan. Normalized
edge convolutional networks for skeleton-based hand gesture recognition. Pattern Recognition,
118:108044, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 639–648, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat,
1050:9, 2015.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based
framework for federated learning analysis. In International Conference on Machine Learning, pp.
4423–4434. PMLR, 2021.

Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahramani. Metropolis
algorithms for representative subgraph sampling. In 2008 Eighth IEEE International Conference
on Data Mining, pp. 283–292. IEEE, 2008.

Richard Hull and Roger King. Semantic database modeling: Survey, applications, and research issues.
ACM Computing Surveys, 19(3):201–260, 1987.

Matthew O Jackson. Social and economic networks. Princeton university press, 2010.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, 2018.

Ajay Kumar Jaiswal, Haoyu Ma, Tianlong Chen, Ying Ding, and Zhangyang Wang. Spending your
winning lottery better after drawing it. arXiv preprint arXiv:2101.03255, 2021.

11

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

Under review as a conference paper at ICLR 2023

Svante Janson. Large deviations for sums of partly dependent random variables. Random Structures
& Algorithms, 24(3):234–248, 2004.

Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable feature
learning in neural networks beyond kernels. Advances in Neural Information Processing Systems,
34:24883–24897, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631–636, 2006.

Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Generalization guarantee of
training graph convolutional networks with graph topology sampling. In International Conference
on Machine Learning, pp. 13014–13051. PMLR, 2022.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, pp. 8157–8166,
2018.

Shiyu Liang, Ruoyu Sun, Yixuan Li, and Rayadurgam Srikant. Understanding the loss surface of
neural networks for binary classification. In International Conference on Machine Learning, pp.
2835–2843. PMLR, 2018.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural
networks training via extreme activation compression. In International Conference on Learning
Representations, 2021.

Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, and Marius Portmann. E-
graphsage: A graph neural network based intrusion detection system for iot. In NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium, pp. 1–9. IEEE, 2022.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. In International Conference on Machine Learning, pp.
6682–6691. PMLR, 2020.

Jihun Oh, Kyunghyun Cho, and Joan Bruna. Advancing graphsage with a data-driven node sampling.
arXiv preprint arXiv:1904.12935, 2019.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407, 2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 701–710, 2014.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus
Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, et al. Logical neural
networks. arXiv preprint arXiv:2006.13155, 2020.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural networks.
In International Conference on Machine Learning, pp. 4430–4438, 2018.

Aliaksei Sandryhaila and Jose MF Moura. Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irregular structure. IEEE Signal Processing
Magazine, 31(5):80–90, 2014.

12

Under review as a conference paper at ICLR 2023

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In Proceedings of European
Semantic Web Conference, pp. 593–607. Springer, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point
cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 1711–1719, 2020.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2022.

Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:
Quantization-aware training for graph neural networks. In International Conference on Learning
Representations, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations, 2018.

Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural networks.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1539–1548, 2019.

Elli Voudigari, Nikos Salamanos, Theodore Papageorgiou, and Emmanuel J Yannakoudakis. Rank
degree: An efficient algorithm for graph sampling. In 2016 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, pp. 120–129. IEEE, 2016.

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pp. 11112–11122. PMLR,
2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International Conference on Machine Learning, pp.
6861–6871, 2019.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018.

Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization of graph neural
networks: Implicit acceleration by skip connections and more depth. In International Conference
on Machine Learning, pp. 11592–11602. PMLR, 2021.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In Proceedings of Association for the Advancement of Artificial
Intelligence, 2018.

13

Under review as a conference paper at ICLR 2023

Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge from
graph convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7074–7083, 2020.

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh Chawla,
and Zhenhui Li. Graph few-shot learning via knowledge transfer. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 6656–6663, 2020.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
974–983, 2018.

Haoran You, Zhihan Lu, Zijian Zhou, Yonggan Fu, and Yingyan Lin. Early-bird gcns: Graph-network
co-optimization towards more efficient gcn training and inference via drawing early-bird lottery
tickets. AAAI Conference on Artificial Intelligence, 2022.

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Fast learning of graph neural
networks with guaranteed generalizability:one-hidden-layer case. In International Conference on
Machine Learning, 2020.

Tao Zhang, Hao-Ran Shan, and Max A Little. Causal graphsage: A robust graph method for
classification based on causal sampling. Pattern Recognition, 128:108696, 2022.

Zeru Zhang, Jiayin Jin, Zijie Zhang, Yang Zhou, Xin Zhao, Jiaxiang Ren, Ji Liu, Lingfei Wu,
Ruoming Jin, and Dejing Dou. Validating the lottery ticket hypothesis with inertial manifold theory.
Advances in Neural Information Processing Systems, 34, 2021.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Liyuan Zheng, Zhen Zuo, Wenbo Wang, Chaosheng Dong, Michinari Momma, and Yi Sun. Het-
erogeneous graph neural networks with neighbor-sim attention mechanism for substitute product
recommendation. AAAI Conference on Artificial Intelligence, 2021.

Xianchen Zhou and Hongxia Wang. The generalization error of graph convolutional networks may
enlarge with more layers. Neurocomputing, 424:97–106, 2021.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. Proceedings of
Advances in Neural Information Processing Systems, 32, 2019.

14

Under review as a conference paper at ICLR 2023

Supplementary Materials for:
Joint Edge-Model Sparse Learning is Provably Efficient for Graph

Neural Networks

In the following contexts, Appendix A provides a high-level idea for the proof techniques. Appendix
B summarizes the notations for the proofs, and the useful lemmas are included in Appendix C.
Appendix D provides the detailed proof of Theorem 2, which is the formal version of Theorem
1. Appendix E describes the details of synthetic data experiments in Section 4, and several other
experimental results are included because of the limited space in the main contexts. The lower bound
of the VC-dimension is proved in Appendix F. Appendix G provides the bound of α for some edge
sampling strategies. Additional proofs for the useful lemmas are summarized in Appendix H. In
addition, we provide a high-level idea in extending the framework in this paper to a multi-class
classification problem in Appendix I.

A OVERVIEW OF THE TECHNIQUES

Before presenting the proof details, we will provide a high-level overview of the proof techniques in
this section. To warm up, we first summarize the proof sketch without edge and model sparsification
methods. Then, we illustrate the major challenges in deriving the results for edge and model
sparsification approaches.

A.1 GRAPH NEURAL NETWORK LEARNING ON DATA WITH STRUCTURAL CONSTRAINTS

For the convenience of presentation, we use D+ and D− to denote the set of nodes with positive
and negative labels in D, respectively, where D+ = (V+ ∪ VN+) ∩ D and D− = (V− ∪ VN−) ∩ D.
Recall that p+ only exists in the neighbors of node v ∈ D+, and p− only exists in the neighbors of
node v ∈ D−. In contrast, class irrelevant patterns are distributed identically for data in D+ and D−.
In addition, for some neuron, the gradient direction will always be near p+ for v ∈ D+, while the
gradient derived from v ∈ D− is always almost orthogonal to p+. Such neuron is the lucky neuron
defined in Proposition 1 in Section 3.4, and we will formally define the lucky neuron in Appendix B
from another point of view.

Take the neurons in B+ for instance, where B+ = {k | bk = +1} denotes the set of neurons with
positive coefficients in the linear layer. For a lucky neuron k ∈ K+, the projection of the weights on
p+ strictly increases (see Lemma 2 in Appendix C). For other neurons, which are named as unlucky
neurons, class irrelevant patterns are identically distributed and independent of yv, the gradient
generated from D+ and D− are similar. Specifically, because of the offsets between D+ and D−, the
overall gradient is in the order of

√
(1 +R2)/|D|, where R is the degree of graph. With a sufficiently

large amount of training samples, the projection of the weights on class irrelevant patterns grows
much slower than that on class relevant patterns. One can refer to Figure 14 for an illustration of
neuron weights update.

Similar to the derivation of w(t)
k for k ∈ B+, we can show that neurons in K−, which are the lucky

neurons with respect to k ∈ B−, have their weights updated mainly in the direction of p−. Recall
that the output of GNN model is written as (20), the corresponding coefficients in the linear layer for
k ∈ B+ are all positive. With these in hand, we know that the neurons in B+ have a relatively large
magnitude in the direction of p+ compared with other patterns, and the corresponding coefficients bk
are positive. Then, for the node v ∈ V+ ∪ VN+, the calculated label will be strictly positive. Similar
to the derivation above, the calculated label for the node v ∈ V− ∪ VN− will be strictly negative.

Edge sparsification. Figure 14(b) shows that the gradient in the direction of any class irrelevant
patterns is a linear function of

√
1 +R2 without sampling. Sampling on edges can significantly

15

Under review as a conference paper at ICLR 2023

𝒘𝒘(0)

Gradient from 𝒟𝒟+

Gradient from 𝒟𝒟−

𝐶𝐶 + 𝒪𝒪
1 + 𝑅𝑅2

|𝒟𝒟|

𝐶𝐶 + 𝒪𝒪
1 + 𝑅𝑅2

|𝒟𝒟|

𝒑𝒑+ 𝑜𝑜𝑜𝑜 𝒑𝒑−

𝒘𝒘(0)

𝒘𝒘(1)

𝒘𝒘(2)

𝒘𝒘(3)

𝒘𝒘(4)

𝒑𝒑+ 𝑜𝑜𝑜𝑜 𝒑𝒑−

𝒑𝒑 ∈ 𝒫𝒫𝑁𝑁

𝒑𝒑 ∈ 𝒫𝒫𝑁𝑁

(a)

𝒘𝒘(0)

Gradient from 𝒟𝒟+

Gradient from 𝒟𝒟−

𝐶𝐶 + 𝒪𝒪
1 + 𝑅𝑅2

|𝒟𝒟|

𝐶𝐶 + 𝒪𝒪
1 + 𝑅𝑅2

|𝒟𝒟|

𝒑𝒑+ 𝑜𝑜𝑜𝑜 𝒑𝒑−

𝒘𝒘(0)

𝒘𝒘(1)

𝒘𝒘(2)

𝒘𝒘(3)

𝒘𝒘(4)

𝒑𝒑+ 𝑜𝑜𝑜𝑜 𝒑𝒑−

𝒑𝒑 ∈ 𝒫𝒫𝑁𝑁

𝒑𝒑 ∈ 𝒫𝒫𝑁𝑁

(b)

Figure 14: Illustration of iterations {w(t)}Tt=1: (a) lucky neuron, and (b) unlucky neuron.

reduce the degree of the graph, i.e., the degree of the graph is reduced to r when only sampling r
neighbor nodes. Therefore, the projection of neuron weights on any p ∈ PN becomes smaller, and
the neurons are less likely to learn class irrelevant features. In addition, the computational complexity
per iteration is reduced since we only need to traverse a subset of the edges. Nevertheless, sampling
on graph edges may lead to missed class-relevant features in some training nodes (a smaller α), which
will degrade the convergence rate and need a larger number of iterations.

Model sparsification. Comparing Figure 14(a) and 14(b), we can see that the magnitudes of a lucky
neuron grow much faster than these of an unlucky neuron. In addition, from Lemma 6, we know that
the lucky neuron at initialization will always be the lucky neuron in the following iterations. Therefore,
the magnitude-based pruning method on the original dense model removes unlucky neurons but
preserves the lucky neurons. When the fraction of lucky neurons is improved, the neurons learn the
class-relevant features faster. Also, the algorithm can tolerate a larger gradient noise derived from the
class irrelevant patterns in the inputs, which is in the order of 1/

√
|D| from Figure 14(b). Therefore,

the required samples for convergence can be significantly reduced.

Noise factor z. The noise factor z degrades the generalization mainly in the following aspects. First,
in Brutzkus & Globerson (2021), the sample complexity depends on the size of {xv}v∈D, which,
however, can be as large as |D| when there is noise. Second, the fraction of lucky neurons is reduced
as a function of the noise level. With a smaller fraction of lucky neurons, we require a larger number
of training samples and iterations for convergence.

B NOTATIONS

In this section, we implement the details of data model and problem formulation described in Section
3.2, and some important notations are defined to simplify the presentation of the proof. In addition,
all the notations used in the following proofs are summarized in Tables 2 and 3.

B.1 DATA MODEL WITH STRUCTURAL CONSTRAINTS

Recall the definitions in Section 3.2, the node feature for node v is written as

xv = pv + zv, (14)

where pv ∈ P , and zv is bounded noise with ∥zv∥2 ≤ σ. In addition, there are L orthogonal patterns
in P , denoted as {pℓ}Lℓ=1. p+ := p1 is the positive class relevant pattern, p− := p2 is the negative
class relevant pattern, and the rest of the patterns, denoted as PN , are the class irrelevant patterns.
For node v, its label yv is positive or negative if its neighbors contain p+ or p−. By saying a node v
contains class relevant feature, we indicate that pv = p+ or p−.

16

Under review as a conference paper at ICLR 2023

Depending on xv and yv , we divide the nodes in V into four disjoint partitions, i.e., V = V+ ∪ V− ∪
VN+ ∪ VN−, where

V+ := {v | pv = p+};
V− := {v | pv = p−};
VN+ := {v | pv ∈ PN , yv = +1};
VN− := {v | pv ∈ PN , yv = −1}.

(15)

Then, we consider the model such that (i) the distribution of p+ and p− are identical, namely,

Prob(pv = p+) = Prob(pv = p−), (16)

and (ii) p ∈ PN are identically distributed in VN+ and VN−, namely,

Prob(p | v ∈ VN+) = Prob(p | v ∈ VN−) for any p ∈ PN . (17)

It is easy to verify that, when (16) and (17) hold, the number of positive and negative labels in D are
balanced, such that

Prob(yv = +1) = Prob(yv = −1) =
1

2
. (18)

If D+ and D− are highly unbalanced, namely,
∣∣|D+| − |D−|

∣∣ ≫ √
|D|, the objective function in (2)

can be modified as

f̂D :=− 1

2|D+|
∑

v∈D+

yv · g
(
W ;XN (v)

)
− 1

2|D−|
∑

v∈D−

yv · g
(
W ;XN (v)

)
, (19)

and the required number of samples |D| in (6) is replaced with min{|D+|, |D−|}.

B.2 GRAPH NEURAL NETWORK MODEL

It is easy to verify that (1) is equivalent to the model

g(W ,U ;x) =
1

K

∑
k

AGG(XN (v),wk)−
1

K

∑
k

AGG(XN (v),uk), (20)

where the neuron weights {wk}Kk=1 in (20) are with respect to the neuron weights with bk = +1
in (1), and the neuron weights {uk}Kk=1 in (20) are respect to the neuron weights with bk = −1 in
(1). Here, we abuse K to represent the number of neurons in {k|bk = +1} or {k|bk = −1}, which
differs from the K in (1) by a factor of 2. Since this paper aims at providing order-wise analysis, the
bounds for K in (1) and (20) are the same.

Corresponding to the model in (20), we denote M+ as the mask matrix after pruning with respect to
W and M− as the mask matrix after pruning with respect to U . For the convenience of analysis, we
consider balanced pruning in W and U , i.e., ∥M+∥0 = ∥M−∥0 = (1− β)Kd.

B.3 ADDITIONAL NOTATIONS FOR THE PROOF

Pattern function M(v). Now, recall that at iteration t, the aggregator function for node v is written
as

AGG(XN (t)(v),w
(t)
k) = max

n∈N (t)(v)
ϕ(⟨ w(t)

k , xn ⟩). (21)

Then, at iteration t, we define the pattern function M(t) : V → P
⋃
{0} at iteration t as

M(t)(v;w) =


0, if max

n∈N (t)(v)
ϕ(⟨ w , xn ⟩) ≤ 0

argmax
{xn|n∈N (t)(v)}

ϕ(⟨ w , xn ⟩), otherwise . (22)

Similar to the definition of pv in (14), we define M(t)
p and M(t)

z such that M(t)
p is the noiseless

pattern with respect to M(t) while M(t)
z is noise with respect to M(t).

17

Under review as a conference paper at ICLR 2023

In addition, we define M : V → P
⋃
{0} for the case without edge sampling such that

M(v;w) =


0, if max

n∈N (v)
ϕ(⟨ w , xn ⟩) ≤ 0

argmax
{xn|n∈N (v)}

ϕ(⟨ w , xn ⟩), otherwise . (23)

Definition of lucky neuron. We call a neuron is the lucky neuron at iteration t if and only if its
weights vector in {w(t)

k }Kk=1 satisfies

Mp(v;w
(t)
k) ≡ p+ for any v ∈ V (24)

or its weights vector in {u(t)
k }Kk=1 satisfies

Mp(v;u
(t)
k) ≡ p− for any v ∈ V. (25)

Let W(t), U(t) be the set of the lucky neuron at t-th iteration such that

W(t) = {k | M(t)
p (v;w

(t)
k) = p+ for any v ∈ V},

U(t) = {k | M(t)
p (v;u

(t)
k) = p− for any v ∈ V}

(26)

All the other other neurons, denoted as Wc(t) and Uc(t), are the unlucky neurons at iteration t.
Compared with the definition of “lucky neuron” in Proposition 1 in Section 3.4, we have ∩T

t=1W(t) =
K+. From the contexts below (see Lemma 6), one can verify that K+ = ∩T

t=1W(t) = W(0).

Gradient of the lucky neuron and unlucky neuron. We can rewrite the gradient descent in (4) as

∂f̂
(t)
D

∂w
(t)
k

=− 1

|D|
∑
v∈D

∂g(W (t),U (t);XN (t)(v))

∂w
(t)
k

=− 1

2|D+|
∑

v∈D+

∂g(W (t),U (t);XN (t)(v))

∂w
(t)
k

+
1

2|D−|
∑

v∈D−

∂g(W (t),U (t);XN (t)(v))

∂w
(t)
k

,

(27)

where D+ and D− stand for the set of nodes in D with positive labels and negative labels, respectively.
According to the definition of M(t) in (22), it is easy to verify that

∂g(W (t),U (t);XN (v))

∂w
(t)
k

= M(t)(v;w
(t)
k), (28)

and the update of wk is

w
(t+1)
k = w

(t)
k + cη · Ev∈D yv · M(t)(v;w

(t)
k),

or w
(t+1)
k = w

(t)
k + cη · Ev∈D+

M(t)(v;w
(t)
k)− cη · Ev∈D−M(t)(v;w

(t)
k),

(29)

where we abuse the notation Ev∈S to denote

Ev∈Sf(v) =
1

|S|
∑
v∈S

f(v) (30)

for any set S and some function f . Additionally, without loss of generality, the neuron that satisfies
maxp∈P⟨ w(0)

k , p ⟩ < 0 is not considered because (1) such neuron is not updated at all; (2) the
probability of such neuron is negligible as 2−L.

Finally, as the focus of this paper is order-wise analysis, some constant numbers may be ignored in
part of the proofs. In particular, we use h1(L) ≳ h2(L) to denote there exists some positive constant
C such that h1(L) ≥ C · h2(L) when L ∈ R is sufficiently large. Similar definitions can be derived
for h1(L) ≂ h2(L) and h1(L) ≲ h2(L).

18

Under review as a conference paper at ICLR 2023

Table 2: Important notations of sets

[Z], Z ∈ N+ The set of {1, 2, 3, · · · , Z}

V The set of nodes in graph G

E The set of edges in graph G

P The set of class relevant and class irrelevant patterns

K+ The set of lucky neurons with respect to W (0)

K− The set of lucky neurons with respect to U (0)

Kβ+(t) The set of unpruned neurons with respect to W (t)

Kβ−(t) The set of unpruned neurons with respect to U (t)

PN The set of class irrelevant patterns

D The set of training data

D+ The set of training data with positive labels

D− The set of training data with negative labels

N (v), v ∈ V The neighbor nodes of node v (including v itself) in graph G

N (t)
s (v), v ∈ V The sampled nodes of node v at iteration t

W(t) The set of lucky neurons with respect to weights W (t) at iteration t

U(t) The set of lucky neurons with respect to weights U (t) at iteration t

Wc(t) The set of unlucky neurons with respect to weights W (t) at iteration t

Uc(t) The set of unlucky neurons with respect to weights U (t) at iteration t

C USEFUL LEMMAS

Lemma 1 indicates the relations of the number of neurons and the fraction of lucky neurons. When
the number of neurons in the hidden layer is sufficiently large as (31), the fraction of lucky neurons is
at least (1− εK − Lσ/π)/L from (32), where σ is the noise level, and L is the number of patterns.

Lemma 1. Suppose the initialization {w(0)
k }Kk=1 and {u(0)

k }Kk=1 are generated through i.i.d. Gaus-
sian. Then, if the number of neurons K is large enough as

K ≥ ε−2
K L2 log q, (31)

the fraction of lucky neuron, which is defined in (24) and (25), satisfies

ρ ≥ (1− εK − Lσ

π
) · 1

L
(32)

Lemmas 2 and 3 illustrate the projections of the weights for a lucky neuron in the direction of class
relevant patterns and class irrelevant patterns.

Lemma 2. For lucky neuron k ∈ W(t), let w(t+1)
k be the next iteration returned by Algorithm 1.

Then, the neuron weights satisfy the following inequality:

1. In the direction of p+, we have

⟨ w(t+1)
k , p+ ⟩ ≥ ⟨ w(t)

k , p+ ⟩+ cη

(
α− σ

√
(1 + r2) log q

|D|

)
;

2. In the direction of p− or class irrelevant patterns such that for any p ∈ P/p+, we have

⟨ w(t+1)
k , p ⟩ − ⟨ w(t)

k , p ⟩ ≥ −cη − σ − cη · σ

√
(1 + r2) log q

|D|
,

19

Under review as a conference paper at ICLR 2023

Table 3: Important notations of scalars and matrices

π Mathematical constant that is the ratio of a circle’s circumference to its diameter

d The dimension of input feature

K The number of neurons in the hidden layer

xv, v ∈ V The input feature for node v in Rd

pv, v ∈ V The noiseless input feature for node v in Rd

zv, v ∈ V The noise factor for node v in Rd

yv, v ∈ V The label of node v in {−1,+1}

R The degree of the original graph G

W ,U The neuron weights in hidden layer

XN The collection of {xn}n∈N in Rd×|N|

r The size of sampled neighbor nodes

L The size of class relevant and class irrelevant features

p+ The class relevant pattern with respect to the positive label

p− The class relevant pattern with respect to the negative label

z The additive noise in the input features

σ The upper bound of ∥z∥2 for the noise factor z

M+ The mask matrix for W of the pruned model

M− The mask matrix for U of the pruned model

and

⟨ w(t+1)
k , p ⟩ − ⟨ w(t)

k , p ⟩ ≤ cη · (1 + σ) ·

√
(1 + r2) log q

|D|
.

Lemma 3. For lucky neuron k ∈ U(t), let u(t+1)
k be the next iteration returned by Algorithm 1. Then,

the neuron weights satisfy the following inequality:

1. In the direction of p−, we have

⟨ u(t+1)
k , p− ⟩ ≥ ⟨ u(t)

k , p− ⟩+ cη

(
α− σ

√
(1 + r2) log q

|D|

)
;

2. In the direction of p+ or class irrelevant patterns such that for any p ∈ P/p−, we have

⟨ u(t+1)
k , p ⟩ − ⟨ u(t)

k , p ⟩ ≥ −cη − σ − cη · σ

√
(1 + r2) log q

|D|
,

and

⟨ u(t+1)
k , p ⟩ − ⟨ u(t)

k , p ⟩ ≤ cη · (1 + σ) ·

√
(1 + r2) log q

|D|
.

Lemmas 4 and 5 show the update of weights in an unlucky neuron in the direction of class relevant
patterns and class irrelevant patterns.

Lemma 4. For an unlucky neuron k ∈ Wc(t), let w(t+1)
k be the next iteration returned by Algorithm

1. Then, the neuron weights satisfy the following inequality.

20

Under review as a conference paper at ICLR 2023

1. In the direction of p+, we have

⟨ w(t+1)
k , p+ ⟩ ≥ ⟨ w(t)

k , p+ ⟩ − cη · σ

√
(1 + r2) log q

|D|
;

2. In the direction of p−, we have

⟨ w(t+1)
k , p− ⟩ − ⟨ w(t)

k , p− ⟩ ≥ −cη − σ − cη · σ

√
(1 + r2) log q

|D|
,

and

⟨ w(t+1)
k , p− ⟩ − ⟨ w(t)

k , p− ⟩ ≤ cη · σ ·

√
(1 + r2) log q

|D|
;

3. In the direction of class irrelevant patterns such that any p ∈ PN , we have

∣∣⟨ w(t+1)
k , p ⟩ − ⟨ w(t)

k , p ⟩
∣∣ ≤ cη · (1 + σ)

√
(1 + r2) log q

|D|
.

Lemma 5. For an unlucky neuron k ∈ Uc(t), let u(t+1)
k be the next iteration returned by Algorithm

1. Then, the neuron weights satisfy the following inequality.

1. In the direction of p−, we have

⟨ u(t+1)
k , p− ⟩ ≥ ⟨ u(t)

k , p− ⟩ − cη · σ

√
(1 + r2) log q

|D|
;

2. In the direction of p+, we have

⟨ u(t+1)
k , p+ ⟩ − ⟨ u(t)

k , p+ ⟩ ≥ −cη − σ − cη · σ

√
(1 + r2) log q

|D|
,

and

⟨ u(t+1)
k , p+ ⟩ − ⟨ u(t)

k , p+ ⟩ ≤ cη · σ ·

√
(1 + r2) log q

|D|
;

3. In the direction of class irrelevant patterns such that any p ∈ PN , we have

∣∣⟨ u(t+1)
k , p ⟩ − ⟨ u(t)

k , p ⟩
∣∣ ≤ cη · (1 + σ) ·

√
(1 + r2) log q

|D|
.

Lemma 6 indicates the lucky neurons at initialization are still the lucky neuron during iterations, and
the number of lucky neurons is at least the same as the the one at initialization.
Lemma 6. Let W(t), U(t) be the set of the lucky neuron at t-th iteration in (26). Then, we have

W(t) ⊆ W(t+ 1), U(t) ⊆ U(t+ 1) (33)

if the number of samples |D| ≳ α−2(1 + r2) log q.

Lemma 7 shows that the magnitudes of some lucky neurons are always larger than those of all the
unlucky neurons.

Lemma 7. Let {W (t′)}T ′

t′=1 be iterations returned by Algorithm 1 before pruning. Then, let Wc(t′)
be the set of unlucky neuron at t′-th iteration, then we have

⟨ w(t′)
k1

, w
(t′)
k1

⟩ < ⟨ w(t′)
k2

, w
(t′)
k2

⟩ (34)

for any k1 ∈ W(t′) and k2 ∈ Wc(0).

21

Under review as a conference paper at ICLR 2023

Lemma 8 shows the moment generation bound for partly dependent random variables, which can be
used to characterize the Chernoff bound of the graph structured data.
Lemma 8 (Lemma 7, Zhang et al. (2020)). Given a set of X = {xn}Nn=1 that contains N partly
dependent but identical distributed random variables. For each n ∈ [N], suppose xn is dependent
with at most dX random variables in X (including xn itself), and the moment generate function of
xn satisfies Exn

esxn ≤ eCs2 for some constant C that may depend on the distribution of xn. Then,
the moment generation function of

∑N
n=1 xn is bounded as

EX es
∑N

n=1 xn ≤ eCdXNs2 . (35)

D PROOF OF MAIN THEOREM

In what follows, we present the formal version of the main theorem (Theorem 2) and its proof.
Theorem 2. Let εN ∈ (0, 1) and εK ∈ (0, 1− σL

π) be some positive constant. Then, suppose the
number of training samples satisfies

|D| ≳ ε−2
N · α−2 · (1− β)2 · (1 + σ)2 ·

(
1− εK − σL

π

)−2 · (1 + r2) · L2 · log q, (36)

and the number of neurons satisfies

K ≳ ε−2
K L2 log q, (37)

for some positive constant q. Then, after T number of iterations such that

T ≳
cη · (1− β) · L

α · (1− εN − σ) · (1− εK − σL/π)
, (38)

the generalization error function in (3) satisfies

I
(
g(W (T),U (T))

)
= 0 (39)

with probability at least 1− q−C for some constant C > 0.

Proof of Theorem 2. Let Kβ+ and Kβ− be the indices of neurons with respect to M+ ⊙ W and
M− ⊙U , respectively. Then, for any node v ∈ V with label yv = 1, we have

g(M+ ⊙W (t),M− ⊙U (t); v)

=
1

|Kβ+|
∑

k∈Kβ+

max
n∈N (v)

ϕ
(
⟨ w(t)

k , xn ⟩
)
− 1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

ϕ
(
⟨ u(t)

k , xn ⟩
)

≥ 1

|Kβ+|
∑

k∈Kβ+

max
n∈N (v)

ϕ
(
⟨ w(t)

k , xn ⟩
)

− 1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

|⟨ u(t)
k , pn ⟩| − 1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

|⟨ u(t)
k , zn ⟩|

=
1

|Kβ+|
∑

k∈W(t)

⟨ w(t)
k , p+ + zn ⟩+ 1

|Kβ+|
∑

k∈Kβ+/W(t)

max
n∈N (v)

ϕ
(
⟨ w(t)

k , xn ⟩
)

− 1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

|⟨ u(t)
k , pn ⟩| − 1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

|⟨ u(t)
k , zn ⟩|

≥ 1

|Kβ+|
∑

k∈W(t)

⟨ w(t)
k , p+ + zn ⟩

− 1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

|⟨ u(t)
k , pn ⟩| − 1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

|⟨ u(t)
k , zn ⟩|,

(40)

where W(t) is the set of lucky neurons at iteration t.

22

Under review as a conference paper at ICLR 2023

Then, we have

1

|Kβ+|
∑

k∈W(t)

⟨ w(t)
k , p+ + zn ⟩ ≥ 1− σ

|Kβ+|
∑

k∈W(0)

⟨ w(t)
k , p+ ⟩

≥ 1− σ

|Kβ+|
· |W(0)| · cη ·

(
α−

√
(1 + r2) log q

|D|

)
· t

≳
1

|Kβ+|
· |W(0)| · cη · α · t

(41)

where the first inequality comes from Lemma 6, the second inequality comes from Lemma 2. On
the one hand, from Lemma 2, we know that at least (1− εK − σL

π)K neurons out of {w(0)
k }Kk=1 are

lucky neurons. On the other hand, we know that the magnitude of neurons in W(0) before pruning is
always larger than all the other neurons. Therefore, such neurons will not be pruned after magnitude
based pruning. Therefore, we have

|W(0)| = (1− εK − σL

π
)K = (1− εK − σL

π
)|K+|/(1− β) (42)

Hence, we have

1

|Kβ+|
∑

k∈W(t)

⟨ w(t)
k , p+ ⟩ ≳(1− εK − σL

π
) · 1

(1− β)L
· α · t. (43)

In addition, XN (v) does not contain p− when yv = 1. Then, from Lemma 3 and Lemma 5, we have

1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

|⟨ u(t)
k , pn ⟩| ≲ cη(1 + σ)

√
(1 + r2) log q

|D|
t

≲ εN · (1− εK − σL

π
) · α · 1

(1− β)L
t,

(44)

where the last inequality comes from (36).

Moreover, we have

1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

|⟨ u(t)
k , zn ⟩| ≤ Ek∈Kβ−∥u

(t)
k ∥2 · ∥zn∥2

≤ σ · Ek∈Kβ−

∑
p∈P/p−

⟨ u(t)
k , p ⟩

≲ σ · cη · L(1 + σ)

√
(1 + r2) log q

|D|
· t.

(45)

Combining (43), (44), and (45), we have

g(W (T),U (T); v) ≥ (1− εN)(1− εK − σL/π)(1− σL)
α

(1− β)L
· cη · T. (46)

Therefore, when the number of iterations satisfies

T >
cη · (1− β) · L

α · (1− εN − σ) · (1− εK − σL/π) · (1− σL)
, (47)

we have g(W (t),U (t); v) > 1.

23

Under review as a conference paper at ICLR 2023

Similar to the proof of (46), for any v ∈ V with label yv = −1, we have

g(M+ ⊙W (T),M− ⊙U (T); v)

=
1

|Kβ+|
∑

k∈Kβ+

max
n∈N (v)

ϕ
(
⟨ w(T)

k , xn ⟩
)
− 1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

ϕ
(
⟨ u(T)

k , xn ⟩
)

≤− 1

|Kβ−|
∑

k∈Kβ−

max
n∈N (v)

ϕ
(
⟨ w(T)

k , xn ⟩
)

+
1

|Kβ+|
∑

k∈Kβ+

max
n∈N (v)

|⟨ u(T)
k , pn ⟩|+ 1

|Kβ+|
∑

k∈Kβ−

max
n∈N (v)

|⟨ u(T)
k , zn ⟩|

=− 1

|Kβ−|
∑

k∈W(T)

⟨ w(T)
k , p− + zn ⟩ − 1

|Kβ−|
∑

k∈Kβ−/W(t)

max
n∈N (v)

ϕ
(
⟨ w(T)

k , xn ⟩
)

+
1

|Kβ+|
∑

k∈Kβ+

max
n∈N (v)

|⟨ u(T)
k , pn ⟩|+ 1

|Kβ+|
∑

k∈Kβ+

max
n∈N (v)

|⟨ u(T)
k , zn ⟩|

≥ − 1

|Kβ−|
∑

k∈W(T)

⟨ w(t)
k , p− + zn ⟩

+
1

|Kβ+|
∑

k∈Kβ+

max
n∈N (v)

|⟨ u(t)
k , pn ⟩|+ 1

|Kβ+|
∑

k∈Kβ+

max
n∈N (v)

|⟨ u(t)
k , zn ⟩|,

≤− 1

|Kβ−|
|U(T)| · cη · αT

+cη · (1 + σ) · T ·

√
(1 + r2) log q

|D|
+ cη · σ · (1 + σ) ·

√
(1 + r2) log q

|D|
· T

≲− (1− εN)(1− εK − σL/π) · (1− σL) · α

(1− β)L

≤− 1.

(48)

Hence, we have g(W (t),U (t); v) < −1 for any v with label yv = −1.

In conclusion, the generalization function in (3) achieves zero when conditions (36), (37), and (38)
hold.

E NUMERICAL EXPERIMENTS

E.1 IMPLEMENTATION OF THE EXPERIMENTS

Generation of the synthetic graph structured data. The synthetic data used in Section 4 are
generated in the following way. First, we randomly generate three groups of nodes, denoted as V+,
V−, and VN . The nodes in V+ are assigned with noisy p+, and the nodes in V− are assigned with
noisy p−. The patterns of nodes in VN are class-irrelevant patterns. For any node v in VN , v will
contact to some nodes in either V+ or V− uniformly. If the node connects to nodes in V+, then its
label is +1. Otherwise, its label is −1. Finally, we will add random connections among the nodes
within V+, V− or VN . To verify our theorems, each node in VN will connect to exactly one node in
V+ or V−, and the degree of the nodes in VN is exactly M by randomly selecting M − 1 other nodes
in VN .

Implementation of importance sampling on edges. We are given the sampling rate of importance
edges α and the number of sampled neighbor nodes r. First, we sample the importance edge for each
node with the rate of α. Then, we randomly sample the remaining edges without replacement until
the number of sampled nodes reaches r.

Implementation of magnitude pruning on model weights. The pruning algorithm follows exactly
the same as the pseudo-code in Algorithm 1. The number of iterations T ′ is selected as 5.

24

Under review as a conference paper at ICLR 2023

Illustration of the error bars. In the figures, the region in low transparency indicates the error bars.
The upper envelope of the error bars is based on the value of mean plus one standard derivation, and
the lower envelope of the error bars is based on the value of mean minus one standard derivation.

E.2 EMPIRICAL JUSTIFICATION OF DATA MODEL ASSUMPTIONS

In this part, we will use Cora dataset as an example to demonstrate that our data assumptions can
model some real application scenarios.

Cora dataset is a citation network containing 2708 nodes, and nodes belong to seven classes, namely,
“Neural Networks”, “Rule Learning”, “Reinforcement Learning”, “Probabilistic Methods”, “Theory”,
“Genetic Algorithms”, and “Case Based”. For the convenience of presentation, we denote the labels
above as “class 1” to “class 7”, respectively. For each node, we calculate the aggregated features
vector by aggregating its 1-hop neighbor nodes, and each feature vector is in a dimension of 1433.
Then, we construct matrices by collecting the aggregated feature vectors for nodes with the same
label, and the largest singular values of the matrix with respect to each class can be found in Table 4.
Then, the cosine similarity, i.e., arccos <z1,z2>

∥z1∥2·∥z2∥2
, among the first principal components, which is

the right singular vector with the largest singular value, for different classes is provided, and results
are summarized in Table 5.

Table 4: The top 5 largest singular value (SV) of the collecting feature matrix for the classes

Labels First SV Second SV Third SV Fourth SV Fifth SV

class 1 8089.3 101.6 48.1 46.7 42.5

class 2 4451.2 48.7 28.0 26.7 22.4

class 3 4634.5 53.1 29.4 28.1 24.1

class 4 6002.5 72.9 37.0 35.6 31.4

class 5 5597.8 67.4 33.3 33.1 29.1

class 6 5947.9 72.1 36.7 35.5 31.3

class 7 5084.6 62.0 32.3 30.7 27.2

Table 5: The cosine similarity among the classes

class 1 class 2 class 3 class 4 class 5 class 6 class 7

class 1 0 89.3 88.4 89.6 87.4 89.4 89.5

class 2 89.3 0 89.1 89.5 88.7 89.7 88.7

class 3 88.4 89.1 0 89.7 89.9 89.0 89.1

class 4 89.6 89.5 89.7 0 88.0 88.9 88.7

class 5 87.4 88.7 89.9 88.0 0 89.8 88.2

class 6 89.4 89.7 89.0 88.9 89.8 0 89.5

class 7 89.5 88.7 89.1 88.7 88.3 89.5 0

From Table 4, we can see that the collected feature matrices are all approximately rank-one. In
addition, from Table 5, we can see that the first principal components of different classes are almost
orthogonal. For instance, the pair-wise angles of feature matrices that correspond to “class 1”, “class
2”, and “class 3” are 89.3, 88.4, and 89.2, respectively. Table 4 indicates that the features of the
nodes are highly concentrated in one direction, and Table 5 indicates that the principal components
for different classes are almost orthogonal and independent. Therefore, we can view the primary
direction of the feature matrix as the class-relevant features. If the node connects to class-relevant
features of two classes frequently, the feature matrix will have at least two primary directions, which
leads to a matrix with a rank of two or higher. If the nodes in one class connect to class-relevant

25

Under review as a conference paper at ICLR 2023

features for two classes frequently, the first principal component for this class will be a mixture of at
least two class-relevant features, and the angles among the principal components for different classes
cannot be almost orthogonal. Therefore, we can conclude that most nodes in different classes connect
to different class-relevant features, and the class-relevant are almost orthogonal to each other. Similar
results to ours that the node embeddings are distributed in a small space are also observed in (Pan
et al., 2018) via clustering the node features.

E.3 ADDITIONAL EXPERIMENTS ON SYNTHETIC DATA

Figure 15 illustrates the required number of iterations for different number of sampled edges, and
R = 30. The fitted curve, which is denoted as a black dash line, is a linear function of α−1 for
α = r/R. We can see that the fitted curve matches the empirical results for α = r/R, which verifies
the bound in (7). Also, applying importance sampling, the number of iterations is significantly
reduced with a large α.

30 24 18 12
r

40

60

80

N
um

be
r

of
 it

er
at

io
ns = r/R

 = 1.1 r/R
 = 1.2 r/R

Fitted curve of (7)

Figure 15: Number of iterations
against the edge sampling rate
with random & important sam-
pling.

0 0.2 0.4 0.6 0.8

60

100

140

160
N

um
be

r
of

 it
er

at
io

ns

Rewinding initialization
Random initialization
Baseline

Figure 16: Number of iterations
against pruning rate of the model
weights.

40 120 200 280
Number of samples

10-2

10-1

T
es

t e
rr

or

Magnitude pruning
Original model
Random pruning

Figure 17: The test error against
the number of samples.

0.20.40.60.81
Rate of sampled edges

0.2

0.25

0.3

0.35

0.4

T
es

t e
rr

or

Cora

UGS
Random sampling
Baseline

0.20.40.60.81
Rate of sampled edges

0.3

0.35

0.4

T
es

t e
rr

or

Citeseer

UGS
Random sampling
Baseline

1 0.8 0.6 0.4 0.2
Rate of sampled edges

0.2

0.25

0.3

T
es

t e
rr

or

Pubmed

UGS
Random sampling
Baseline

0.990.90
Model sparsity (log scale)

0.2

0.25

0.3

0.35

0.4

T
es

t e
rr

or

Magnitude-based
model pruning
Random pruning
Baseline

0.990.90
Model sparsity (log scale)

0.3

0.35

0.4

T
es

t e
rr

or

Magnitude-based
model pruning
Random pruning
Baseline

0.9990.990.90
Model sparsity (log scale)

0.2

0.25

0.3

T
es

t e
rr

or

Magnitude-based
model pruning
Random pruning
Baseline

Figure 18: Node classification performance of GCN on Cora (sub-figures in the first column), Citeseer
(sub-figures in the second column), Pubmed (sub-figures in the third column).

Figure 16 illustrates the required number of iterations for convergence with different pruning rates β.
All the results are averaged over 100 independent trials. The black dash line stands for the baseline,
the average number of iterations of training original dense networks. The blue line with circle marks
is the performance of magnitude pruning of neuron weights. The number of iterations is almost a
linear function of the pruning rate, which verifies our theoretical findings in (7). The red line with star
marks shows the convergence without rewinding to the original initialization, whose results are worse
than the baseline because random initialization after pruning leads to a less overparameterized model.

Figure 7 indicates the phase transition of |D| and (1− β)2. The sample complexity is almost a linear
function of (1− β)2 from the transition curve, which verifies the findings in (6). Figure 7 indicates
the test errors with different numbers of samples by averaging over 1000 independent trials. The red

26

Under review as a conference paper at ICLR 2023

line with circle marks shows the performance of training the original dense model. The blue line with
star marks concerns the model after magnitude pruning, and the test error is reduced compared with
training the original model. Additional experiment by using random pruning is summarized as the
black line with the diamond mark, and the test error is consistently larger than those by training on
the original model.

 1 0.86 0.73 0.63
Rate of sampled edges

 0

 0.6

0.84

0.93

0.97

0.99

R
at

e
of

 p
ru

ne
d

ne
ur

on
s

 (
lo

g
sc

al
e)

0.2

0.25

0.3

 1 0.86 0.73 0.63
Rate of sampled edges

 0

 0.6

0.84

0.93

0.97

0.99

R
at

e
of

 p
ru

ne
d

ne
ur

on
s

 (
lo

g
sc

al
e)

0.2

0.25

0.3

 1 0.86 0.73 0.63
Rate of sampled edges

 0

 0.6

0.84

0.93

0.97

0.99

R
at

e
of

 p
ru

ne
d

ne
ur

on
s

 (
lo

g
sc

al
e)

0.28

0.3

0.32

0.34

 1 0.86 0.73 0.63
Rate of sampled edges

 0

 0.6

0.84

0.93

0.97

0.99
R

at
e

of
 p

ru
ne

d

ne

ur
on

s
 (

lo
g

sc
al

e)

0.28

0.3

0.32

0.34

 1 0.86 0.73 0.63
Rate of sampled edges

 0

 0.6

0.84

0.93

0.97

0.99

R
at

e
of

 p
ru

ne
d

ne
ur

on
s

 (
lo

g
sc

al
e)

0.2

0.22

0.24

0.26

 1 0.86 0.73 0.63
Rate of sampled edges

 0

 0.6

0.84

0.93

0.97

0.99

R
at

e
of

 p
ru

ne
d

ne
ur

on
s

 (
lo

g
sc

al
e)

0.2

0.22

0.24

0.26

Figure 19: Heatmaps depicting the test errors on Cora (sub-figures in the first row), Citeseer (sub-
figures in the second row), Pubmed (sub-figures in the third row) with different number of labeled
nodes.

E.4 ADDITIONAL EXPERIMENTS ON REAL DATA

In Figures 18-20, we implement the edge sampling methods together with magnitude-based neuron
pruning methods. In Figures 18 and 19, the Unified GNN Sparsification (UGS) in Chen et al. (2021b)
is implemented as the edge sampling method 4, and the GNN model used here is the standard graph

4The experiments are implemented using the codes from https://github.com/VITA-Group/
Unified-LTH-GNN

27

https://github.com/VITA-Group/Unified-LTH-GNN
https://github.com/VITA-Group/Unified-LTH-GNN

Under review as a conference paper at ICLR 2023

convolutional neural network (GCN) Kipf & Welling (2017) (two message passing). In Figure 20, we
implement GraphSAGE with pooling aggregation as the sampling method 5. Except in Figure 19, we
use 140 (Cora), 120 (Citeseer) and 60 (PubMed) labeled data for training, 500 nodes for validation
and 1000 nodes for testing. In Figure 19, the number of training data is denoted in the title of each
sub-figure.

 1 0.86 0.73 0.63
Rate of sampled edges

 0

 0.6

0.84

0.93

0.97

0.99

R
at

e
of

 p
ru

ne
d

ne
ur

on
s

 (
lo

g
sc

al
e)

0.2

0.22

0.24

0.26

0.28

 1 0.86 0.73 0.63
Rate of sampled edges

 0

 0.6

0.84

0.93

0.97

0.99

R
at

e
of

 p
ru

ne
d

ne
ur

on
s

 (
lo

g
sc

al
e)

0.28

0.3

0.32

 1 0.86 0.73 0.63
Rate of sampled edges

 0

 0.6

0.84

0.93

0.97

0.99

R
at

e
of

 p
ru

ne
d

ne
ur

on
s

 (
lo

g
sc

al
e)

0.2

0.21

0.22

0.23

0.24

Figure 20: Node classification performance of joint GraghSAGE-pooling and model pruning.

Figure 18 show that both edge sampling using UGS and magnitude-based neuron pruning can reduce
the test error on Cora, Citeseer, and Pubmed datasets, which justify our theoretical findings that joint
sparsification improves the generalization. In comparison, random pruning degrades the performance
with large test errors than the baseline.

Figures 19 and 20 show the test errors on Cora, Citeseer, and Pubmed datasets under different
sampling and pruning rates, and darker colors denote lower errors. In all the sub-figures, we can
observe that the joint edge sampling and pruning can reduce the test error, which justifies the
efficiency of joint edge-model sparsification. For Figures 19, by comparing the performance of joint
sparsification on the same dataset but with different training samples, one can conclude that joint
model-edge sparsification with a smaller number of training samples can achieve similar or even
better performance than that without sparsification.

F THE VC DIMENSION OF THE GRAPH STRUCTURED DATA AND TWO-LAYER
GNN

Following the framework in Scarselli et al. (2018), we define the input data as (Gv, v), where Gv is
the sub-graph with respect to node v. The input data distribution considered in this paper is denoted
as G × V . To simplify the analysis, for any (Gv, v) ∈ V , N (v) includes exactly one feature from
{p+,p−}, and all the other node features comes from PN . Specifically, we summarize the VC
dimension of the GNN model as follows.
Definition 1 (Section 4.1, Scarselli et al. (2018)). Let g be the GNN model and data set D be from
G×V . g is said to shatter D if for any set of binary assignments y ∈ {0, 1}|D|, there exist parameters
Θ such that g(Θ; (Gv, v)) > 0 if yv = 1 and g(Θ; (Gv, v)) < 0 if yv = 0. Then, the VC-dim of the
GNN is defined as the size of the maximum set that can be shattered, namely,

VC-dim(g) = max
D is shattered by g

|D|. (49)

Based on the definition above, we derive the VC-dimension of the GNN model over the data
distribution considered in this paper, which is summarized in Theorem 3. Theorem 3 shows that the
VC-dimension of the GNN model over the data distribution is at least 2L/2−1, which is an exponential
function of L. Inspired by Brutzkus & Globerson (2021) for CNNs, the major idea is to construct a
special dataset that the neural network can be shattered. Here, we extend the proof by constructing
a set of graph structured data as in (51). Then, for any combination of labels, from (54), one can
construct a solvable linear system that can fit such labels.
Theorem 3 (VC-dim). Suppose the number of orthogonal features is L, then the VC dimension of
the GNN model over the data G × V satisfies

VC-dim(HGNN(G × V)) ≥ 2
L
2 −1. (50)

5The experiments are implemented using the codes from https://github.com/williamleif/
GraphSAGE

28

https://github.com/williamleif/GraphSAGE
https://github.com/williamleif/GraphSAGE

Under review as a conference paper at ICLR 2023

Proof. Without loss of generality, we denote the class irrelevant feature as {pi}L−2
i=1 . Therefore,

P = {pi}L−2
i=1

⋃
p+

⋃
p−. Let us define a set J such that

J = {J ∈ {0, 1}L/2−1 | Ji = 0 or 1, 1 ≤ i ≤ L/2− 1}.

Then, we define a subset D ∈ G × V with the size of 2L/2−1 based on the set J .

For any (Gv, v), we consider the graph structured data Gv that connects to exactly L/2− 1 neighbors.
Recall that for each node v, the feature matrix XN (v) must contain either p+ or p−, we randomly
pick one node u ∈ N (v), and let xu be p+ or p−. Next, we sort all the other nodes in N (v) and
label them as {vi}L/2−1

i=1 . Then, given an element J ∈ J , we let the feature of node vi as

xvi = Jip2i−1 + (1− Ji)p2i, (51)

where Ji is the i-th entry of vector J . we denote such constructed data (Gv, v) as DJ . Therefore, the
data set D is defined as

D = {DJ | J ∈ J }. (52)

Next, we consider the GNN model in the form of (20) with K = 2L/2−1. Given the label yJ for each
data DJ ∈ D, we obtain a group of αJ ∈ R by solving the following equations∑

J ′∈J /J†

αJ ′ = yJ ,∀J ∈ J , (53)

where J† = 1− J . We can see that (53) can be re-written as
0 1 · · · 1

1 0 · · · 1
...

...
. . .

...

1 1 · · · 0

 ·


α1

α2

...

αL/2−1

 =


y1†

y2†
...

y(L/2−1)†

 (54)

It is easy to verify that the matrix in (54) is invertible. Therefore, we have a unique solution of
{αJ}J∈J given any fixed {yJ}J∈J .

As K is selected as 2L/2−1, we denote the neuron weights as {wJ}J∈J and {uJ}J∈J by defining

wJ = max{αJ , 0} ·
∑

v′∈N (v),v∈DJ

xv′ ,

uJ = max{−αJ , 0} ·
∑

v′∈N (v),v∈DJ

xv′ .
(55)

Then, for each DJ ∈ D, we substitute (55) into (20):

g =
∑
J ′∈J

(
max

v′∈N (v)
σ
(
⟨ wJ ′ , xv′ ⟩

)
− max

v′∈N (v)
σ
(
⟨ uJ ′ , xv′ ⟩

))
. (56)

When αJ ′ ≥ 0, we have uJ ′ = 0, and

max
v′∈N (v)

σ
(
⟨ wJ ′ , xv′ ⟩

)
=αJ ′ ·max

∑
u′∈N (u),u∈DJ

xu′

∑
v′∈N (v),v∈DJ

xv′

=αJ ′ ·max
i

(Jip2i−1 + (1− Ji)p2i) · (J ′
ip2i−1 + (1− J ′

i)p2i)

=

{
0, if J ′ = 1− J

αJ ′ , otherwise
,

(57)

29

Under review as a conference paper at ICLR 2023

where the second equality comes from (51), and the last equality comes from the orthogonality of
p ∈ P . Similar to (57), when αJ ′ < 0, we have

− max
v′∈N (v)

σ
(
⟨ uJ ′ , xv′ ⟩

)
=− (−αJ ′) ·max

∑
u′∈N (u),u∈DJ

xu′

∑
v′∈N (v),v∈DJ

xv′

=αJ ′ ·max
i

(Jip2i−1 + (1− Ji)p2i) · (J ′
ip2i−1 + (1− J ′

i)p2i)

=

{
0, if J ′ = 1− J

αJ ′ , otherwise
.

(58)

Therefore, (55) can be calculated as

g =
∑
J ′∈J

(
max

v′∈N (v)
σ
(
⟨ wJ ′ , xv′ ⟩

)
− max

v′∈N (v)
σ
(
⟨ uJ ′ , xv′ ⟩

))
=

∑
J ′∈J /J†

αJ ′ = yI ,
(59)

which completes the proof.

G THE IMPORTANCE SAMPLING PROBABILITY FOR VARIOUS SAMPLING
STRATEGY

In this part, we provide the bound of α for different sampling strategy. For simplification, we consider
a graph such that every node degree is R (R > r), and we sample fixed r neighbor nodes for any
node v ∈ V .

Lemma 9 provides the value of α for uniform sampling strategy, and α is in the order of r/R and
depends on the average degree of nodes containing class relevant patterns. Formally, we have
Lemma 9. For uniform sampling strategy such that all neighbor nodes are sampled with the same
probability, we have

1−
(
1− c̄

R

)r

≤ Eα ≤ 1−
(
1− c̄

R− c̄+ 1

)r

, (60)

where c̄ is the degree of the nodes in D ∩ (V+ ∪ V−).
Corollary 9.1. For uniform sampling strategy, when the node in VN connects to exactly one node in
V+ ∩ V−, then Eα = r

R .

Corollary 9.2. For uniform sampling strategy, Eα ≥ c̄r
R when r ≪ R.

Remark 9.1: Given α = r
R , (6) yields the same sample complexity bound for all r, which leads to

no improvement by using graph sampling. In addition, from (7), we can see that the required number
of iterations increase by a factor of R/r, while the sampled edges during each iteration is reduced by
a factor of r/R. Considering the computational resources used in other steps, we should expect an
increased total computational time.

Remark 9.2: From Corollary 9.2, we can see that uniform sampling can save the sample complexity
by a factor of 1

c̄2 when r ≪ R on average. However, one realization of α may have large variance
with too small r. In practice, a medium range of r is desired for both saving sample complexity and
algorithm stability.

For FastGCN Chen et al. (2018), each node is assigned with a sampling probability. We consider a
simplified version of such importance sampling approach by dividing training data D into two subsets
DI and DU , and the sampling probability of the nodes in the same subset is identical. Let γ be the
ratio of sampling probability of two groups, i.e.,

γ =
Prob(v ∈ DI is sampled)
Prob(v ∈ DU is sampled)

(γ ≥ 1).

Lemma 10 describes the importance sampling strategy when sampling class-relevant nodes is higher
than sampling class-irrelevant nodes by a factor of γ. From Corollary 10.1, we know that α can be
improved over uniform sampling by a factor of γ. Formally, we have

30

Under review as a conference paper at ICLR 2023

Lemma 10. Suppose DI = V+ ∪ V−, and DU = VN , we have

Eα ≥ γr

R− r + γ
. (61)

Corollary 10.1. For the importance sampling strategy in Lemma 10, Eα ≥ γ · r
R when R ≫ r.

Remark 10.1: From Corollary 10.1, we can see that the applied importance sampling in Lemma 10
can save the sample complexity by a factor of 1

γ2 when r ≪ R on average.

Lemma 10 describes the importance sampling strategy when a fraction of nodes with class-irrelevant
features are assigned with a high sampling probability. From Corollary 10.1, we know that α can be
improved over uniform sampling by a factor of γ

1+(γ−1)λ , where λ is the fraction |VN ∩ DI |/|VN |.
Formally, we have

Lemma 11. Suppose DI = V+ ∪ V− ∪ Vλ, where Vλ ⊆ VN with |Vλ| = λ|VN |. We have

Eα ≥ γr(
1 + (γ − 1)λ

)
R− r + γ

. (62)

Corollary 11.1. For the importance sampling strategy in Lemma 11, Eα ≥ γ
1+(γ−1)λ · r

R when
R ≫ r.

Remark 11.1: From Corollary 11.1, we can see that the applied importance sampling in Lemma 11

can save the sample complexity by a factor of
(

1+(γ−1)λ
γ

)2

when r ≪ R on average.

H PROOF OF USEFUL LEMMAS

H.1 PROOF OF LEMMA 1

The major idea is to obtain the probability of being a lucky neuron as shown in (66). Compared
with the noiseless case, which can be easily solved by applying symmetric properties in Brutzkus &
Globerson (2021), this paper takes extra steps to characterize the boundary shift caused by the noise
in feature vectors, which are shown in (65).

Proof of Lemma 1. For a random generated weights wk that belongs to Gaussian distribution, let us
define the random variable ik such that

ik =

{
1, if wk is the lucky neuron
0, otherwise

. (63)

Next, we provide the derivation of ik’s distribution. Let θ1 be the angle between p+ and the initial
weights w. Let {θℓ}Lℓ=2 be the angles between p− and p ∈ PN . Then, it is easy to verify that
{θℓ}Lℓ=1 belongs to the uniform distribution on the interval [0, 2π]. Because p ∈ P are orthogonal to
each other. Then, ⟨w , p ⟩ with p ∈ P are independent with each other given w belongs to Gaussian
distribution. It is equivalent to saying that {θℓ}Lℓ=1 are independent with each other. Consider the
noise level σ (in the order of 1/L) is significantly smaller than 1, then the probability of a lucky
neuron can be bounded as

Prob
(
θ1 +∆θ ≤ θℓ −∆θ ≤ 2π, 2 ≤ ℓ ≤ L

)
, (64)

where ∆θ ≂ σ. Then, we have

Prob
(
θ1 +∆θ ≤ θℓ −∆θ ≤ 2π, 2 ≤ ℓ ≤ L

)
=

L∏
ℓ=1

Prob
(
θ1 +∆θ ≤ θℓ −∆θ ≤ 2π

)
=
(2π − θ1 −∆θ

2π

)L−1

.

(65)

31

Under review as a conference paper at ICLR 2023

Next, we can bound the probability as

Prob(w is the lucky neuron) =
∫ 2π

0

1

2π
·
(
2π − θ1 −∆θ

2π

)L−1

dθ1

≃ 1

L
·
(
2π − 2∆θ

2π

)L

≃ 1

L
·
(
1− Lσ

π

)
.

(66)

We know ik belongs to Bernoulli distribution with probability 1
L (1−

Lσ
π). By Hoeffding’s inequality,

we know that

1

L

(
1− Lσ

π

)
−
√

C log q

K
≤ 1

K

K∑
k=1

ik ≤ 1

L

(
1− Lσ

π

)
+

√
C log q

K
(67)

with probability at least q−C . Let K = D(ε−2
K L2 log q), we have

1

K

K∑
k=1

ik ≥
(
1− εK − Lσ

π

)
· 1
L
. (68)

To guarantee the probability in (68) is positive, the noise level needs to satisfy

σ <
π

L
. (69)

H.2 PROOF OF LEMMA 2

The bound of the gradient is divided into two parts in (74), where I1 and I2 concern the noiseless
features and the noise, respectively. The term I2 can be bounded using standard Chernoff bound, see
(80) for the final result. While for I1, the gradient derived from D+ is always in the direction of p+

with a lucky neuron. Therefore, the neuron weights keep increasing in the direction of p+ from (83).
Also, if ⟨ wk , xv ⟩ > 0 for some yv = −1, the gradient derived from v will force wk moving in the
opposite directions of xv . Therefore, the gradient derived from D− only has a negative contribution
in updating wk. For any pattern existing in {pv}v∈D− , which is equivalent to say for any p ∈ P/p+,
the value of ⟨ wk , p ⟩ has a upper bound, see (90).

Proof of Lemma 2. For any v ∈ D+ and a lucky neuron with weights w(t)
k , we have

M(v;w
(t)
k) = p+ +Mz(v;w

(t)
k). (70)

If the neighbor node with class relevant pattern is sampled in N (t)(v), the gradient is calculated as

∂g(W (t),U (t);XN (t)(v))

∂wk

∣∣∣
wk=w

(t)
k

= p+ +Mz(v;w
(t)
k). (71)

For v ∈ D− and a lucky neuron w
(t)
k , we have

M(t)(v;w
(t)
k) ∈ {xn}n∈N (v)

⋃
{0}, (72)

and the gradient can be represented as

∂g(W (t),U (t);XN (t)(v))

∂wk

∣∣∣
wk=w

(t)
k

=M(t)(v;w
(t)
k)

=M(t)
p (v;w

(t)
k) +M(t)

z (v;w
(t)
k).

(73)

32

Under review as a conference paper at ICLR 2023

Definition of I1 and I2. From the analysis above, we have

⟨ w(t+1)
k , p ⟩ − ⟨ w(t)

k , p ⟩

= cη · Ev∈D⟨ yv · M(t)(v;w
(t)
k) , p ⟩

= cη ·
(
Ev∈D⟨ yv · M(t)

p (v;w
(t)
k) , p ⟩+ Ev∈D⟨ yv · M(t)

z (v;w
(t)
k) , p ⟩

)
:= cη(I1 + I2).

(74)

Bound of I2. Recall that the noise factor zv are identical and independent with v, it is easy to verify
that yv and Mz(v;w

(t)
k) are independent. Then, I2 in (74) can be bounded as

|I2| = |Ev∈Dyv · Ev∈D⟨ Mz(v;w
(t)
k) , p ⟩|

≤ |Ev∈Dyv| · |Ev∈D⟨ Mz(v;w
(t)
k) , p ⟩|

≤ σ · |Ev∈Dyv|.
(75)

Recall that the number of sampled neighbor nodes is fixed r. Hence, for any fixed node v, there
are at most (1 + r2) (including v itself) elements in

{
u
∣∣u ∈ D

}
are dependent with yv. Also, from

assumption (A2), we have Prob(y = 1) = 1
2 and Prob(y = −1) = 1

2 . From Lemma 8, the moment
generation function of

∑
v∈D(yv − Eyv) satisfies

e
∑

v∈D s(yv−Eyv) ≤ eC(1+r2)|D|s2 , (76)

where Eyv = 0 and C is some positive constant.

By Chernoff inequality, we have

Prob
{∣∣∣∣∑

v∈D
(yv − E yv)

∣∣∣∣ > th

}
≤ eC(1+r2)|D|s2

e|D|·th·s (77)

for any s > 0. Let s = th/
(
C(1 + r2)

)
and th =

√
(1 + r2)|D| log q, we have∣∣∣∑

v∈D
(yv − E yv)

∣∣∣ ≤C
√
(1 + r2)|D| log q (78)

with probability at least 1− q−c. From (A2) in Section 3.2, we know that

|Eyv| ≲
√
|D|. (79)

Therefore, I2 is bounded as

|I2| ≤
∣∣∣∑
v∈D

1

|D|
yv

∣∣∣
≤
∣∣∣∑
v∈D

1

|D|
(yv − E yv)

∣∣∣+ |E yv|

≲σ

√
(1 + r2) log q

|D|
.

(80)

Bound of I1 when p = p+. Because the neighbors of node v with negative label do not contain p+,
Mp(v;w

(t)
k) in (73) cannot be p+. In addition, p+ is orthogonal to {pn}n∈N (v)

⋃
{0}. Then, we

have 〈
p+,

∂g(W ,U ;XN (v))

∂wk

∣∣∣
wk=w

(t)
k

〉
= ⟨ p+ , Mz(v;w

(t)
k) ⟩. (81)

Let us use D(t)
s to denote the set of nodes that the class relevant pattern is included in the sampled

neighbor nodes. Recall that α, defined in Section 3, is the sampling rate of nodes with important
edges, we have

|D(t)
s | = α|D+|. (82)

33

Under review as a conference paper at ICLR 2023

Combining (71), (73) and (81), we have

I1 = ⟨ Ev∈D+Mp(v;w
(t)
k)− Ev∈D−Mp(v;w

(t)
k) , p+ ⟩

= ⟨ Ev∈D+
Mp(v;w

(t)
k) , p+ ⟩

≥ ⟨ Ev∈Ds
Mp(v;w

(t)
k) , p+ ⟩

≥ α.

(83)

Bound of I1 when p ̸= p+. Next, for any p ∈ P/P+, we will prove the following equation:

I1 ≤

√
(1 + r2) log q

|D|
. (84)

When ⟨ w(t+1)
k , p ⟩ ≤ −σ, we have

M(t)
p (v;w

(t)
k) ̸= p, and ⟨ M(t)

p (v;w
(t)
k) , p ⟩ = 0 for any v ∈ D. (85)

Therefore, we have

I1 = ⟨ Ev∈D+
M(t)

p (v;w
(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p ⟩ = 0. (86)

When ⟨ w(t+1)
k , p ⟩ > −σ, we have

I1 = ⟨ Ev∈D+
M(t)

p (v;w
(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p ⟩

= ⟨ Ev∈D+/Ds
M(t)

p (v;w
(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p ⟩.

(87)

Let us define a mapping H: Rd −→ Rd such that

H(pv) =

{
p− if pv = p+

pv otherwise
, (88)

Then, we have

I1 =⟨ Ev∈D+
M(t)

p (v;w
(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p ⟩

=⟨ Ev∈D+/Ds
M(t)

p (v;w
(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p ⟩

=⟨ Ev∈D+/Ds
M(t)

p (H(v);w
(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p ⟩

≤⟨ Ev∈D+M(t)
p (H(v);w

(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p ⟩

=⟨ Ev∈D+
M(t)

p (H(v);w
(t)
k)− Ev∈D−M(t)

p (H(v);w
(t)
k) , p ⟩

(89)

where the third equality holds because N (t)(v) does not contain p+ for v ∈ D+/Ds, and
H(XN (t)(v)) = XN (t)(v). Also, the last equality holds because xv does not contain p+ for node
v ∈ D−. Therefore, we have

⟨ Ev∈D+
M(t)

p (H(v);w
(t)
k)− Ev∈D−M(t)

p (H(v);w
(t)
k) , p ⟩

=Ev∈D⟨ yvM(t)
p (H(v);w

(t)
k) , p ⟩

≤
∣∣Ev∈Dyv

∣∣ · ∣∣Ev∈D⟨ M(t)
p (H(v);w

(t)
k) , p ⟩

∣∣
≤

√
(1 + r2) log q

|D|

(90)

with probability at least 1− q−C for some positive constant.

Proof of statement 1. From (80) and (83), the update of wk in the direction of p+ is bounded as

⟨ w(t+1)
k , p+ ⟩ − ⟨ w(t)

k , p+ ⟩ ≥ cη(I1 − |I2|)

≥ cη · (α− σ

√
(1 + r2) log q

|D|
).

(91)

34

Under review as a conference paper at ICLR 2023

Then, we have

⟨ w(t)
k , p+ ⟩ − ⟨ w(0)

k , p+ ⟩ ≥ cη · (α− σ

√
(1 + r2) log q

|D|
) · t. (92)

Proof of statement 2. From (80) and (90), the update of wk in the direction of p ∈ P/p+ is upper
bounded as

⟨ w(t+1)
k , p ⟩ − ⟨ w(t)

k , p ⟩ ≤ cη(I1 + |I2|)

≤ cη · (1 + σ) ·

√
(1 + r2) log q

|D|
.

(93)

Therefore, we have

⟨ w(t)
k , p ⟩ − ⟨ w(0)

k , p ⟩ ≤ cη · (1 + σ) ·

√
(1 + r2) log q

|D|
· t. (94)

The update of wk in the direction of p ∈ P/p+ is lower bounded as

⟨ w(t+1)
k , p ⟩ − ⟨ w(t)

k , p ⟩ ≥ cη(I1 − |I2|)

≥ − cη ·
(
1 + σ ·

√
(1 + r2) log q

|D|

)
.

(95)

To derive the lower bound, we prove the following equation via mathematical induction:

⟨ w(t) , p ⟩ ≥ −cη

(
1 + σ + σt ·

√
(1 + r2) log q

|D|

)
. (96)

It is clear that (96) holds when t = 0. Suppose (96) holds for t.

When ⟨ w(t)
k , p ⟩ ≤ −σ, we have

M(t)
p (v;w

(t)
k) ̸= p, and ⟨ M(t)

p (v;w
(t)
k) , p ⟩ = 0 for any v ∈ D. (97)

Therefore, we have

I1 = ⟨ Ev∈D+
M(t)

p (v;w
(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p ⟩ = 0, (98)

and

⟨ w(t+1)
k , p ⟩ = ⟨ w(t)

k , p ⟩+ cη · (I1 + I2)

= ⟨ w(t)
k , p ⟩+ cη · I2

≥− cη ·
(
1 +

σ

cη
+ σt ·

√
(1 + r2) log q

|D|

)
− cη

√
(1 + r2) log q

|D|

= − cη ·
(
1 +

σ

cη
+ σ(t+ 1) ·

√
(1 + r2) log q

|D|

)
.

(99)

When ⟨ w(t)
k , p ⟩ > −σ, we have

⟨ w(t+1)
k , p ⟩

= ⟨ w(t)
k , p ⟩+ cη(I1 + I2)

= ⟨ w(t)
k , p ⟩+ cη · ⟨ Ev∈D+

M(t)
p (v;w

(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p ⟩+ cηI2

= ⟨ w(t)
k , p ⟩ − cη · ⟨ Ev∈D+M(t)

p (v;w
(t)
k) , p ⟩+ cηI2

≥ − σ − cη − cησ

√
(1 + r2) log q

|D|
.

(100)

Therefore, from (99) and (100), we know that (96) holds for t+ 1.

35

Under review as a conference paper at ICLR 2023

H.3 PROOF OF LEMMA 4

The bound of the gradient is divided into two parts in (101), where I3 and I4 are respect to the
noiseless features and the noise, respectively. The bound for I4 is similar to that for I2 in proving
Lemma 2. However, for a unlucky neuron, the gradient derived from D+ is not always in the direction
of p+. We need extra techniques to characterize the offsets between D+ and D−. One critical issue
is to guarantee the independence of M(t)(v) and yv , which is solved by constructing a matched data,
see (108) for the definition. We show that the magnitude of w(t)

k scale in the order of
√

(1 + r2)/|D|
from (113).

Proof of Lemma 4. Definition of I1 and I2. Similar to (74), we define the items I3 and I4 as

⟨ w(t+1)
k , p ⟩ − ⟨ w(t)

k , p ⟩

= cη · Ev∈D⟨ yv · M(t)
p (v;w

(t)
k) , p ⟩+ Ev∈D⟨ yv · M(t)

z (v;w
(t)
k) , p ⟩

:= cη · (I3 + I4).

(101)

Bound of I4. Following the similar derivation of (80), we can obtain

|I4| ≲ σ

√
(1 + r2) log q

|D|
. (102)

Bound of I3 when p = p+. From (101), we have

I3 = ⟨ Ev∈D+M(t)
p (v;w

(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p+ ⟩

= ⟨ Ev∈D+
M(t)

p (v;w
(t)
k) , p+ ⟩

≥ 0.

(103)

Bound of I3 when p ∈ PN . To bound I4 for any fixed p ∈ PN , we maintain the subsets Sk(t) ⊆ D−

such that Sk(t) = {v ∈ D− | M(t)
p (v;w

(t)
k) = p−}.

First, when Sk(t) = ∅, it is easy to verify that

I3 = 0. (104)

Therefore, Sk(t+ 1) = ∅ and Sk(t
′) = ∅ for all t′ ≥ t.

Second, when Sk(t) ̸= ∅, then we have

I3 = −|Sk(t)|
|D−|

∥p−∥2. (105)

Note that if ⟨ w
(t)
k , p− ⟩ < −σ, then Sk(t) must be an empty set. Therefore, after at most

t0 =
∥w(0)

k ∥2+σ

cη
number of iterations, Sk(t0) = ∅, and Sk(t) = ∅ with t ≥ t0 from (104).

Next, for some large t0 and any v ∈ V , we define a mapping F : V −→ Rrd such that

F(v) =
[
o⊤
v1 o⊤

v2 · · · o⊤
vr

]⊤
. (106)

From (101), we have
I4 = Ev∈V⟨ yvM(t)

p (v;w
(t)
k) , p ⟩, (107)

where {v1, · · · , vr} = N (t)(v) and{
ovi = xvi , if xvi ̸= p+ or p−
ovi = 0, if xvi = p+ or p−

. (108)

When y = 1, we have

⟨ M(t)
p (x) , p ⟩ =

{
⟨ M(t)

p (F(v)) , p ⟩, if M(t)
p (F(v)) ̸= p+

0 ≤ ⟨M(t)
p (F(v)) , p ⟩, if M(t)

p (F(v)) = p+

. (109)

36

Under review as a conference paper at ICLR 2023

When y = −1 and t ≥ t0, recall that Sk(t) = D−, then we have

⟨ M(t)
p (x) , p ⟩ = ⟨ M(t)

p (F(x)) , p ⟩. (110)

Combining (109) and (110), we have

I3 ≤Ev∈V
[
y · ⟨ M(t)

p (F(v)) , p ⟩
]
. (111)

From assumptions (A2) and (17), we know that the distribution of p+ and p− are identical, and the
distributions of any class irrelevant patterns p ∈ PN are independent with y. Therefore, it is easy to
verify that y and F(v) are independent with each other, then we have

I3 ≤Ev∈Dyv · Ev⟨ M(F(v)) , p ⟩. (112)

From (112) and (78), we have

I3 ≤

√
(1 + r2) log q

|D|
(113)

for any p ∈ PN .

Proof of statement 1. From (102) and (103), we have

⟨ w(t+1)
k , p ⟩ − ⟨ w(t)

k , p ⟩ = cη · (I3 + I4)

≥ − cη|I4|

≥ − cησ

√
(1 + r2) log q

|D|
.

(114)

Therefore, we have

⟨ w(t)
k , p ⟩ − ⟨ w(0)

k , p ⟩ ≥ − cησ

√
(1 + r2) log q

|D|
· t. (115)

Proof of statement 2. When p = p−, from the definition of I3 in (101), we know

I3 = ⟨ Ev∈D+M(t)
p (v;w

(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p− ⟩

= − ⟨ Ev∈D−M(t)
p (v;D−) , p− ⟩

≤ 0,

(116)

The update of wk in the direction of p− is upper bounded as

⟨ w(t+1)
k , p− ⟩ − ⟨ w(t)

k , p− ⟩ ≤ cη(I3 + I4)

≤ cηI4

≤ cη · σ ·

√
(1 + r2) log q

|D|
.

(117)

Therefore, we have

⟨ w(t)
k , p− ⟩ − ⟨ w(0)

k , p ⟩ ≤ cη · σ ·

√
(1 + r2) log q

|D|
· t. (118)

To derive the lower bound, we prove the following equation via mathematical induction:

⟨ w(t) , p− ⟩ ≥ −cη

(
1 + σ + σt ·

√
(1 + r2) log q

|D|

)
. (119)

It is clear that (119) holds when t = 0. Suppose (119) holds for t.

When ⟨ w(t)
k , p− ⟩ ≤ −σ, we have

M(t)
p (v;w

(t)
k) ̸= p−, and ⟨ M(t)

p (v;w
(t)
k) , p− ⟩ = 0 for any v ∈ D. (120)

37

Under review as a conference paper at ICLR 2023

Therefore, we have

I3 = ⟨ Ev∈D+
M(t)

p (v;w
(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p− ⟩ = 0, (121)

and

⟨ w(t+1)
k , p− ⟩ = ⟨ w(t)

k , p− ⟩+ cη · (I3 + I4)

= ⟨ w(t)
k , p− ⟩+ cη · I4

≥− cη ·
(
1 +

σ

cη
+ σt ·

√
(1 + r2) log q

|D|

)
− cη

√
(1 + r2) log q

|D|

= − cη ·
(
1 +

σ

cη
+ σ(t+ 1) ·

√
(1 + r2) log q

|D|

)
.

(122)

When ⟨ w(t)
k , p− ⟩ > −σ, we have

⟨ w(t+1)
k , p− ⟩

= ⟨ w(t)
k , p− ⟩+ cη(I3 + I4)

= ⟨ w(t)
k , p− ⟩+ cη · ⟨ Ev∈D+

M(t)
p (v;w

(t)
k)− Ev∈D−M(t)

p (v;w
(t)
k) , p− ⟩+ cηI4

= ⟨ w(t)
k , p− ⟩ − cη · ⟨ Ev∈D+

M(t)
p (v;w

(t)
k) , p− ⟩+ cηI4

≥ − σ − cη − cησ

√
(1 + r2) log q

|D|
.

(123)

Therefore, from (122) and (123), we know that (119) holds for t+ 1.

Proof of statement 3. From (102) and (113), we have

|⟨ w(t+1)
k , p ⟩ − ⟨ w(t)

k , p ⟩| = cη · |I3 + I4|

≤ cη · (1 + σ) ·

√
(1 + r2) log q

|D|
.

(124)

Therefore, we have

|⟨ w(t)
k , p ⟩ − ⟨ w(0)

k , p ⟩| ≤ cη · (1 + σ) ·

√
(1 + r2) log q

|D|
· t. (125)

H.4 PROOF OF LEMMA 6

The major idea is to show that the weights of lucky neurons will keep increasing in the direction of
class-relevant patterns. Therefore, the lucky neurons consistently select the class-relevant patterns in
the aggregation function.

Proof of Lemma 6. For any k ∈ U(0), we have

⟨ w(0)
k , (1− σ) · p+ ⟩ ≥ ⟨ w(0)

k , (1 + σ) · p ⟩ (126)

for any p ∈ P/p+ by the definition of lucky neuron in (24).

Next, from Lemma 2, we have

⟨ w(t)
k , p+ ⟩ ≥ cη

(
α− σ

√
(1 + r2) log q

|D|

)
· t,

and ⟨ w(t)
k , p ⟩ ≤ cη(1 + σ) ·

√
(1 + r2) log q

|D|
· t.

(127)

38

Under review as a conference paper at ICLR 2023

Combining (126) and (127), we have

⟨ w(t)
k , p+ ⟩ − 1 + σ

1− σ
⟨ w(t)

k , p ⟩ ≳ cη ·
(
α− (1 + 4σ) ·

√
(1 + r2) log q

|D|

)
· t. (128)

When |D| ≳ α−2 · (1 + r2) log q, we have ⟨ w(t)
k , p+ ⟩ ≥ 1+σ

1−σ ⟨ w
(t)
k , p ⟩.

Therefore, we have k ∈ W(t) and
W(0) ⊆ W(t). (129)

One can derive the proof for U(t) following similar steps above.

H.5 PROOF OF LEMMA 7

The proof is built upon the statements of the lucky neurons and unlucky neurons in Lemmas 2 and 4.
The magnitude of the lucky neurons in the direction of p+ is in the order of α, while the magnitude of
unlucky neurons is at most 1/

√
|D|. Given a sufficiently large |D|, the magnitude of a lucky neuron

is always larger than that of an unlucky neuron.

Proof of Lemma 7. From Lemma 6, we know that (1) if w(0)
k1

is lucky neuron, w(0)
k1

is still lucky

neuron for any t′ ≥ 0; (2) if w(t′)
k1

is unlucky neuron, w(t′′)
k1

is still unlucky neuron for any t′′ ≤ t′

For any k1 ∈ W(0), from Lemma 2, we have

⟨ w(t′)
k1

, w
(t′)
k1

⟩ 1
2 ≥⟨ w(t′)

k1
, p+ ⟩

≥cη ·
(
α− σ

√
(1 + r2) log q

|D|

)
t′.

(130)

For any k2 ∈ Wc(t′), from Lemma 2, we have

⟨ w(t′)
k2

, w
(t′)
k2

⟩ 1
2 =

∑
p∈P

⟨ w(t′)
k1

, p ⟩

=
∑

p∈P/p+

⟨ w(t′)
k1

, p ⟩+ ⟨ w(t′)
k1

, p+ ⟩

≤
∑

p∈P/p+

⟨ w(t′)
k1

, p ⟩+ max
p∈P/p+

⟨ w(t′)
k1

, p ⟩

≤L · cη · (1 + σ) ·

√
(1 + r2) log q

|D|
· t′.

(131)

Therefore, ⟨ w(t′)
k2

, w
(t′)
k2

⟩ 1
2 < ⟨ w(t′)

k1
, w

(t′)
k1

⟩ 1
2 if |D| is greater than α−2(1 + r2)L2 log q.

H.6 PROOF OF LEMMA 8

Proof of Lemma 8 . According to the Definitions in Janson (2004), there exists a family of
{(Xj , wj)}j , where Xj ⊆ X and wj ∈ [0, 1], such that

∑
j wj

∑
xnj

∈Xj
xnj

=
∑N

n=1 xn, and∑
j wj ≤ dX by equations (2.1) and (2.2) in Janson (2004). Then, let pj be any positive numbers

with
∑

j pj = 1. By Jensen’s inequality, for any s ∈ R, we have

es
∑N

n=1 xn = e
∑

j pj
swj
pj

Xj ≤
∑
j

pje
swj
pj

Xj
, (132)

where Xj =
∑

xnj
∈Xj

xnj
.

39

Under review as a conference paper at ICLR 2023

Then, we have

EX es
∑N

n=1 xn ≤EX
∑
j

pje
swj
pj

Xj
=

∑
j

pj
∏
Xj

EX e
swj
pj

xnj

≤
∑
j

pj
∏
Xj

e

Cw2
j

p2
j

s2

≤
∑
j

pje

C|Xj |w
2
j

p2
j

s2

.

(133)

Let pj =
wj |Xj |1/2∑
j wj |Xj |1/2

, then we have

EX es
∑N

n=1 xn ≤
∑
j

pje
C
(∑

j wj |Xj |1/2
)2

s2 = eC
(∑

j wj |Xj |1/2
)2

s2 . (134)

By Cauchy-Schwarz inequality, we have(∑
j

wj |Xj |1/2
)2 ≤

∑
j

wj

∑
j

wj |Xj | ≤ dXN. (135)

Hence, we have
EX es

∑N
n=1 xn ≤ eCdXNs2 . (136)

I EXTENSION TO MULTI-CLASS CLASSIFICATION

Consider the classification problem with four classes, we use the label y ∈ {+1,−1}2 to denote
the corresponding class. Similarly to the setup in Section 2, there are four orthogonal class relevant
patterns, namely p1,p2,p3,p4. In the first layer (hidden layer), we have K neurons with weights
wk ∈ Rd. In the second layer (linear layer), the weights are denoted as bk ∈ R2 for the k-th neuron.
Let W ∈ Rd×K and B ∈ R2×K be the collections of wk’s and bk’s, respectively. Then, the output
of the graph neural network, denoted as g ∈ R2, is calculated as

g(W ,B;XN (v)) =
1

K

K∑
k=1

bk · AGG(XN (v),wk). (137)

Then, the label generated by the graph neural network is written as
yest = sign(g). (138)

Given the set of data D, we divide them into four groups as

Hidden Layer Output
Layer

𝑦𝑦𝑣𝑣 =
𝑦𝑦𝑣𝑣,1
𝑦𝑦𝑣𝑣,2

𝑾𝑾
𝒃𝒃1

Aggregation

𝒙𝒙𝑣𝑣
𝑿𝑿𝒩𝒩(𝑣𝑣)

ReLU

Positive label
Negative label
Unknown label

𝒃𝒃2

Figure 21: Illustration of graph neural network learning for multi-class classification

D1 = {(x,y) | y = (1, 1)},
D2 = {(x,y) | y = (1,−1)},
D3 = {(x,y) | y = (−1, 1)},

and D4 = {(x,y) | y = (−1,−1)}.

(139)

40

Under review as a conference paper at ICLR 2023

The corresponding loss function in (2) can be revised as

f̂D(W ,U) =− 1

|D|
∑
v∈D

y⊤
v g

(
W , b;XN (v)

)
(140)

Then, we initialize the weights of bk as (1, 1), (1,−1), (−1, 1), and (−1,−1) equally. Next, we
divide the weights wk into four groups based on the value of bk, such that

W1 = {k | bk = (1, 1)},
W2 = {k | bk = (1,−1)},
W3 = {k | bk = (−1, 1)},

and W4 = {k | bk = (−1,−1)}.

(141)

Hence, for any k in W1, we have

∂f

∂w
= − 1

|D|
∑
v∈D

(
yv,1 ·

∂g1
∂w

− yv,2 ·
∂g2
∂w

)
. (142)

When x ∈ D1, we have

yv,1 ·
∂g1
∂w

− yv,2 ·
∂g2
∂w

= −2ϕ′(w⊤x) · x. (143)

When x ∈ D2, we have

yv,1 ·
∂g1
∂w

− yv,2 ·
∂g2
∂w

= 0. (144)

When x ∈ D3, we have

yv,1 ·
∂g1
∂w

− yv,2 ·
∂g2
∂w

= 0. (145)

When x ∈ D4, we have

yv,1 ·
∂g1
∂w

− yv,2 ·
∂g2
∂w

= 2ϕ′(w⊤x) · x. (146)

Then, for any k ∈ W1, we have

w
(t+1)
k = w

(t)
k + cη · Ev∈D1

M(t)(v;w
(t)
k)− cη · Ev∈D4

M(t)(v;w
(t)
k), (147)

Comparing (147) with (29), one can derived that the weights w
(t)
k will update mainly along the

direction of p1 but have bounded magnitudes in other directions. By following the steps in (142) to
(147), similar results can be derived for for any k ∈ Wi with 1 ≤ i ≤ 4.

41

	Introduction
	Related Works

	Graph Neural Networks: Formulation and Algorithm
	Problem Formulation
	GNN Learning Algorithm via Joint Edge and Model Sparsification

	Theoretical Analysis
	Takeaways of the Theoretical Findings
	Formal Theoretical Results
	Comparison with existing works
	The Proof Sketch

	Numerical Experiments
	Synthetic Data Experiments
	Joint-sparsification on Real Citation Datasets

	Conclusions
	Overview of the techniques
	Graph neural network learning on data with structural constraints

	Notations
	Data model with structural constraints
	Graph neural network model
	Additional notations for the proof

	Useful Lemmas
	Proof of Main Theorem
	Numerical experiments
	Implementation of the experiments
	Empirical justification of data model assumptions
	Additional experiments on synthetic data
	Additional experiments on real data

	The VC dimension of the graph structured data and two-layer GNN
	 The importance sampling probability for various sampling strategy
	Proof of Useful Lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 4
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8

	Extension to multi-class classification

