
Supplementary Materials of
Seeing Differently, Acting Similarly:

Heterogeneously Observable Imitation Learning

Anonymous Author(s)
Affiliation
Address
email

1 Algorithm1

The pseudo codes of our algorithm are illustrated in Algorithms 1 and 2.2

3

2 Definitions4

The core challenges of HOIL, i.e., dynamics mismatch and support mismatch, are illustrated as below.5

6

Definition 1 (Dynamics Mismatch). The dynamics mismatch between the demonstrations and the7

initial data denotes the situation that:8

ρπE

ρπ1

=
πE(a|o)

∑∞
t=0 γ

tPr(st = s|πE)

π1(a|o)
∑∞

t=0 γ
tPr(st = s|π1)

̸= 1. (1)

9

Definition 2 (Support Mismatch). The support mismatch between the demonstrations and the initial10

data denotes the situation that:11

supp(ρπE
) \ supp(ρπ1

) = {x ∈ S ×A|ρπE
(x) ̸= 0} \ {x ∈ S ×A|ρπ1

(x) ̸= 0} ≠ ∅. (2)

Table 1: Environmental summary of the tasks.
Environment Observation Space OE Observation Space OL Expert Rewards

Qbert
84 × 84 × 4(image) 128(unsigned int)

4750.00 ± 50.51
ChopperCommand 3135.00 ± 145.86

Kangaroo 4175.00 ± 94.21
Hopper 8 9 709.96 ± 75.54

Humanoid 4 4 539.20 ± 26.26
Reacher 5 6 -8.99 ± 0.54

Swimmer 5 6 52.24 ± 1.29
Walker2d 188 188 929.97 ± 24.09

3 Detailed Setup for the Experiments12

The details of the environments are reported in Table 1. Also, the detailed comparisons of the13

contenders (both in the main paper and the supplementary material) and IWRE are gathered in14

Table 2.15
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Algorithm 1 IWRE.Pretraining

Input: Auxiliary policy π1; Expert demonstrations T̃πE .
Output: Evolving data {T̃π1

, T π1
}; Discriminator Dw1

; Rejection model g1.
1: function IWRE.PRETRAINING(π1)
2: Sample the evolving data {T̃π1

, T π1
} ∼ ρπ1

by π1.
3: Train Dw1

and g1 by Equation (5) and (17) respectively using T̃πE
and T̃π1

.
4: return T π1

, Dw1
, g1

5: end function

Algorithm 2 IWRE.Training

Input: Expert demonstrations T̃πE ; Evolving data T π1 ; Discriminator Dw1 ; Rejection model g1.
Output: Target policy π2.
1: function IWRE.TRAINING(T̃πE

, T π1
, Dw1

, g1)
2: Initialize π2, Dw2

, and g2.
3: for each step t do
4: Sample T π2 ∼ ρπ2 by π2.
5: for each mini-batch {xπ2

} and {xπ1
} from T π2

and T π1
do

6: Update π2 by RL algorithms (such as PPO [4]) using instances {xπ2
} and pseudo

rewards {− logDw2
(xπ2

)}.
7: Update Dw2

by Equation (9) using negative instances {xπ2
} and positive ones {xπ1

}.
8: if ⟨I(Dw2

(xπ2
)), g2(xπ2

)⟩ = +1 then
9: Query the OE observation of xπ2

, i.e., x̃π2
, through OC operation.

10: Update Dw2
and g2 by Equation (17) using the instance xπ2

and the corresponding
label ⟨I(Dw1

(x̃π2
)), g1(x̃π2

)⟩.
11: end if
12: end for
13: end for
14: return π2

15: end function

About query strategies, for TPIL and GAMA, if the output of the domain invariant discriminator is16

larger than 0.5, which means the encoder fails to generate proper features to confuse its discriminator,17

then we would query OE of this data to update the encoder. For IWRE, the threshold of the rejection18

model g and the discriminator Dw2 was also 0.5, which means that if g2(x) > 0.5 meanwhile19

Dw2(x) > 0.5, OE of this data would be queried. Dw2 , π2, and the encoder (for TPIL/GAMA)20

were pretrained for 100 epochs for all methods using evolving data during pretraining. The basic RL21

algorithm is PPO, and the reward signals of all methods were normalized into [0, 1] to enhance the22

performance of RL [2]. The buffer size for TPIL and IWRE was set as 5000. Each time the buffer is23

full, the encoder and the rejection model will be updated for 4 epochs; also LBC will update π2 for24

100 epochs with batch size 256 using the cross-entropy loss for Atari and the mean-square loss for25

MuJoCo. We set all hyper-parameters, update frequency, and network architectures of the policy part26

the same as Dhariwal et al. [2]. Besides, the hyper-parameters of the discriminator for all methods27

were the same: The rejection model and discriminator were updated using Adam with a decayed28

learning rate of 3× 10−4; the batch size was 256. The ratio of update frequency between the learner29

and discriminator was 3: 1. The target coverage c in Equation (17) was set as 0.8. λ in Equation (17)30

was 1.0.31

4 RL Performance under the Divisions of MuJoCo32

Here we report the performance under the division of OE and OL in MuJoCo. The details of the33

division are reported in Table 3. We use DDPG-based [3] agent with 107 training steps and repeat 1034

times with different random seeds. The results are shown in Figure 1. We can see that the agent can35

obtain comparable performance under OE and OL. So for MuJoCo environments, the fairness of the36

division in HOIL can be guaranteed, and OE is not more or less privileged than OL.37
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Table 2: Comparisons between all contenders and IWRE in HOIL.
Algorithm Considering heterogeneous observations Being able to query Not requiring OE all along

GAIL # # !

GAIL-Rand # ! !

IW # # !

IW-Rand # ! !

TPIL # ! !

GAMA # ! !

BC # # !

LBC ! ! #

PPO-RAM # # !

IWRE ! ! !

Table 3: The observation division into OE and OL in MuJoCo. The numbers denote the randomly
selected observation indexes in the corresponding MuJoCo environment on OpenAI Gym [1] platform.

OE OL

Walker2d [5, 7, 8, 10, 11, 14, 15, 16] [0, 1, 2, 3, 4, 6, 9, 12, 13]
Swimmer [0, 3, 6, 7] [1, 2, 4, 5]
Reacher [0, 1, 7, 8, 10] [2, 3, 4, 5, 6, 9]
Hopper [1, 3, 6, 7, 9, 10] [0, 2, 4, 5, 8]

Humanoid

[2, 3, 5, 6, 7, 10, 11, 12, 13, 16, 18, 19, 22,
23, 25, 29, 31, 32, 34, 36, 37, 40, 43, 44, 45,
47, 48, 49, 51, 54, 56, 57, 61, 63, 65, 66, 67,
68, 77, 78, 82, 86, 87, 89, 90, 93, 94, 95, 97,

98, 99, 102, 103, 108, 110, 112, 113, 117, 119,
120, 121, 122, 123, 124, 126, 127, 128, 133, 135,
144, 146, 147, 148, 151, 152, 153, 158, 160, 161,
162, 166, 167, 170, 171, 173, 174, 176, 177, 178,
180, 181, 184, 185, 187, 188, 191, 194, 198, 199,
200, 201, 202, 207, 208, 209, 210, 211, 212, 214,
215, 219, 223, 227, 228, 229, 231, 232, 233, 234,
236, 237, 238, 242, 244, 246, 248, 251, 253, 257,
258, 259, 260, 262, 264, 265, 267, 268, 271, 272,
273, 275, 278, 279, 280, 281, 285, 287, 289, 290,
291, 293, 294, 296, 299, 302, 304, 305, 306, 307,
308, 311, 312, 313, 315, 316, 319, 322, 326, 328,
329, 332, 337, 342, 343, 344, 345, 349, 358, 361,

362, 364, 365, 366, 368, 370, 372, 373, 375]

[0, 1, 4, 8, 9, 14, 15, 17, 20, 21, 24, 26, 27,
28, 30, 33, 35, 38, 39, 41, 42, 46, 50, 52, 53,
55, 58, 59, 60, 62, 64, 69, 70, 71, 72, 73, 74,
75, 76, 79, 80, 81, 83, 84, 85, 88, 91, 92, 96,

100, 101, 104, 105, 106, 107, 109, 111, 114, 115,
116, 118, 125, 129, 130, 131, 132, 134, 136, 137,
138, 139, 140, 141, 142, 143, 145, 149, 150, 154,
155, 156, 157, 159, 163, 164, 165, 168, 169, 172,
175, 179, 182, 183, 186, 189, 190, 192, 193, 195,
196, 197, 203, 204, 205, 206, 213, 216, 217, 218,
220, 221, 222, 224, 225, 226, 230, 235, 239, 240,
241, 243, 245, 247, 249, 250, 252, 254, 255, 256,
261, 263, 266, 269, 270, 274, 276, 277, 282, 283,
284, 286, 288, 292, 295, 297, 298, 300, 301, 303,
309, 310, 314, 317, 318, 320, 321, 323, 324, 325,
327, 330, 331, 333, 334, 335, 336, 338, 339, 340,
341, 346, 347, 348, 350, 351, 352, 353, 354, 355,

356, 357, 359, 360, 363, 367, 369, 371, 374]
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Figure 1: The performance of RL methods under the division of OE and OL in MuJoCo. The agent
can obtain comparable performances under OE and OL, so that we can make sure the fairness of the
experiment of HOIL in the main paper.

3



38

5 Estimation of H , O, and N by I[Dw2 ]g239

To investigate the ability of IWRE to distinguish the areas of latent demonstrations H , observed40

demonstrations O, and non-expert data N during policy learning, we recorded the accuracy and41

estimated percentage of each area on Hopper and Walker2d. The calculations of each curve are42

shown as below:43

Accuracy_H =

∑m
i=1{I[Dw1

(x̃i)]g1(x̃i) == 1&&I[Dw2
(xi)]g2(xi) == 1}∑m

i=1{I[Dw1
(x̃i)]g1(x̃i) == 1}

, (3)

44

Accuracy_O =

∑m
i=1{I[Dw1(x̃i)]g1(x̃i) == 0&&I[Dw2(xi)]g2(xi) == 0}∑m

i=1{I[Dw1(x̃i)]g1(x̃i) == 0}
, (4)

45

Accuracy_N =

∑m
i=1{I[Dw1

(x̃i)]g1(x̃i) == −1&&I[Dw2
(xi)]g2(xi) == −1}∑m

i=1{I[Dw1
(x̃i)]g1(x̃i) == −1}

, (5)
46

Percentage_H =

∑m
i=1{I[Dw1

(x̃i)]g1(x̃i) == 1}
m

, (6)
47

Percentage_O =

∑m
i=1{I[Dw1

(x̃i)]g1(x̃i) == 0}
m

, (7)
48

Percentage_N =

∑m
i=1{I[Dw1

(x̃i)]g1(x̃i) == −1}
m

, (8)

in which {xi, x̃i} ∼ ρπ2
denotes a batch of data sampled by π2. The results are shown in Figure 2.49

The results depicted not only the accuracies of I[Dw2
]g2, but also the changes of these three areas50

during the policy learning. We can see that the accuracies in each area and the percentage of O will51

decrease at first. While at the same time, the percentage of H will increase. This is because the52

successful detection of H will decrease the estimated percentage of O and reduce the accuracy of53

I[Dw2
]g2. With the help of query operations, the accuracy of I[Dw2

]g2 will gradually increase. Also,54

followed by the learning procedure of the policy π2, more and more H will be recognized as O, with55

less and less N . This is why in the following period, the percentages of H and N will decrease while56

that of O will increase. These results also verify that our algorithm IWRE can indeed detect H , O,57

and N successfully as the learning process of the policy.58
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(a) Accuracy on Hopper
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(b) Percentage on Hopper
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(c) Accuracy on Walker2d
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(d) Percentage on Walker2d

Figure 2: The accuracy and percentage of H , O, and N calculated by I[Dw1
(x̃i)]g1(x̃i) and

I[Dw2(xi)]g2(xi) during policy learning.

6 Query Efficiency59

We also investigate whether our query strategy is efficient. To this end, we allocate the query budget,60

i.e., limiting the query ratio for each method. For TPIL, it preferentially queries those data with low61

Dwϕ
output; for our method IWRE, it preferentially queries those data with high ⟨Dw2

, g2⟩ output.62

Besides, since GAIL and IW cannot directly perform queries, we design a random-selection strategy63

for them as GAIL-Rand and IW-Rand: for each batch of data, we randomly select data and input the64

OE observations of these data to Dw1
. If Dw1

(x) > 0.5, which means Dw1
regard this data being65

belonging to the expert demonstrations, then we would label this data as the expert data to update66

Dw2
. The results are depicted in Figure 3.67

We can observe that the random strategy does not always improve the performance of GAIL and68

IW. For GAIL-Rand, without importance-weighting to calibrate the learning process of the reward69

function, its performance become even worse on Hopper, Swimmer, and Walker2d, because the70

queried information enhances the discrimination ability of reward function, making it even more71

impossible for the agent to obtain effective feedbacks; for IW-Rand, its performance is better than72

GAIL-Rand on most environments, and is reinforced on Hopper, Reacher, and Walker2d, which73

further demonstrate that the query operation is indeed necessary for HOIL problem, but still fails74

compared with our method; for TPIL, it is comparable with IW-Rand, however, its performance75

improvement is very limited as the budget increases, and on Swimmer and Walker2d there even exist76

performance degradations, which suggests that its query strategy is very unstable; for GAMA, it has a77

good start point, but the performance gain is very limited while the budget increases; for our method,78

its performance is almost the same as that of IW-Rand without query on most environments. When it79

is allowed to query OE observation, our method outperforms other methods with a large gap, which80

shows that the query strategy of our method is indeed more efficient.81
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Figure 3: The final rewards of each method on MuJoCo with different budget ratios, where the
shaded regions indicate the standard deviation. The red horizontal dotted line represents the averaged
performance of the expert.

7 Imitation with Different Number of Expert Trajectories82

The performances of different numbers of expert trajectories of all contenders are reported in Figure 4.83

Each experiment is conducted 5 trials with different random seeds. We can observe that even with a84

very limited number of trajectories, our algorithm achieves better performance than other algorithms85

in most environments.
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Figure 4: The learning curves of each method in MuJoCo environments with different number of
expert trajectories, where the shaded region indicates the standard deviation.

86
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8 Notations87

The notations of the main paper are gathered in Table 4.88

Table 4: The notations of the main paper.

Notation Meaning

S State space
A Action space
O Observation space
OE Observation space of the expert’s view
OL Observation space of the learner’s view
P Transition Probability
γ Discounted factor
πE Expert policy under OE

π1 Auxiliary policy under OE

π2 Target policy under OL

fE Mapping function S → OE

fL Mapping function S → OL

T̃πE Trajectory sampled by πE under OE (demonstrations)
T̃π1 Trajectory sampled by π1 under OE

T̃π2 Trajectory sampled by π2 under OE

T π1 Trajectory sampled by π1 under OL

T π2 Trajectory sampled by π2 under OL

x An instance of state-action pair
x̃ An instance of observation-action pair under OE

x An instance of observation-action pair under OL

ρπE Occupancy measure of the expert policy πE

ρπ1 Occupancy measure of the auxiliary policy π1

ρπ2 Occupancy measure of the target policy π2

Dw1 Adversarial model on T̃πE and T̃π1

Dw2 Adversarial model on T π1 and T π2

α Importance-weighting factor
H Latent demonstration
O Observed demonstration
N Non-expert data
g1 rejection model under OE

g2 rejection model under OL

9 Broader Impacts89

In this work, we introduce the Heterogeneously Observable Imitation Learning (HOIL) framework90

and propose the IWRE approach to solve the HOIL problem. Meanwhile, as collecting heterogeneous91

demonstrations is much more convenient than gathering homogeneous ones, this work could lead92

to potential risks of abusing unauthorized data. While we believe that developing these techniques93

is still necessary for the importance of solving imitation learning under heterogeneous observation94

spaces. On the other hand, there have been many techniques for preserving data privacy, which can95

be compatible with our approach to avoid such problems.96
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