Supplementary Material

1 Rethinking Dataset Copyright Ownership in the Era of Generative Al

Due to the explosive growth of generative Al, an increasing number of creators’ works, including
creative entities, brushstrokes, and styles, are being used for unauthorized profit. In Glaze[l1]]’s survey,
based on responses from 1,207 artists, the vast majority hope for fair legislation to protect the unique
artistic styles and content of their works. However, there are currently no feasible solutions, and
this issue is highly challenging. Currently, generative Al is being maliciously used by some to
easily learn, imitate, and plagiarize unauthorized human works for profit. This severely undermines
creators’ motivation, damages their creative enthusiasm, and turns high-quality works into others’
benefits. This step may be urgent for ensuring intellectual property rights for human creativity in
the Al era. Therefore, we aim to establish a positive and healthy cycle for the development of art
between generative Al and human creation.

2 The Relevant Explanation for Identifier >

In this paper, identifier 2z is designed to ensure the exclusivity and uniqueness of the protected
unit distribution within large datasets. Identifier z signifies the identifier that maximally shifts the
contraction domain to the edge distribution of the style representation space. In other word, the
domain achieves the maximum concealed offset of probability distribution through both the injection
of identifier z, after decoupling the style domain and performing dynamic contrastive learning to
increase the distance in the similarity space. Since is an arbitrary identifier (such as text, strings,
images, etc.), its capacity is effectively infinite, which further enhances the reliability and security
of the solution. In machine learning, there are inherent differences in the high-dimensional feature
distributions of protected units. Our approach, which utilizes the identifier, decouples the style
domain and employs dynamic contrastive learning, aims to shift this distribution.

3 Method

3.1 The Style Domain Encoder and Decoder in Diffusion

The Style domain encoder and decoder are formally defined by a pair of forward and backward
Markov chains representing a T-steps transformation from a normal distribution 27 ~ A(0, 1) into
the learned distribution zg ~ pg (2, ). Each forward step ¢ erodes x; by adding a small Gaussian noise
according to a fixed variance schedule oy, sampling:

20 ~ N(Vagze — 1, V1 — o). (1)
Meanwhile, each reverse step ¢ performs image denoising, and aims to estimate €; in order to recover
p0(2t71|zt7870)7 (2)

where the style representation s € R serves as a guidance source for denoising the image, and ¢
denotes optional conditions for the encoder and decoder respectively. The reverse step is realized by
a denoising decoder D, that predicts:

2 ~ N(Vagze — 1, V1 — o). 3)
Meanwhile, each reverse step ¢ performs image denoising, and aims to estimate €; in order to recover
€ =eg(z,1,8,0). 4

Thanks to the reparametrization trick, we can then sample the following:

ZTNN(\/EtZt—l,\/l—atI). (5)
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Meanwhile, each reverse step ¢ performs image denoising, and aims to estimate €; in order to recover
1 ( 1-— Qi
Rt — —€0
e V19—

where &y = Hle as s the product of the variances up to step ¢, and o7 is either a fixed or learned
variance term.
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3.2 Self-Generalization by dynamic contrastive learning

The self-generalization of the contraction domain of protected samples is essentially the result of
soft boundary delineation of the style domain. Its goal is to maximize generalizability, meaning that,
aside from a series of versions of the proxy model, infringement models generated by other different
architectures can also be effectively traced back.

Initialize Cetral and Boundary Samples. For a given data point z, the latent encoder (i.e., VAE)
outputs the parameters of the probability distribution g (2, |x) for the latent z,, which is the mean
and variance o2 of z,:
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Here, ¢ denotes the parameters of VAE, and () and o%(z) are calculated by VAE based on the
input 2. The z, implies that  is regularized into a Gaussian distribution . Let O = {2,}% | which
denotes the latent of protected units, where z, shape is [ B, 4, 64, 64] (i.e., B is the number of images
of the o-th protected unit). And let G, = {zg, évzl denotes the mimic samples of protected units,
where z, shape is [ B, 4, 64, 64] . We first normalize all latents as[Eq[9]and [EqJ6]
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where F,;,s denotes the absolute value function. Next, We calculate the average difference between

O and G, )
e= Z v/ 1Zo — 2g, |25 (10)
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where e denotes the Threshold of G,. If z;,, — e > 0, it indicates a strong positive correlation;
otherwise, it is a weak positive correlation. Similarly, we also performed the same operation at the
image level. Finally, we compute the cosine similarity between the O and G, in[Eq]TT]

sim = cos(E2(20),E2(24,)), (11)

where £, denotes the style domain encoder. If the sim is greater than x (In our setting, x = 0.9975),
it is marked as a strong positive correlation; otherwise, it is a weak positive correlation. We consider
all samples that satisfy the strong positive correlation condition as central samples for the k-th unit
and those that do not satisfy it as marginal samples. It is worth mentioning that, as the style domain
encoder is updated, we dynamically update the distribution of central and marginal samples based
on the cosine similarity threshold. The advantage of this approach is that it allows for decoupling
the representation based on generalization when constructing the style domain. The dynamic central
and marginal samples enable self-generalization of the style domain through dynamic contrastive
learning, facilitating the structured delineation of dataset copyright boundaries for multiple sources
of styles and contents in image generation.

4 Implament Details

4.1 Model Details

The configuration file outlines the specifications for training a neural network model, encompassing
both the encoder and decoder components and parameters related to the diffusion process. On one
hand, The encoder employs a ResNet-18 architecture with a feature dimension set to 128. On the



other hand, the decoder is configured with specific settings such as the shape of the output latent
set to [4, 64, 64], the number of channels at 128, and the number of blocks set to 2. It also includes
parameters like channel multipliers attention mechanisms, dropout rate, and whether to use residual
connections for upsampling and downsampling. The dimensionality of the latent space is specified as
128 (2channels)- Regarding the diffusion process, the configuration sets the beta values to [1.0e-4,
0.02], indicating the scale of the diffusion process. The number of diffusion steps is set to 1000,
determining the duration of the diffusion process. A dropout probability of 0.1 is also specified.

4.2 Experiment Details

The configuration defines various parameters for training the neural network model. It sets the batch
size to 128, indicating the number of training examples processed in each iteration. The learning rate
is specified as 1.0e-4 with a learning rate ratio of 2, suggesting a doubling of the learning rate over
time. The ’AdamW’ optimizer is chosen for optimization, with weight decay set to 0.05 and beta
values of [0.9, 0.95]. Gradient clipping is applied with a maximum norm of 1 to prevent exploding
gradients. The training process consists of 70 epochs, with a warm-up period of 20 epochs. The model
is initialized either from scratch or from a pre-trained checkpoint, depending on the value of the load
epoch parameter (-1 for training from scratch). Additionally, an exponential moving average (EMA)
factor of 0.9999 is applied to stabilize the training process. These parameters collectively facilitate
effective training of the neural network model. The paper involves the following parameters: a
momentum coefficient m = 0.999, a temperature coefficient 7 = 0.07, a boundary constant ¢ = 1.0,
an exclusivity beta 5 = 0.1, 50 protected units K, 100 generalized samples [V, and a watermark
length L = 128 bits. In addition, We conducted all experiments for the paper on four Nvidia RTX
3090 GPUs. The disentangled pre-training took approximately 400 GPU hours on two NVIDIA
GeForce RTX 3090s. We conducted over 100 sets of experiments on five benchmark datasets, with
each set of experiments taking about 5 GPU hours per unit.
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Figure 1: Compare the performance of our method in terms of Avg acc and t@Qk@100%wd across
five datasets, evaluating the impact of Disentanglement with and without (w. and w.o)

Table 1: Main results. We evaluated the performance of the model’s discriminator using the metrics
of Accuracy, Precision, Recall, and F1-Score.

Dataset Accuracy (%) Precision (%) Recall (%) Fl1 (%) Avgacc(%) tQkQ100%wd (%)

CelebA 99.79 99.72 100 99.87 99.81 98.1
CUB 99.21 99.86 100 99.93 99.56 96.4
Dreambooth 99.60 99.71 99.69 99.70 99.97 98.1
Artists 99.35 99.30 99.98 99.65 99.87 97.9
Als 99.78 99.72 100 99.86 99.95 98.0

5 Experiment

5.1 Main Study

To benchmark the effectiveness of the watermark, we primarily report the discriminator’s performance
across 1000 generated images from all units of each protected dataset in the black-box validation



scenario of Al mimicry, utilizing metrics of Accuracy, Precision, Recall, and F1-Score (i.e., All

indicate the Macro-average, Macro-average = % Zf’;l metric). As shown in Table|l} all of our
evaluation metrics are above 99%, which demonstrates the superior performance of our model.
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Figure 2: With the increase in bit accuracy, the trend of the number of validation samples that surpass
the predicted bit accuracy threshold evolves. The left subplot illustrates the model’s performance
with Disentanglement, and the right subplot shows the performance without Disentanglement.

Meanwhile, We compared the impact of the Disentangled style domain on model performance across
five benchmark datasets. In figure[T]and [2] we found that there has been a decline to varying degrees
in the two metrics of Avg accand t@kQ100%wd.

Additionally, we employ the current SOTA (DIAGNOSIS[2]]) for dataset protection through the
backdoor-based method. The evaluation metrics utilized are True Positive (TP), True Negative (TN),
and Attack Success Rate (ASR), as implemented by DIAGNOSIS. The results are shown in table [2]

Table 2: Main Result: Comparison of results between DIAGNOSIS and ours

Method TP TN ASR (%) Avgacc(%) tQkQ100%wd (%)

DIAGNOSIS 993 7 99.3 - -
Ours 999 1 99.9 99.72 98

Post-tracking ownership: Post-tracking ownership refers to the process of claiming copyright owner-
ship when the owner discovers suspicious models or images. Due to backdoors in mimic models that
have been stolen and not timely injected, effective copyright claims cannot be made. The results are
shown in table 3l

Table 3: Post-tracking ownership: Comparison of results between DIAGNOSIS and ours

Method TP TN ASR(%) Avgacc(%) tQkQ100%wd (%)

DIAGNOSIS 2 998 0.2 - -
Ours 999 1 99.9 99.69 94.7

5.2 Robustness Study

We use the watermark removal method[3]] to attack baseline watermarking schemes and ours. For
attacks using variational autoencoders, we evaluate the pre-trained image compression models:
Cheng2020 [4]]. The compression factors are set to 3. For diffusion model attacks, we use stable
diffusion 2.0. The number of noise steps is set to 60. we chose Avg acc (average watermark
accuracy), Detect Acc (percentage of images where decoded bits exceed the detection threshold
0.65), and t@k@100%wd as the evaluation metrics for watermark robustness. The result is in[4} Our
method achieves an average accuracy of 97.93% and 95.81%, with a detection accuracy of 100% and
t@k@100%wd of 91.5% and 87.2% under VAE and Diffusion attacks, respectively. In contrast, other
methods like DCT-DWT-SVD, RivaGan, and SSL show significantly lower performance. From the



results, our performance significantly surpasses other watermarking schemes after being subjected to
watermark removal attacks.

Table 4: The Robustness study.

Method Removal Attack Instance  Avg acc(%) Detect Acc (%) k@t@Q100%wd (%)
VAE attack 50.17 2.0 0.0
DCT-DWT-SVD Diffusion attack 54.41 28 0.0
RivaGan .VAFT attack 60.71 6.2 0.0
Diffusion attack 58.23 1.8 0.0
SSL VAE attack 62.92 15.6 0.0
Diffusion attack 63.21 16.3 0.0
Ours VAE attack 97.93 100 91.5
Diffusion attack 95.81 100 87.2

5.3 Ablation Study

We have incorporated a disentangled style domain into the ablation analysis to further investigate the
robustness of our study. In table[5] We noticed a degradation in the robustness of our method against
arange of adversarial attacks in the absence of the disentangled style domain.

Table 5: The ablation study specifically addresses the role of the Disentangled style domain in
enhancing robustness.

The sample counts within each range of watermark distribution

128-bit w\ Disentangle 00%  2040% — 40-60% 60-80% 80-90%  90-100% Avg ace (%) | tQk@100%wd (%)].

+watermarking x 0 0 0 4 9 977 99.20 95.6
v 0 0 0 1 6 993 99.87 97.9

Second-stage Fine-tune x 0 1 1 28 35 925 98.12 89.5
’ v 0 0 6 9 7 975 99.13 933
. ! x 0 1 29 169 154 647 93.28 60.9
Mixed Clean Fine-tune v 0 1 11 29 35 944 99.04 9222
x 0 1 44 139 154 662 9123 62.9
Latent Attack v 0 0 13 19 2 925 95.81 872
Prompt Attack x 0 i5 118 186 179 613 90.01 527
v 0 0 95 9 36 860 95.81 767

Contrast x 0 1 ) 156 144 657 9227 633
v 0 0 8 9 1 972 99.01 9222
IPEG x 0 2 41 192 161 604 78.53 602
v 0 0 8 10 14 968 98.97 916
GaussianBlur x 0 0 70 162 145 623 90.67 60.7
v 0 0 ¥ 17 15 957 98.50 89.8
Brightness x 0 0 44 178 162 616 9032 602

v 0 0 2% 2 19 935 97.63 88.1
CenterCrop x 0 13 320 330 173 164 78.53 16.4
v 0 0 ) 82 68 805 94.82 69.9
Hue x 0 64 351 395 153 123 7731 112
v 0 0 37 80 50 833 94.44 68.6

Rotation x 0 13 398 455 75 59 73.96 4.1

v 0 17 204 415 105 169 83.66 148

6 Analysis of Framework Efficiency

Our framework is divided into three stages: registration, computation, and inference. In the regis-
tration stage, data owners register their identifier z and corresponding watermark with a third-party
regulatory body. In the computation stage, the third party uses our algorithm to perform computa-
tions and store the results after receiving the registration list. In the inference stage, the framework
performs copyright verification on suspicious samples and models. We analyze the efficiency of the
framework as follows: On one hand, in terms of resource consumption, during the computation stage,
using a single 3090 GPU, the average computation time per user is 1 minute, with proxy sample
computations averaging 3-5 minutes and memory usage approximately 3MB. In the inference stage,
the average inference time for 1000 users ranges from 30 to 100 milliseconds (i.e., 0.065 milliseconds
per user). On the other hand, regarding copyright tracing accuracy, the ASR metric is close to 100%,
with an error rate controlled below 0.1%, and the average watermark accuracy exceeds 99%. Of 1000
suspicious Al mimic samples, about 97% can be successfully verified and traced through judicial



proceedings (as indicated by the t@k@100wd% metric mentioned in this paper). Overall, Users such
as artists only need to register the identifier z and the corresponding watermark with the third party.
The design and complexity of the algorithmic framework ensure the security, rigor, and accuracy
of copyright protection. Overall, our framework demonstrates its practicality in judicial security
validation, resource consumption, and efficiency.
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