Tracking Memorization Geometry throughout the Diffusion Model Generative Process

Region

Jonathan Brokman*, Itay Gershon*, Omer Hofman, Guy Gilboa, Roman Vainshtein *Equal contributors

Introduction

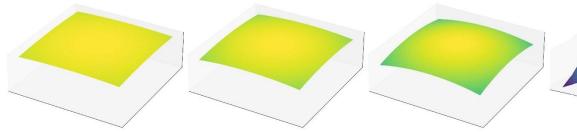
Diffusion models may reproduce training images verbatim, creating privacy and copyright risks. Existing detectors depend on score magnitude. Contribution:

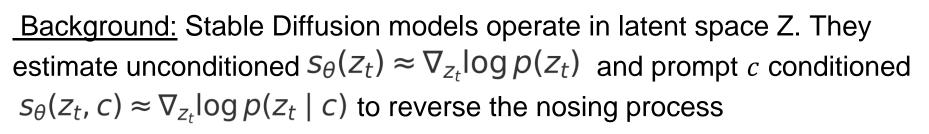
- Magnitude-invariant criterion κ^{Δ} , expressing curvature of $\log\left(\frac{p(z_t \mid c)}{p(z_t)}\right)$
- Captures memorization throughout the generative process
- Complements the existing magnitude-based approaches

Prompt: "Living in the Light with Ann Graham Lotz" Prompt: "A beautiful sunset"

Method

We measure how prompt conditioning deforms the log-probability landscape by estimating a mean-curvature analogue for $\log \left(\frac{p(z_t \mid c)}{p(z_t)} \right)$





We use:

$$z_t = \sqrt{\bar{\alpha}_t} \, z_0 + \sqrt{1 - \bar{\alpha}_t} \, \varepsilon$$

$$s_{\Delta}(z_t,c) = s_{\theta}(z_t,c) - s_{\theta}(z_t), \quad \hat{s}_{\Delta}(z_t) = \frac{s_{\Delta}(z_t)}{\|s_{\Delta}(z_t)\|}$$

To define an easy-to-obtain numeric criterion

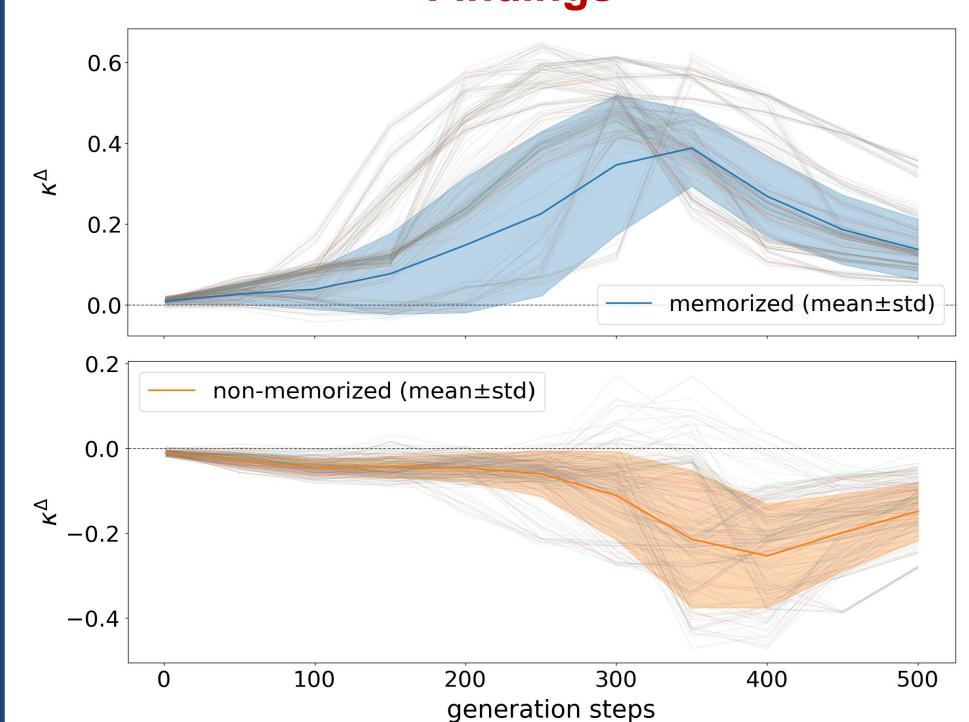
$$\kappa^{\Delta}(c_t) = \frac{1}{|\partial B_{R_t}(c_t)|} \int_{\partial B_{R_t}(c_t)} \hat{s}_{\Delta}(z) \cdot n(z) dS$$
$$\approx \frac{d}{R_t N} \sum_{i} \hat{s}_{\Delta}(y_i) \cdot n_i$$

It is important to select c_t , R_t in accordance with the noise level at t. Namely - ∂B_t should be highest probability hyper-sphere of the noised sample $p(z_t|z_{t+1})$ - namely $c_t = \sqrt{\bar{\alpha}_t} z_0$ and $R_t = \sqrt{d(\alpha_t - 1)}$. This ensures using s_θ on points where it was trained. y_i are uniformly sampled on ∂B_t and the sum is providing a monte-carlo estimate of the integral.

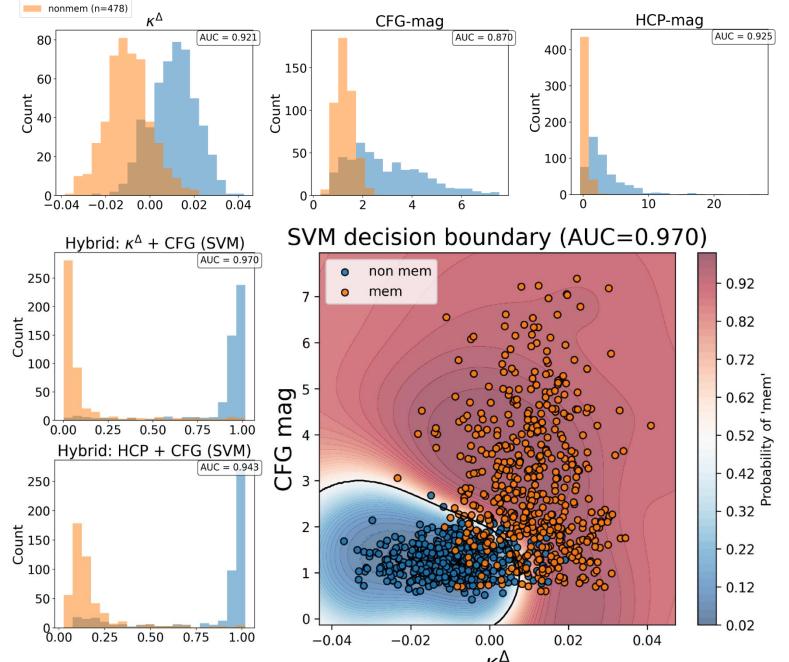
Our criterion converges to the following mean curvature, by gauss divergence theorem and monte-carlo estimation considerations

$$\kappa^{\Delta}(c_t) \to \nabla \cdot \left(\frac{\nabla \log\left(\frac{p(z_t \mid c)}{p(z_t)}\right)}{\|\nabla \log\left(\frac{p(z_t \mid c)}{p(z_t)}\right)\|} \right)$$

Findings



The geometry revealed: Memorized prompts: Zero → steep positive rise → mid-generation peak. Strong concave geometry. Non-memorized prompts: A mirror image but for scattering/ repelling behavior.



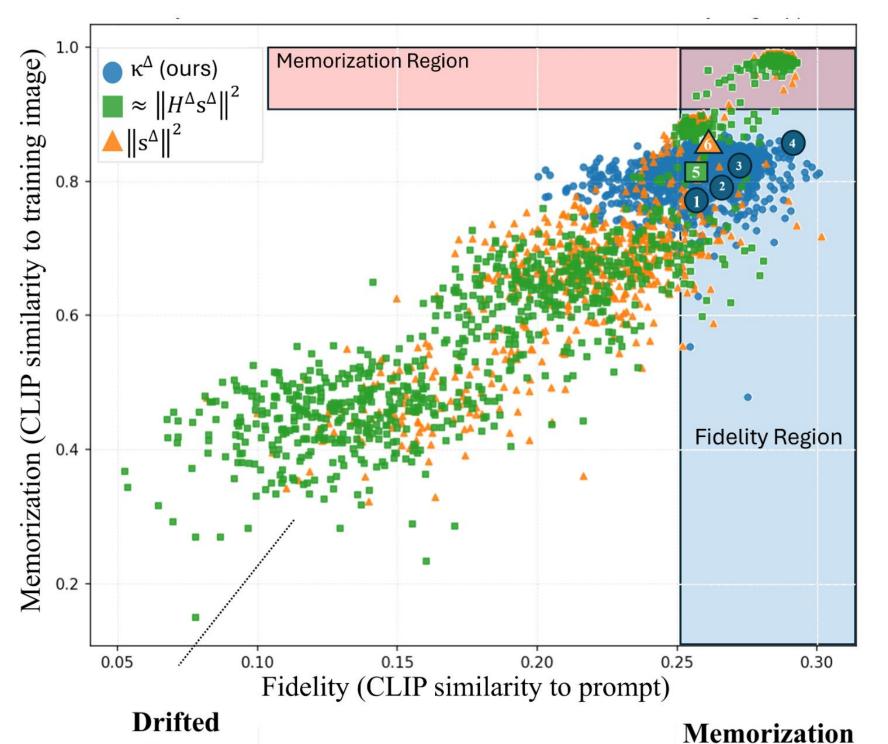
Hybrid detector, combining CFG magnitude with κ^Δ achieves SOTA AUC, showing angle information is complementary to magnitude

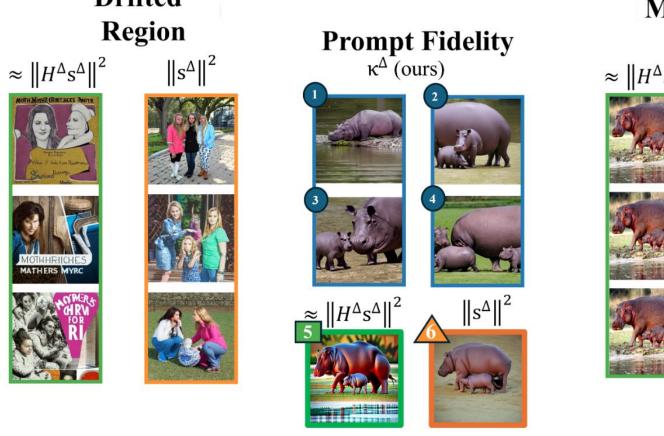
Mitigation experiment

A known mitigation framework (Wen et. al, ICLR'25) optimizes a soft prompt to reduce memorization via a loss function.

$$L_{\text{miti}} = \mathcal{L}_{\text{fid}} + \lambda C(z_t)$$

Where L_{fid} makes sure the prompt does not stray. We plug different criteria C into the same optimization framework to compare our $\kappa\Delta$ to prominent competitors.





Prompt: "Mothers influence on her young hippo"

Conclusions

- Memorization yields a directional geometric signature.
- $\kappa\Delta$ is magnitude-invariant, interpretable, and effective at the earliest step.
- Natural decision boundary: $\kappa\Delta = 0$.
- Hybrid detectors set new SOTA.
- κΔ enables geometry-aware mitigation improving fidelity-memorization balance.