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A PERMUTATION EQUIVARIANT REPRESENTATION OF NFGS

We provide formal statements on identities in action embedding representation when using a de-
terministic, permutation equivariant encoder for NFGs. First, we recall the definition of a strong
isomorphism between two NFGs (McKinsey, 1951; Gabarró et al., 2011).
Definition A.1 (Strongly Isomorphic Games). Let G and G

0 be two NFGs. G and G
0 are

said to be strongly isomorphic and � a strong isomorphism if � = ((⌧p, p 2 [N ]),!) with
⌧p : a

i
p ! a

i0
p a player action permutation and ! : p ! p

0 a player permutation such that
G

0
!(p)

�
⌧!(1)(a!(1)), . . . , ⌧!(N)(a!(N))

�
= Gp(a1, ..., aN ), 8a 2 A.

To make Definition A.1 concrete, consider the coordination and anti-coordination games shown
in Figure 5. The two games are strongly isomorphic because there exists a strong isomorphism
� = ((⌧1 = (a11 ! a

2
1, a

2
1 ! a

1
1), ⌧2 = (a12 ! a

1
2, a

2
2 ! a

2
2)),! = (1 ! 1, 2 ! 2)). As aside,

McKinsey (1951) calls strongly isomorphic games strategically equivalent which we discuss soon.
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Figure 5: Strongly isomorphic games.

We additionally note that in the special case when G is G0, � is referred to as a strong automorphism.
Definition A.2 (Strongly Automorphic Game). G is said to be strongly automorphic and � a strong
automorphism if � = ((⌧p, p 2 [N ]),!) with ⌧p : aip ! a

i0
p a player action permutation and ! : p !

p
0 a player permutation such that G!(p)

�
⌧!(1)(a!(1)), . . . , ⌧!(N)(a!(N))

�
= Gp(a1, ..., aN ), 8a 2

A.

For instance, the coordination game (Figure 5a) is also strongly automorphic as there exists three
automorphisms that recover the same game.

� = ((⌧1 = (a11 ! a
2
1, a

2
1 ! a

1
1), ⌧2 = (a12 ! a

2
2, a

2
2 ! a

1
2)),! = (1 ! 1, 2 ! 2)) (5a)

� = ((⌧1 = (a11 ! a
2
1, a

2
1 ! a

1
1), ⌧2 = (a12 ! a

2
2, a

2
2 ! a

1
2)),! = (1 ! 2, 2 ! 1)) (5b)

� = ((⌧1 = (a11 ! a
1
1, a

2
1 ! a

2
1), ⌧2 = (a12 ! a

1
2, a

2
2 ! a

2
2)),! = (1 ! 2, 2 ! 1)) (5c)

Note that � is a permutation over all the players’ actions which is a composition of the player and
action permutations � = ⌧1 ·...·⌧N ·!. Therefore � is not a general permutation, but a structured one.
We use a convention that the player permutation is applied last. Finally, we recall any permutation ⇡

can be written uniquely as m permutation orbits with ⇡ = C
1
, . . . , C

m, each operating on a disjoint
(possibly singleton) subset of elements that ⇡ operates over. Therefore � is also a collection of
permutation orbits.

Considering the coordination game again, the automorphisms (Equations 5a-5c) can be written as
permutations which each consists of two orbits containing two actions each.
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Definition A.3 (Strategically Equivalent Actions). Two actions aip and a
j
q are strategically equivalent

if there exists a strong automorphism, � which contains a
i
p and a

j
q in an orbit. Equivalently, two

actions aip and a
j
q are strategically equivalent if there exists a strong automorphism, � = ((..., ⌧p =

(..., i ! j, ...)),! = (..., p ! q)).

Again, consider the running example of the coordination game. From Equation 6a we can see that
(a11, a

2
1), and (a12, a

2
2) are each strategically equivalent pairs. Furthermore, from Equation 6b we

can see that (a11, a22), and (a21, a
1
2) are also each strategically equivalent pairs. Therefore in the

coordination games all the actions are strategically equivalent to each other.
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Figure 6: We compare NfgTransformer to baseline architectures in synthetic games. Results from
baseline experiments are shown in dashed lines. Each configuration is averaged across 5 independent
runs with shaded areas representing the confidence intervals. For NfgTransformer variants, we
annotate each variant with corresponding hyper-parameters (K, A and D as shown in Figure 1).

Theorem A.4. If an embedding function, f , is deterministic and equivariant, then strategically
equivalent actions, ai

p and aj
q , must have the same embeddings.

Proof. The embedding function, f , is deterministic and equivariant over players and actions. Addi-
tionally, if � is an automorphism of G, then f(G) = f(�(G)) = �(f(G)). Therefore the embed-
dings are also equal, ai

p = aj
q .

Proposition A.5 (Repeated Actions). If G(aip, a¬p) = G(ajp, a¬p), 8a¬p and f is deterministic and
equivariant with f(G) = (. . . , (. . . ,ai

p, . . . ,a
j
p, . . . ), . . . ) then it follows that ai

p = aj
p.

Proof. If actions are repeated, there there exists an automorphism � = ((..., ⌧p = (..., i !
j, ...), ...),! = identity). Therefore a

i
p and a

j
q are strategically equivalent and have the same

embeddings, ai
p = aj

p.

Proposition A.6 (Player Symmetry). If player p and q are symmetric, f is deterministic and equiv-
ariant with f(G) = (. . . ,Ap, . . . ,Aq, . . . ), then Ap and Aq are identical up to permutation.

Proof. If the game is symmetric between p and q, there there exists an automorphism � =
((..., ⌧p, ...),! = (..., p ! q, ...)). Therefore ⌧p(aip) and a

i
q are strategically equivalent for all i,

and have the same embeddings, ⌧p(Ap) = Aq .

B EXPERIMENTAL SETUP

B.1 SUPERVISED LEARNING IN SYNTHETIC GAMES

Games Sampling Games are sampled from the equilibrium-invariant subspace (Marris et al.,
2023; 2022), with zero-mean payoff over other player actions and a unit variance (

p
TN ) Frobe-

nius tensor norm over player payoffs. To sample uniformly over such a set, first sample a game from
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a unit normal distribution, Gp ⇠ N (0, 1), and then normalize.
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The benefit of this distribution is that it provides a way to uniformly sample over the space of all
possible strategic interactions in a NFG of a specific shape. The equilibrium-invariant subspace has
lower degree of freedom than a full NFG, freeing the neural network from having to learn offset and
scale invariance. Any game can be simply mapped to the equilibrium-invariant subspace without
changing its set of equilibria.

Architecture We provide additional technical details on the network architectures presented in
Section 5.1. The baseline MLP networks are composed of 5 fully-connected layers with 1,024
hidden units each. The baseline NES architecture(Marris et al., 2022) consisted of 4 “payoff to
payoff” layers with 128 channels, a “payoff to dual” layer with 256 channels and 4 “dual to dual”
layers with 256 channels. Each layer uses mean and max pooling functions. All NfgTransformer
model variants have H = 8 attention heads. Parameter counts of all model variants are reported in
Table 2.

Table 2: The number of network parameters by configuration for each task. We note that the number
of parameters of the NfgTransformer and the NES is independent from the size of the games. This
is in contrast to fully-connected networks whose parameter counts depend on the input sizes.

Model
# Parameter

(NE)
# Parameter

(Max-Deviation-Gain)
NfgTransformer(D= 32,K=2,A=1) 0.15M 0.16M
NfgTransformer(D= 32,K=4,A=1) 0.31M 0.31M
NfgTransformer(D= 32,K=8,A=1) 0.61M 0.62M
NfgTransformer(D= 64,K=8,A=0) 1.10M 1.11M
NfgTransformer(D=128,K=2,A=1) 1.22M 1.29M
NfgTransformer(D= 64,K=8,A=1) 1.63M 1.64M
NfgTransformer(D= 64,K=8,A=2) 2.16M 2.17M
NfgTransformer(D=128,K=4,A=1) 2.44M 2.51M
NfgTransformer(D=128,K=8,A=1) 4.88M 4.95M
EquivariantMLP 4.76M - 16.83M 4.99M - 20.98M
MLP 4.76M - 16.83M 4.99M - 20.98M
NES 2.25M 2.51M

Convergence progression Figure 6 visualises the training progression of each model configura-
tion, task and game size from the same experiments reported in Table 1.

B.2 PAYOFF PREDICTION IN DISC GAMES

Game Sampling Following Definition 5.1, generating DISC games amounts to sampling latent
vectors ut,vt 2 RZ

, t 2 [T ]. Any real-valued latent vectors would define a valid DISC game and
we let ut = n + u with n ⇠ N (0,1) and u ⇠ U(�1, 1). We sample vt in the same way. The
shift random variable u is not strictly necessary in this case, but it increases the probability that the
resulting DISC game is not fully cyclic following Proposition 1 of Bertrand et al. (2023).

Masking For each sampled instance of the DISC game, with a payoff tensor of shape
[N,T, . . . , T ], we additionally sample a binary mask of shape [T, . . . , T ] where each element fol-
lows Bernoulli(p). Both the game payoff tensor and the sampled mask for the game tensor are
provided as inputs to the NfgTransformer network. We ensure that the model does not observe the
payoff values of masked joint-actions following Equation 4. During loss computation, we minimise
the L2 loss (Figure 2 (Right)) over all joint-actions, observed (i.e. for reconstruction) or unobserved
(i.e. for prediction).

Architecture For all results in this section, we used NfgTransformer(K=8,A=1,D=64)

with H = 8 attention heads for all attention operations.
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Figure 7: NE GAP reported for each of the 22 GAMUT games throughout training. We note that
a single network, NfgTransformer(K=8,A=0,D=16), with H = 1 is optimised to solve for
Nash Equilibrium across all game classes.

Baseline Solvers For all baseline results, we used the open-source implementation of Elo, mElo
and xElo of released at https://github.com/QB3/discrating. For mElo and xElo, we
used n components = 3 and the same settings as reported in Bertrand et al. (2023).

C INTERPRETABILITY RESULTS

We provide additional details on the empirical results in Section 5.3. Figure 7 shows that despite sim-
plifications made in Section 5.3 for our interpretability results, the NfgTransformer remains capable
of equilibrium-solving in most games to reasonable accuracy, with CovariantGame (d06) the
most challenging game class. We show a failure case in this game class in Figure 8 (Middle) and
present additional example instances where the model successfully solved for a mixed-strategy NE
(Top) or generalised to the out-of-distribution game class of Blotto (Roberson, 2006). Please refer
to figure caption for additional remarks on the results.

D THE SPACE OF 2×2 GAMES

Marris et al. (2023) introduced a subset of 2×2 normal-form games that any 2×2 game can be mapped
to without changing its set of (coarse) correlated equilibria and Nash equilibria. This subset of games
is called the equilibrium-invariant subset, and includes all possible nontrivial strategic interactions of
2×2 games. Properties of games such as their equilibria, permutation symmetries, and best-response
dynamics can be visualized in this “map of games”. We can analyse the embeddings found by the
NfgTransformer by sweeping over the nontrivial 2×2 equilibrium-invariant subset.

We used the transformer architecture NfgTransformer(K=2,A=1,D=16) with H = 2 atten-
tion heads at every self- and cross-attention layer. We used an additional linear layer to reduce the
action embedding dimension down to 1, per player, per action, resulting in four variables to de-
scribe the game embeddings. We trained NfgTransformer with an NE objective over the space of
equilibrium-invariant subsets, and verified that the loss approaches zero. With the trained NfgTrans-
former, we sweep over the nontrivial 2×2 equilibrium-invariant subset, and visualize the embeddings
(Figure 9).

The learned action-embeddings have a very low value (blue regions) when that action has all the
mass in the NE, and very high value when the action has no mass in the NE (dark red regions).
These “L” regions therefore correspond to games which have a single pure NE. The embeddings
are low value (cyan regions) when the game has a mixed NE solution and occurs near the cyclic
games ( and ). In these regions, all embeddings have to be similarly colored, as all actions
are mixed. The embeddings are high value (red regions) in coordination game areas where there are
two disconnected NEs ( and ). The borders between these regions correspond to changes in
game payoffs when one action becomes become profitable than another, and as a result the NE can
change drastically, and therefore so does the embedding.
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Figure 8: Here we provide additional interpretability results similar to Figure 4 but for games that
are asymmetric, have mixed-strategy NE (Top) or out-of-distribution (Bottom). We additionally
provide an instance where the model struggled to find an NE (Middle) where the attention masks
did not appear to have converged. For Blotto (Roberson, 2006) which is a game class not seen during
training, the model generalised well and identified a pure-strategy NE. The action embeddings also
revealed three clusters, corresponding to the three strategically equivalent classes of actions. Note
that one of the clusters corresponds to the dominant action of the two players.
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(a) a1
1 (b) a2

1

(c) a1
2 (d) a2

2

Figure 9: NfgTransformer action-embeddings over the set of nontrivial 2×2 equilibrium-invariant
normal-form games, when trained with an NE objective. The embeddings found closely follow the
equilibrium boundaries (dark lines). Symmetries over the space of games are respected. Symmetric
games (bottom-left to top-right diagonal) have the same embeddings between players. Permutations
over players (folding over the bottom-left to top-right diagonal) are consistent. Colorbar: [�11.58

+11.56].
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Figure 10: Subfigure 10a shows the distance to the nearest other game embedding. The embed-
dings produced by NfgTransformer uniquely describe the 2×2 game apart from two edge cases.
Two Coordination games ( and ) have identical embeddings, and two Cycle games ( and

) have identical embeddings, each because there are strategically equivalent. Colorbar: [0.0
4.675].

When a game is symmetric, G1(a1, a2) = G2(a2, a1), the embeddings between players are equal.
We can verify this by studying the bottom-left to top-right diagonal. When swapping the player
orders, we expect the embeddings to be swapped. Swapping players is equivalent to folding over the
same diagonal. Again, we can visually verify that the embeddings are swapped.

Next, we turn to the question of when the embeddings uniquely describe a game. We de-
fine a distance metric between action embeddings for game i and game j, d(Ai

,Aj) =
(
P

p2[1,2]

P
ap2[1,2](A

i
p(ap)�Aj

p(ap))
2)

1
2 , where i, j 2 G are games sampled from a grid, which

describes how close the embeddings of two games are to each other. We can also define the distance
to the nearest other game within the set of considered games, dmin(Ai

,G) = minj 6=i2G d(Ai
,Aj).

Using these distance metrics we can verify that dmin(Ai
,Aj) > 0 apart from games with strategi-

cally equivalent actions (Figure 10).

The Coordination game has identical action embeddings to the Anti-Coordination game. In
this case, due to permutation equivariance, the embedding for each action, in natural language, is:
“there is an action that the opponent can play which will give us both identical high payoff, and there
is an action that the opponent can play which will give us both identical low payoff”. Due to the
equivariant property it is not possible to disambiguate between these games from the embeddings
alone. By initializing the network with action labels, hinting a reconstruction method with a row
of true payoffs, or permuting the payoffs by a tiny amount, would all enable disambiguation. The
last strategy can be seen from the figure where slightly biased coordination games all have positive
distance to their nearest other game embedding. Similarly, the Cycle game (also known as
matching pennies) has identical embeddings to the Anticlockwise Cycle game. In this case, the
embedding is “there is an action that the opponent can play which will me a high positive payoff and
the opponent a high negative payoff, and there is an action that the opponent can play which will
give me a high negative payoff and the opponent a high positive payoff”. Note that the Coordination
and Cycle game have distinct embeddings. These are the only 4 points in the space that can only
by disambiguated up to handedness. These appear with measure zero in the equilibrium-invariant
subspace.
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Overall, the embeddings neatly describe and predict the known structure of 2×2 games. The the-
oretically predicted properties, including permutation symmetries and NE, are reproduced in this
experiment.
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