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ABSTRACT

We propose a new model to refine image-to-image translation via an adversarial
ranking process. In particular, we simultaneously train two modules: a generator
that translates an input image to the desired image with smooth subtle changes
with respect to some specific attributes; and a ranker that ranks rival preferences
consisting of the input image and the desired image. Rival preferences refer to the
adversarial ranking process: (1) the ranker thinks no difference between the desired
image and the input image in terms of the desired attributes; (2) the generator fools
the ranker to believe that the desired image changes the attributes over the input
image as desired. Real image preferences are introduced to guide the ranker to
rank image pairs regarding the interested attributes only. With an effective ranker,
the generator would “win” the adversarial game by producing high-quality images
that present desired changes over the attributes compared to the input image. The
experiments demonstrate that our TRIP can generate high-fidelity images which
exhibit smooth changes with the strength of the attributes.

1 INTRODUCTION

Image-to-image (I21) translation (Isola et al.,[2017)) aims to translate an input image into the desired
ones with changes in some specific attributes. Current literature can be classified into two categories:
binary translation (Zhu et al.,|2017; Kim et al.| 2017), e.g., translating an image from “not smiling”
to “smiling”; fine-grained translation (Lample et al., 2017} |He et al., 2019; |Liu et al.} 2018} |Saquil
et al.,2018), e.g., generating a series of images with smooth changes from “not smiling” to “smiling”.
In this work, we focus on the high-quality fine-grained 121 translation, namely, generate a series of
realistic versions of the input image with smooth changes in the specific attributes (See Fig. [I).

Relative attribute (RA), referring to the preference of two images over the strength of the interested
attribute, is widely used in the fine-grained 121 translation task due to their rich semantic information.
Previous work Ranking Conditional Generative Adversarial Network (RCGAN) (Saquil et al., [2018)
adopts two separate criteria for a high-quality fine-grained translation. Specifically, a ranker is adopted
to distill the discrepancy from RAs regarding the targeted attribute, which then guides the generator
to translate the input image into the desired one. Meanwhile, a discriminator ensures the generated
images as realistic as the training images. However, the generated fine-grained images guided by
the ranker are out of the real data distribution, which conflicts with the goal of the discriminator.
Therefore, the generated images cannot maintain smooth changes and suffer from low-quality issues.
RelGAN (Wu et al.,2019) applied a unified discriminator for the high-quality fine-grained translation.
The discriminator guides the generator to learn the distribution of triplets, which consist of pairs of
images and their corresponding numerical labels (i.e., relative attributes). Further, RelGAN adopted
the fine-grained RAs within the same framework to enable a smooth interpolation. However, the
joint data distribution matching does not explicitly model the discrepancy from the RAs and fails
to capture sufficient semantic information. The generated images fail to change smoothly over the
interested attribute.

In this paper, we propose a new adversarial ranking framework consisting of a ranker and a generator
for high-quality fine-grained translation. In particular, the ranker explicitly learns to model the
discrepancy from the relative attributes, which can guide the generator to produce the desired image
from the input image. Meanwhile, the rival preference consisting of the generated image and the
input image is constructed to evoke the adversarial training between the ranker and the generator.
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Less smiling Input : More smiling

Figure 1: Fine-grained Image-to-image translation on the “smile” attribute (generated by our TRIP).

Specifically, the ranker cannot differentiate the strength of the interested attribute between the gener-
ated image and the input image; while the generator aims to achieve the agreement from the ranker
that the generated image holds the desired difference compared to the input. Competition between the
ranker and the generator drives both two modules to improve themselves until the generations exhibit
desired preferences while possessing high fidelity. We summarize our contributions as follows:

e We propose Translation via Rlval Preference (TRIP) consisting of a ranker and a generator for a
high-quality fine-grained translation. The rival preference is constructed to evoke the adversarial
training between the ranker and the generator, which enhances the ability of the ranker and
encourages a better generator.

e Our tailor-designed ranker enforces a continuous change between the generated image and the
input image, which promotes a better fine-grained control over the interested attribute.

e Empirical results show that our TRIP achieves the state-of-art results on the fine-grained image-
to-image translation task. Meanwhile, the input image can be manipulated linearly along the
strength of the attribute.

o We further extend TRIP to the fine-grained I2I translation of multiple attributes. A case study
demonstrates the efficacy of our TRIP in terms of disentangling multiple attributes and manipulat-
ing them simultaneously.

2 RELATED WORKS

Current literature can be classified into two branches: (1) autoencoder (AE)-based; (2) GAN-based.

AE-based methods can provide a good latent representation of the input image. Fader Network
(FN) (Lample et al.|[2017), Unified Feature Disentanglement Network (UFDN) and
Matrix Subspace Projection (MSP) proposed to disentangle the attribute-dependent
latent variable from the image representation but resorted to different disentanglement strategies.
Then the fine-grained translation can be derived by smoothly manipulating the attribute variable of
the input image. However, the reconstruction loss, which is used to ensure the image quality, cannot
guarantee a high fidelity of the hallucinated images.

GAN-based GAN is a widely adopted framework for a high-quality image generation. Various
methods applied GAN as a base for fine-grained 121 translation through relative attributes. The main
differences lie in the strategies of incorporating the preference over the attributes into the image
generation process. RCGAN (Saquil et al} 2018)) adopted two critics consisting of a ranker, learning
from the relative attributes, and a discriminator, ensuring the image quality. Then the combination of
two critics is supposed to guide the generator to produce high-quality fine-grained images. However,
the ranker would induce the generator to generate out-of-data-distribution images, which is opposite
to the target of the discriminator, thereby resulting in poor-quality images. RelIGAN
applied a unified discriminator, which learns the joint data distribution of the triplet constructed
with a pair of images and a discrete numerical label (i.e., relative attribute). However, such a joint
distribution modeling approach only models the discrete discrepancy of the RAs, which fails to
generalize to the continuous labels very well. Rather than using RAs, AttGAN
directly modeled the attribute with binary classification, which cannot capture detailed attribute
information, and hence fail to make a smooth control over the attributes.

Our method falls into the second category. We proposed a ranker, unifying two critics in RCGAN,
to guarantee the fine-grained translation and the high quality. Different from RelGAN, the ranker
explicitly models the discrepancy from the relative attributes, which can generalize well to the
continuous RAs.
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Figure 2: The network structure of TRIP.

3 TRIP FOR FINE-GRAINED IMAGE-TO-IMAGE TRANSLATION

In this section, we propose a new model, named TRanslation via Rival Preferences (TRIP) for
high-quality fine-grained image-to-image (I2I) translation, which learns a mapping that translates an
input image to a set of realistic output images by smoothly controlling the specific attributes.

The whole structure of TRIP is shown in Fig. [2] which consists of a generator and a ranker. The
generator takes as input an image along with a continuous latent variable that controls the change
of the attribute, and outputs the desired image; while the ranker provides information in terms of
image quality and the preference over the attribute, which guides the learning of the generator. We
implement the generator with a standard encoder-decoder architecture following [Wu et al.[(2019). In
the following, we focus on describing the detailed design of the ranker and the principle behind it.

3.1 RANKER FOR RELATIVE ATTRIBUTES

Relative attributes (RAs) are assumed to be most representative and most valid to describe the
information related to the relative emphasis of the attribute, owing to its simplicity and easy construc-
tion (Parikh and Grauman), 201 1;[Saquil et al.,|2018). For a pair of images (x,y), RAs refer to their
preference over the specific attribute: y > x when y shows a greater strength than x on the target
attribute and vice versa.

Pairwise learning to rank is a widely-adopted technique to model the relative attributes (Parikh
and Grauman, 2011). Given a pair of images (x,y) and its relative attribute, the pairwise
learning to rank technique is formulated as a binary classification (Cao et al. |2006), i.e.,

1 > X;
R(X,y):{ A (1)

where R(x,y) is the ranker’s prediction for the pair of images (x,y).

Further, the attribute discrepancy between RAs, distilled by the
ranker, can then be used to guide the generator to translate the input
image into the desired one. For example, RCGAN adopts a ranker
as the auxiliary critic in addition to the vanilla GAN’s critic. Referring to the feedback from the
ranker, the generator of RCGAN aims to transform the input image to the output which possesses the
desired changes, controlled by the latent variable.

Figure 3: The ranker model.

However, the ranker is trained on the real image pairs, which only focuses on the modeling of
preference over the attribute and ignores image quality. To achieve the agreement with the ranker, the
generator possibly produces unrealistic images, which conflicts with the goal of the discriminator.

3.2 RIVAL PREFERENCES ENHANCING THE RANKER

According to the above analysis, we consider incorporating the generated image pairs into the
modeling of RAs, along with the real image pairs to reconcile the goal of the ranker and the
discriminator. Meanwhile, the resultant ranker will not only generalize well to the generated pairs but
also avoid providing untrustworthy feedback by discriminating the unrealistic images.

Motivated by the adversarial training of GAN, we introduce an adversarial ranking process between a
ranker and a generator to incorporate the generated pairs into the training of ranker. To be specific,
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e Ranker. Inspired by semi-supervised GAN (Odena, |2016), we assign a pseudo label to the
generated pairs. In order to avoid a biased influence on the ranking decision over real image pairs,
i.e., positive (+1) or negative (-1), the pseudo label is designed as zero. Note that the generated
pair consists of a synthetic image and an input in order to connect the ranker prediction to the
controlling latent variable.

+1 A=yAy>x;
R(x,A)=¢ -1 A=yAy=<x; 2)
0 A=y.
where y denotes the output of the generator given the input image x and v, i.e., y = G(x,v).

o Generator. The goal of the generator is to achieve the consistency between the ranking prediction
R(x,¥) and the corresponding latent variable v. When v > 0, the ranker is supposed to believe
that the generated image ¥ has a larger strength of the specific attribute than the input x, i.e.,
R(x,¥) = +1; and vice versa.

. 1 > 0;
R(x.9) { oezy 3)

We denominate the opposite goals between the ranker
and the generator w.r.t. the generated pairs as rival pref-
erences. An intuitive example of the rival preference is
given in Fig. 4 for better understanding.

The ranker is promoted in terms of the following aspects:
(1) The function of the ranker on the real image pairs is
not changed. The generated pairs are uniformly sampled
regarding their latent variables. By assigning label zero,
the ranking information implied within the pairs is neutral-
ized to maintain the ranking performance on the real image pairs. (2) The ranker avoids providing
biased ranking prediction for unrealistic image pairs. As we constrain the generated pairs at the
decision boundary, i.e, R(x,y) = 0, the ranker is invariant to the features specified by the generated
pairs (Chapelle et al., 2008), suppressing the influence of the unrealistic features on the ranking
decision. (3) The ranker can capture the exclusive difference over the specific attribute through the
adversarial process. Since the ranker rejects to give effective feedback for unrealistic image pairs,
only the realistic image pairs can attract the attention of the ranker. Therefore, the ranker only passes
the effective information related to the target attribute to the generator.

Figure 4: Rival Preferences for the gen-
erated pairs between the ranker and the
generator. ¥ denotes [-1,0) U (0, 1].

Then, we introduce a parallel head following the feature layer to ensure the image quality together
with a rank head, shown in Fig. 2] According to the above analysis, the ranker would not evoke
conflict with the goal of the image quality. Therefore, we successfully reconcile the two goals of
image quality and the extraction of the attribute difference. With a powerful ranker, the generator
would “win” the adversarial game by producing the realistic pairs consistent with the latent variable.

Remark 1 (Assigning zero to similar real image pairs). It is natural to assign zero to pairs
{(x,y)|ly = x}, where = denotes that x and y have same strength in the interested attribute.
They can improve the ranking prediction (Zhou et al., 2008)).

3.3 LINEARIZING THE RANKING OUTPUT

Equation [3]models the relative attributes of the generated pairs as a binary classification, which fails
to enable a fine-grained translation since the subtle changes implied by the latent variable are not
distinguished by the ranker. For example, given v; > vy > 0, the ranker give same feedbacks for
(x,¥1) and (x,y2) are both +1, which loses the discrimination between the two pairs. To achieve the
fine-grained translation, we linearize the ranker’s output for the generated pairs so as to align the ranker
prediction with the latent variable. We thus reformulate the binary classification as the regression:

R(x,y) = v. “4)
Note that the output of the ranker can reflect the difference in a pair of images. Given two latent
variables 1 > vy > v > 0, the ranking predictions for the pair generated from v5 should be larger
than that from vy, i.e., 1 > R(x,¥2 > R(x,¥2) > 0. The ranker’s outputs for the generated pairs
would be linearly correlated to the corresponding latent variable. Therefore, the generated output
images can change smoothly over the input image according to the latent variable.
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3.4 TRANSLATION VIA RIVAL PREFERENCES (TRIP)

In the following, we introduce the loss functions for the two parallel heads in the ranker. The overall
network structure can be seen in Fig.

Loss of rank head: we adopt the least square loss for the ranking predictions. The loss function
for the ranker and the generator is defined as:

Lfank = Ep(x,y,r)QT' [R (Xv Y)] + )‘Ep(x)p(v)QO [R (X’ 5’)] ; (5a)
Lgmk = Ep(X)p(v)Qv [R (x7 S’)] . (5b)
1 y»>=x . . .. T
where r = 1 denotes the relative attribute. p(x,y,r) are the joint distribution of real

image preferences. p(x) is the distribution of the training images. p(v) is a uniform distribution
[—1,1]. Q¢(a) = (a — t)? is a square function. y = G(x,v)

By optimizing L2 . (equation , the ranker is trained to predict correct labels for real image pairs

and assign zero for generated pairs, i.e., equation By optimizing Lfan & (equation , the generator
is trained to output the desire image ¥, where the difference between ¥ and x is consistent with the

latent variable v, i.e., equationE}

Loss of GAN head: to be consistent with the above rank head and also ensure a stable training, a
regular least square GAN’s loss is adopted:

Lgly:zm = EP(X)Ql [D (X)] + IE:;U(X)p(v)QO [D (G(X, ’U))] (6a)
Lgun = Epop(0)@1 [D (G(x,v))] (6b)

where 1 denotes the real image label while 0 denotes the fake image label.

Jointly training the rank head and the gan head, the gradients backpropagate through the shared
feature layer to the generator. Thus our TRIP can conduct the high-quality fine-grained I2I translation.

3.5 EXTENDED TO THE MULTIPLE ATTRIBUTES

To generalize our TRIP to multiple (K) attributes, we use vectors v and r with K dimension to
denote the latent variable and the preference label, respectively. Each dimension controls the change
of one of the interested attributes. In particular, the ranker consists of one GAN head and K parallel
rank head. The overall loss function is summarized as follows:

Lﬁank = IE}/)(x,y,r) Z Qr;C [Rk (Xv y)] + )‘Ep(x)p(v) Z QO [Rk (Xv y)} ) (7a)
k k

ngank = EP(X)P(V) Z ka [Rk (Xv 5’)] ; (7b)
k

where Ry, is the output of the k-th rank head. v, and ry, are the k-th dimension of v and r, respectively.

4 EXPERIMENTS

In this section, we compare our TRIP with various baselines on the task of fine-grained image-to-
image translation. We verify that our ranker can distinguish the subtle difference in a pair of images.
Thus we propose to apply our ranker for evaluating the fine-graininess of image pairs generated by
various methods. We finally extend TRIP to the translation of multiple attributes.

Datasets. We conduct experiments on the high quality version of a subset from Celeb Faces
Attributes Dataset (CelebA-HQ) (Karras et al., |2018)) and Labeled Faces in the Wild with attributes
(LFWA) (Liu et al., 2015)). CelebA-HQ consists of 30K face images of celebrities, annotated with 40
binary attributes such as hair colors, gender and age. LFWA has 13, 143 images with 73 annotated
binary attributes. We resize the images of two datasets to 256 x 256. The relative attributes are
obtained for any two images x and y based on their attribute values.
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Figure 5: Comparison of fine-grained facial attribute (“smile”) translation on CelebA-HQ dataset.

Fine-grained (SSIM) Image quality (FID)
Model CelebA-HQ LFWA CelebA-HQ LFWA
Smile Gender Mouth Cheekbones Smiling Frown Smile Gender Mouth Cheekbones Smiling Frown
FN  0.0122 0.0036 0.0075 0.0039 0.0065 0.0005 41.48 48.66 42.79 43.15 12.58 11.37
RCGAN 0.0084 0.0138 - 0.0100 0.0079 0.0106 398.05 418.06 - 385.27 437.93 425.59
RelGAN 0.0512 0.0924 0.0261  0.0510 0.0137 0.016 1092 31.29 9.55 10.28 16.76 16.21
UGGAN 0.0030 0.0077 0.0017  0.0028 0.0001 0.0005 10.19 2647 7.18 9.50 2225 23.65

Table 1: Fine-grained performance (SSIM) and image quality (FID) of FN, RCGAN, RelGAN and
TRIP on CelebA-HQ and LFWA. We calculate the average rank by ranking the performance among all
methods for each experiment and average them. Lower is better. RCGAN fails to make a fine-grained
translation w.r.t. the “mouth” attribute on CelebA-HQ dataset. So we did not collect its result.

Implementation Details. As the translation is conducted on the unpaired setting, the cycle con-

sistency 10ss Leycie are usually introduced to keep the identity of faces when
translation. An orthogonal loss L, and the gradient penalty loss L, are added to stabilize the

training following 2019). The weighting factor for Lgan, Leycle» Lo and Ly, are
Ags Aes Ao and Mgy, respectively. Except A, = 0.5 for CelebA-HQ and A\, = 5 for LFWA,
we set the same parameter for all datasets. Specifically, we set A = 0.5, Ao = 2.5,\;, =
150,\, = 1075. We use the Adam optimizer [23] with 31 = 0.5 and 3, = 0.999. The
learning rate is set to le-5 for the ranker and 5e-5 for the generator. The batch size is set to 4.
See appendix for details about the network architecture and the experiment setting.

Baselines. We compare TRIP with FN (Lample et al] 2017), RelGAN (Wu et all, 2019) and

RCGAN (Saquil et al., 2018). We use the released codes of FN, RelGAN and RCGAN|'| We did not
compare with AttGAN since RelGAN outperforms AttGAN, which is shown in (Wu et al., [2019)).

Evaluation Metrics. Follow (2019), we use three metrics to quantitatively evaluate the
performance of fine-grained translation. Standard deviation of structural similarity (SSIM) measures
the fine-grained translation. Frechet Inception Distance (FID) measures the visual quality. Accuracy
of Attribute Swapping (AAS) evaluates the accuracy of the binary image translation. The swapping
for the attribute is to translate an image, e.g., from “smiling” into “not smiling”. The calculation can
be found in App.[C]

4.1 FINE-GRAINED IMAGE-TO-IMAGE TRANSLATION

We conduct fine-grained 121 translation on a single attribute. On CelebA-HQ dataset, we make
the 121 translation in terms of “smile”, “gender”, “mouth open” and “high cheekbones” attributes,
respectively. On LFWA dataset, we make the I2I translation in terms of “smile” and “Frown”
attributes, respectively. We show that our TRIP achieves the best performance on the fine-grained 121

translation task comparing with various strong baselines.

Best visual results As shown in Fig. |5} (1) all GANSs can translate the input image into “more smiling”
when v > 0 or “less smiling” when v < 0. The degree of changes is consistent with the numerical

"https://github.com/facebookresearch/FaderNetworks, https://github.com/willylulu/RelGAN,
https://github.com/saquil/RankCGAN
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value of v. (2) Our GAN’s generation shows the best visual quality, generating realistic output images
that are different from the input images only in the specific attribute. In contrast, FN suffers from
image distortion issues. RelGAN’s generation not only changed the specific attribute “smile”, but
also other irrelevant attributes, “hair color”. RCGAN exhibits extremely poor generation results.

Best fine-grained score We present the quantitative evaluation of the fine-grained translation in
Table[I] Our TRIP achieves the lowest SSIM scores, consistent with the visual results. Note that a
trivial case to obtain a low SSIM is when the translation is failed. Namely, the generator would output
the same value no matter what the latent variable is. Therefore, we further apply AAS to evaluate the
I12I translation in a binary manner. Most GANSs achieve over 95% accuracy except for FN (See the
App. Fig.[T12). Under this condition, it guarantees that a low SSIM indeed indicates the output images
change smoothly with the latent variable.

Best image quality score Table [I| presents the quantitative evaluation of the image quality. (1) Our
TRIP achieves the best image quality with the lowest FID scores. (2) FN achieves the best FID On
LFWA dataset. Because the FN achieves a relatively low accuracy of the translation, < 75% in
Fig.[T2] many generated images would be the same as the input image. It means that the statistics of
the translated images are similar to that of the input images, leading to a low FID. (3) RCGAN has
the worst FID scores, consistent with the visual results in Fig.

4.2 PHYSICAL MEANING OF RANKER OUTPUT

From Fig. E] and Table|l} it shows that when conditioning on different latent variables, our TRIP can
translate an input image into a series of output images that exhibit the corresponding changes over
the attribute. We then evaluate the function of our ranker using these fine-grained generated pairs. It
verifies that our ranker’s output well-aligns to the relative change in the pair of images.

0.6 :

0.4

0.2 %
collect the output of the ranker for each generated pair and

02 %}
-0.4
plot the density in terms of different types of pairs, i.e., -0.6 %

with different v. -0.8

We further evaluate fine-grained 121 translations w.r.t. the
“smile” attribute on the test dataset of CelebA-HQ (See
Fig.[6). The trained generator is applied to generate a set of
G (x,v) by taking as inputs an image from the test dataset
and v = —1.0,-0.5,0.0,0.5, 1.0, respectivelyﬂ Then we

Discriminator output
=)
=)

-1 -05 0 0.5 1
As shown in Fig. E], (1) for a large v, the ranker would Latent variable

output a large prediction. It demonstrates that the ranker

indeed generalizes to synthetic imaged pairs and can dis- Figure 6: The box plot of the ranker’s
criminate the subtle change among each image pair. (2) output for generated pairs with different
The ranker can capture the whole ordering instead of the values of the latent variable.

exact value w.r.t. the latent variable. Because the ranker

that assigns 0 to the generated pairs inhibits the generator’s loss optimizing to zero, although our
generator’s objective is to ensure the ranker output values are consistent with the latent variable.
However, the adversarial training would help the ranker to achieve an equilibrium with the generator
when convergence, so that the ranker can maintain the whole ordering regarding the latent variable.

4.3 LINEAR TENDENCY ON THE LATENT VARIABLE

As our ranker can reveal the relative changes in pairs of images, we use it to evaluate the subtle
differences of the fine-grained synthetic image pairs generated by different methods.

We generate the fine-grained pairs on the test dataset of CelebA-HQ w.r.t. the “smile” attribute. Each
trained model produces a series of synthetic images by taking as input a real image and different
latent variables. The range of the latent variable is from -1 to 1 with step 0. Then the ranker,
pre-trained by our TRIP, is applied to evaluate the generated pairs and group them in terms of different
conditioned latent variables for different models, respectively. In terms of each group, we calculate
the mean and the standard deviation (std) for the outputs of the ranker (Fig.[7).

2When conditioning on negative values of the latent variable, we use the test samples with the “smiling”
attribute. When conditioning on positive values, we use the test samples with the “not smiling” attribute.
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Figure 7: The first three subfigures plot the ranker’s output for generated pairs in terms of different
latent variables. The curve shows the mean of the output, while the shaded region depicts one standard
deviation of the output. We summarize the standard deviation in the table for better understanding.

Fig.[/|shows that (1) the ranking output of our TRIP exhibits a linear trend with the lowest variance
w.r.t. the latent variable. This demonstrates that TRIP can smoothly translate the input image to the
desired image over the specific attribute along the latent variable. (2) The ranking output of RCGAN
behaves like a tanh curve with a sudden change when the latent variable is around zero. It means
that RCGAN cannot smoothly control the attribute strength for the input image. In addition, RCGAN
has the largest variance on the ranking output due to the low quality of the generated images, which
introduces noises to the ranker’s prediction on the generated pairs. (3) RelGAN manifests a three-step
like curve, which indicates a failure of fine-grained generation. This is mainly because of its specific
design of the interpolation loss. (4) FN presents a linear tendency like our TRIP, which denotes that it
can make a fine-grained control over the attribute. However, the mean of the ranking output for the
generated pairs is relatively low in FN, since it fails to translate some input images into the desired
output images. This is verified by its low translation accuracy (See the appendix Fig. [I2)), lower
than 85%. In addition, FN also exhibits a large variance of the ranking output due to the poor image
quality.

4.4 EXTENDED TO MULTIPLE ATTRIBUTES

We conduct fine-grained 121 translation with two attributes Lo il More smiling
“smile” and “male” on CelebA-HQ to show that our model
can generalize well to the case with multiple attributes.
We use the latent variable with two dimensions to control
the change of “smile” and “male” attributes, respectively.

Less masculine

We show the generated outputs conditioning on different v
in Fig.[8] (1) Our GAN can disentangle multiple attributes.
When conditioning on v = [—1, 0]/[1, 0], the output im-
ages 0.1 0/0; o appear “less smiling”/“more smiling” with
no change in the “masculine” attribute.

More masculine

When conditioning on v = [0, —1]/[0, 1], the output im-
ages Oy, .1/Og,1 appear “less masculine”/*“more masculine”
with no change in the “smiling” attribute. In addition, a
fine-grained control over the strength of a single attribute
is still practical. (2) Our TRIP can manipulates the subtle
changes of multiple attributes simultaneously. For exam-
ple, when conditioning v = [1, —1], the output image
Oy, .1 appear “less smiling” and “more masculine”. Our
TRIP can make a fine-grained translation on “smille” and “masculine”.

Figure 8: Fine-grained Image-to-image
translation with “smile” and male at-
tributes. The middle is the input image.
Others are the generated output images
conditioned on different v.

5 CONCLUSION

In this paper, we propose a novel GAN for fine-grained image-to-image translation by modeling
RAs, where the generated data is to model fake data region for the ranking model. We empirically
show the efficacy of our GAN for the fine-grained translation on CelebA-HQ and LFWA dataset. Our
proposed GAN can be deemed as a new form of semi-supervised GAN. The supervised pairwise
ranking and the unsupervised generation target is incorporated into a single model function. So one
of the promise of this work can be extended to semi-supervised GAN area.
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Lyank  Lgan Results

Figure 9: Ablation study. In the results, the first column is the input image. The other columns are
the generated images conditioned on the latent variable from —1 to 1 with step 0.2.

A ABLATION STUDY

In Fig. E[, we show an ablation study of our loss function. (1) Without L,.,,%, the generated images
exhibit no change over the input image. The generator fails to learn the mapping of the translation. (2)
Without L, the image quality degrades. (3) With L,y and Ly, the generated images present
desired changes consistent with the latent variable and possess good quality.

B EXPERIMENTAL SETTING

B.1 NETWORK STRUCTURE

Our generator will take one image and a random sampled relative attribute as input and output a
translated image. Our generator network is same as ReIGAN 2019), which is composed of
three convolutional layers for down-sampling, six residual blocks, and three transposed convolutional
layers for up-sampling (shown in Table . Our proposed ranker will take pair of images (x,y) as
inputs and output the classification score. It is comprised of two functional components rank layer
and GAN layer following a feature layer (shown in Table [3).The rank layer and the GAN layer is
for calculating Lffm i, and L?(m, respectively. The feature layer F' is composed of six convolutional
layers. The rank layer is composed of a subtract layer, one convolutional layer, one flatten layer and
one dense layer. The subtract layer operates on F'(x) and F(y), i.e., F(y) — F(x). The GAN layer
is composed of one flatten layer and one dense layer.

B.2 TRAINING

We split the dataset into training/test with a ratio 90/10. We pretrain our GAN only with L g, to
enable a good reconstruction for the generator. By doing so, we ease the training by sequencing the
learning of our GAN. That is, we first make a generation with good quality. Then when our GAN
begins to train, the ranker can mainly focus on the relationship between the generated pairs and its
corresponding conditional v, rather than handling the translation quality and the generation quality
together. All the experiment results are obtained by a single run.

C EVALUATION

SSIM. We first apply the generator to produce a set of fine-grained output images {x1,...,X11} by
conditioning an input image and a set of latent variable values from —1 to 1 with a step 0.2. We then
compute the standard deviation of the structural similarity (SSIM) between
x;_1 and z; as follows:

O({SSIM(Xz_l,XZ) | 1= 1, ,11}) (8)

We calculate SSIM for each image from the test dataset and average them to get the final score.

AAS. The accuracy is evaluated by a facial attribute classifier that uses the Resnet-18 architecture
2016). To obtain AAS, we first translate the test images with the trained GANs and then apply
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the classifier to evaluate the classification accuracy of the translated images coupled with its swapping
attribute. Higher accuracy means that more images are translated as desired.

FID. It is evaluated with 30K translated images on CelebA-HQ dataset and 13, 143 translated images
on LFWA dataset.

D MORE EXPERIMENT RESULTS

Component Input — Output Shape Layer Information
Down-sampling (h,w,3 + K) — (h w, 64) Conv-(N;=064,5;=7,5,=1,5,=3),SN,ReLU
(h,w,64) — (& 2, 128) Conv-(N;=128,57=4,5,=2,5,=1),SN,ReLU
(&, v 128) — (2, %, 256) Conv-(N;=256,57=4,5,=2,5,=1),SN,ReLU
Residual Blocks (%, Y 256) — (% % 256) Residual Block: Conv-(N;=256,55=3,5,=1,5,=1).SN,ReLU
(iv % 256) — (Zv TZ 56) Residual Block: Conv-(N;=256,5;=3,5s=1,5,=1),SN,ReLU
(%, “ 256) — (4,%,256) Residual Block: Conv-(N;=256,57=3,5,=1,5,=1).SN.ReLU
(%, %,256) — (2, % 256) Residual Block: Conv-(N;=256,57=3,5,=1,5,=1),SN,ReLU
(%.%,256) — (4, %,256) Residual Block: Conv-(N;=256,55=3,9,=1,5,=1),SN,ReLU
(4,%,256) — (4,%,256) Residual Block: Conv-(N;=256,55=3,5,=1,5,=1).SN,ReLU
Up-sampling  (%,%,256) — (%, %,128) Conv-(N;=128,55=4,5,=2,5,=1).SN.ReLU
(&, 2 128) — (h,w,64) Conv-(N;=64,5=4,5,=2,5,=1),SN,ReLU
(h,w,64) = (h,w,3) Conv-(N;=3,5;=7,5,=1,5,=3),Tanh

Table 2: Generator network architecture. We use switchable normalization, denoted as SN, in all
layers except the last output layer. Ny is the number of filters. S is the filter size. S; is the stride
size. S, is the padding size.

Component Input — Output Shape Layer Information
Feature Layer 2 x (hyw,3) = 2 X (}2‘, 15,64) Conv-(N;=064,57=4,5,=2,5,=1),LReLU
2% (&, %,64) —2x (%,%,128)  Conv-(N;=128,57=4,5,=2,5,=1),LReLU
2 x (’% Y, 128) — 2 x (%ﬁ Y, 256) Conv-(N=256,57=4,5,=2,5,=1),LReLU
2 % (§’ L 256) — 2 x (15, 4£,512)  Conv-(N;=512,5;=4,5,=2,5,=1),LReLU
2 % (E £.512) — 2 x (55 ,3ﬂ 1024)  Conv-(N§=1024,54=4,5,=2,5,=1),LReLU
2 x (45, 2,1024) — 2 x (&, £,2048) Conv-(N;=2048,5,=4,5,=2,5,=1),LReLU
Rank Layer 2 x (L, &,2048) — (&, &,2048) Subtract
h w h w
}g@, &,2048) — 564, &,2048) Conv-(N;=1,5;=1,5,=1,5,=1),LReLU
(&, é—”,2048) = (& x & x 2048) Flatten
(g X &2 x2048) — ( ) Dense
GANLayer (&, &, 2048) (& x & x 2048) Flatten
(& x & x2048) — ( ) Dense

Table 3: Ranker network architecture. LReLU is Leaky ReLU with a negative slop of 0.01. K is the
number of attributes. Ny is the number of filters. Sy is the filter size. S, is the stride size. S}, is the
padding size.
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Figure 10: Translation accuracy (AAS, higher is better) of FN, RCGAN, RelGAN and TRIP on
CelebA-HQ and LFWA. RCGAN fails to make a fine-grained translation w.r.t. the “mouth” attribute
on CelebA-HQ dataset. So we did not collect its result.
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Figure 11: The fine-grained facial attribute (“male”) translation on CelebA-HQ dataset applying our
TRIP. The first column is the input image. The other columns are the generated images conditioned
on the latent variable from —1 to 1 with step 0.2.
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Figure 12: The fine-grained facial attribute (“smile”) translation on LFWA dataset applying our TRIP.
The first column is the input image. The other columns are the generated images conditioned on the
latent variable from —1 to 1 with step 0.2.
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