
Supplementary Material: Beltrami Flow and Neural
Diffusion on Graphs

Benjamin P. Chamberlain∗

Twitter Inc.
bchamberlain@twitter.com

James Rowbottom∗

Twitter Inc.
Davide Eynard

Twitter Inc.

Francesco Di Giovanni
Twitter Inc.

Xiaowen Dong
University of Oxford

Michael M. Bronstein
Twitter Inc. and Imperial College London

A Additional experimental results and implementation details

Datasets The statistics for the largest connected components of the experimental datasets are given
in Table 1.

Dataset Type Classes Features Nodes Edges Label rate
Cora citation 7 1433 2485 5069 0.056

Citeseer citation 6 3703 2120 3679 0.057
PubMed citation 3 500 19717 44324 0.003

Coauthor CS co-author 15 6805 18333 81894 0.016
Computers co-purchase 10 767 13381 245778 0.015

Photos co-purchase 8 745 7487 119043 0.021
OGB-Arxiv citation 40 128 169343 1166243 0.005

Table 1: Dataset Statistics

Replication of results and hyper-parameters Code to regenerate our experimental results to-
gether with hyperparameters for all datasets is provided. The hyperparameters are listed in
best_params.py. Refer to the README.md for instructions to run the experiments.

Numerical ODE solver We use the library torchdiffeq [2] to discretise the continuous time
evolution and learn the system dynamics. The Pontryagin maximum / adjoint method is used to
replace backpropagation for all datasets, with the exception of Cora and Citeseer due to the high
memory complexity of applying backpropagation directly through the computational graph of the
numerical integrator.

Decoupling the terminal integration time between inference and training At training time we
use a fixed terminal time T that is tuned as a hyperparameter. For inference, we treat T as a flexible
parameter to which we apply a patience and measure the validation performance throughout the
integration.

Data splits We report transductive node classification results in Tables 2 and 3 in the main paper.
To facilitate direct comparison with many previous works, Table 2 uses the Planetoid splits given by
[8]. As discussed in e.g. [7], there are many limitations with results based on these fixed dataset splits
and so we report a more robust set of experimental results in Table 3. Here we use 100 random splits
with 20 random weight initializations. In each case 20 labelled nodes per class are used at training
time, with the remaining labels split between test and validation. This methodology is consistent
with [7].

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

Method Cora Citeseer Pubmed CoauthorCS Computers Photo
cosine_sim 83.8 ± 0.5 73.5 ± 1.1 79.0 ± 2.3 92.8 ± 0.1 84.8 ± 0.7 93.2 ± 0.4
exp_kernel 83.6 ± 1.8 75.0 ± 1.3 79.9 ± 1.4 92.8 ± 0.2 84.8 ± 0.5 93.2 ± 0.5
pearson 83.7 ± 1.5 75.2 ± 1.3 80.0± 1.2 92.8 ± 0.2 84.8 ± 0.5 93.5±0.3
scaled dot 84.8± 0.9 75.9± 1.3 79.5 ± 1.4 92.9± 0.2 86.9± 0.6 92.9 ± 0.6

Table 2: Performance with different attention functions. Scaled dot is best performing in four of the
six experiments

Positional encodings In section 5.2 of the main paper three types of positional encoding are
described: DIGL PPR [4], DeepWalk [6] and hyperbolic embeddings [1, 5]. We provide the latter
two as preprocessed pickle files within our repo. The DIGL PPR positional encodings are too large
and so these are automatically generated and saved whenever code that requires them is run.

Diffusivity (attention) function In section 4 of the main paper one choice of attention function
is described. Additionally four alternatives were considered, which achieved roughly equivalent
performance:

• Scaled dot

a(zi, zj) = softmax

(
(WKzi)

>WQzj
dk

)
(1)

• Cosine similarity

a(zi, zj) = softmax

(
(WKzi)

>WQzj
‖WKzi‖‖WQzj‖

)
(2)

• Pearson correlation

a(zi, zj) = softmax

(
(WKzi −WKzi)

>(WQzj −WQzj)

‖WKzi −WKzi‖‖WQzj −WQzj‖

)
(3)

• Exponential kernel

a(zi, zj) = softmax
(
(σuσx)

2e−‖WKui−WQuj‖2/2`2ue−‖WKxi−WQxj‖2/2`2x

)
(4)

We additionally conducted an ablation study using these functions, results are given in Table 2.

B Theory of Beltrami flow

This section proves Theorem 1 in the main paper:

Theorem 1. Under structural assumptions on the diffusivity, graph Beltrami flow

∂zi(t)

∂t
=
∑

j:(i,j)∈E′

a(zi(t), zj(t))(zj(t)− zi(t)) zi(0) = zi; i = 1, . . . , n; t ≥ 0 (5)

is the gradient flow of the discrete Polyakov functional.

B.1 Polyakov action and Beltrami flow on manifolds

In this section we briefly review the analysis in [3] to motivate the introduction of a discrete Polyakov
action on graphs. Assume that (Σ, g) and (M,h) are Riemannian manifolds with coordinates {xµ}
and {y`} respectively. The Polyakov action for an embedding Z : (Σ, g) → (M,h) can be written as

S[Z, g, h] =

dim(Σ)∑
µ,ν=1

dim(M)∑
`,m=1

∫
Σ

h`m(Z)∂µZ
`∂νZ

mgµν dvol(g),

2

with dvol(g) the volume form on Σ associated with the metric g. We restrict to the case where (M,h)
is the d-dimensional Euclidean space (Rd, δ), so that the functional becomes

S[Z, g] =

dim(Σ)∑
µ,ν=1

d∑
`=1

∫
Σ

∂µZ
`∂νZ

`gµν dvol(g).

The quantity above can be rewritten more geometrically as

S[Z, g] =

d∑
`=1

∫
Σ

||∇gZ
`||2g dvol(g). (6)

From equation (6) we see that the Polyakov action is measuring the smoothness of the embedding -
more precisely its Dirichlet energy with respect to the metric g - on each feature channel ` = 1, . . . , d.
Given a geometric object Σ, it is natural to find an optimal way of mapping it to a larger space, in
this case (Rd, δ). Accordingly, one can minimize the functional in (6) either with respect to the
embedding Z or with respect to both the embedding Z and the metric g. If we choose to minimize S
by varying both Z and g we find that the metric g must be the metric induced on Σ by the map Z,
namely its pullback. In local coordinates, this amounts to the constraint below:

gµν =

d∑
`=1

∂µZ
`∂νZ

`. (7)

Once the condition on g is satisfied, the Euler-Lagrange equations for each feature channel become∑
µ,ν

1√
det(g)

∂µ(
√

det(g)gµν∂νZ`) = divg∇gZ
` = ∆gZ

` = 0, (8)

where the operator ∆g is the Laplace-Beltrami operator on Σ associated with the metric g. As a
specific example, if we embed an image Σ ⊂ R2 into R3 via a grey color mapping I×x : (u1, u2) 7→
(u1, u2, x(u1, u2)), the gradient flow associated with the functional S and hence the Euler-Lagrange
equation (8) for the grey channel is exactly the one reported in Section 2.

Therefore, from a high-level perspective, the Beltrami flow derived from the Polyakov action consists
in minimizing a functional S representing the Dirichlet energy of the embedding Z computed with
respect to a metric g depending - precisely via the pullback - on the embedding itself.

B.2 A discrete Polyakov action

We consider the graph counterpart to the problem of minimizing a generalized Dirichlet energy
with respect to the embedding. Let G = (V, E) be a simple, undirected and unweighted graph with
|V | = n. Also let L2(V) and L2(E) denote the space of signal functions y : V → R and Y : E → R
respectively. Recall that the graph gradient of y ∈ L2(V) is defined by

∇Gy ∈ L2(E) : (i, j) 7→ yj − yi.

Its adjoint operator is called graph divergence and satisfies

divGY ∈ L2(V) : i 7→
∑

j:(i,j)∈E

Yij .

Assume now we have a graph embedding Z : V → Rd′ × Rd of the form zi = (ui, αxi) for
some scaling α ≥ 0, with 1 ≤ i ≤ n. The coordinates ui and xi are called positional and feature
coordinates respectively. In analogy with the Polyakov action (6), we introduce a modified Dirichlet
energy measuring the smoothness of a graph embedding Z across its different channels: given a
family of nonnegative maps (ψ`ij), with ψ`ij : Rn×(d′+d) → R, 1 ≤ i, j ≤ n and 1 ≤ ` ≤ d′ + d, we
define

S[Z, ψ] :=
1

2

d′+d∑
`=1

n∑
i,j=1

Aijψ
`
ij(Z), (9)

3

where A is the graph adjacency matrix. Defining the following ψ-weighted norm for each ` ∈
[1, d′ + d]

||∇iz
`||2ψ :=

n∑
j=1

Aijψ
`
ij(Z),

then (9) can be written as

S[Z, ψ] =
1

2

d′+d∑
`=1

n∑
i=1

||∇iz
`||2ψ. (10)

Beyond the notational similarity with (6), the quantity S[Z, ψ] sums the integrals over all channels
1 ≤ ` ≤ d′ + d - i.e. summations on the vertex set - of the norms of the gradients of z` exactly as
for the continuum Polyakov action. The dependence of such norms on the embedding is to take into
account that in the smooth case the Beltrami flow imposes the constraint (7), meaning that the metric
g with respect to which we compute the gradient norm of the embedding depends on the embedding
itself. We note that the choice

ψ`ij(Z) = (z`j − z`i)
2 = (∇Gz

`(i, j))2, (11)

yields the classic Dirichlet energy of a multi-channel graph signal

S[Z] =
1

2

d′+d∑
`=1

n∑
i,j=1

Aij(∇Gz
`(i, j))2,

From now on we refer to the function S : (Z, ψ) 7→ S[Z, ψ] in (9) as the discrete Polyakov action.

B.3 Proof of Theorem 1

We recall that given an embedding Z : V → Rd′+d, we are interested in studying a discrete diffusion
equation of the form

∂zi(t)

∂t
=

∑
j:(i,j)∈E

a(zi(t), zj(t))(zj(t)− zi(t)) zi(0) = zi; i = 1, . . . , n; t ≥ 0. (12)

The coupling a(zi(t), zj(t)) is called diffusivity. We now prove that the differential system above
is the gradient flow of the discrete Polyakov action S[Z, ψ] under additional assumptions on the
structure of the diffusivity. We restate Theorem 1 in a more precise way:

Theorem 1. Let (ψ`ij) be a family of maps ψ`ij : Rn×(d′+d) → R satisfying the assumptions

(i) There exist a family of maps (ψ̃ij), with ψ̃ij : Rn → R, such that

ψ`ij(Z) = ψ̃ij
(
||zi − z1||2, . . . , ||zi − zn||2

)
(z`j − z`i)

2. (13)

(ii) If we write ψ̃ij : (p1, . . . , pn) 7→ ψ̃ij(p1, . . . , pn), then we require

∂pk ψ̃ij(p) = 0, if (i, k) /∈ E .

Then, the gradient flow associated with S[Z, ψ] is given by (12), with the diffusivity a satisfying

a(zi(t), zj(t)) = (ψ̃ij + ψ̃ji) (Z(t))

+
∑

k:(i,k)∈E

∂jψ̃ik (Z(t)) ||zk(t)− zi(t)||2 +
∑

k:(j,k)∈E

∂iψ̃jk (Z(t)) ||zk(t)− zj(t)||2

where the dependence of ψ̃ on Z(t) is as in (13).

Remark. We observe that by taking ψ̃ij to be the constant function one, we recover the classical
case (11). In fact, for such choice the diffusivity satisfies a(zi(t), zj(t)) = 2 and the gradient flow is
given by the graph Laplacian, namely

∂z`i (t)

∂t
= (2∆z`(t))i.

4

Proof. Once we choose the family of maps ψ`ij as in the statement, the discrete Polyakov action
is a map S : Rn×(d′+d) → R. To ease the notation, given a vector Z ∈ Rn×(d′+d) we write
Z = (z11 , . . . , z

1
n, . . . , z

d′+d
1 , . . . , zd

′+d
n). To prove the result we now simply need to compute the

gradient of the functional S[Z]: given 1 ≤ r ≤ d′ + d and 1 ≤ k ≤ n we have

∂S[Z]

∂zrk
=

1

2

d′+d∑
`=1

n∑
i,j=1

Aij∂zrkψ
`
ij(Z). (14)

From the assumptions we can expand the partial derivative of the map ψ`ij as

∂zrkψ
`
ij(Z) = 2

n∑
s=1

d′+d∑
q=1

∂sψ̃ij(Z)(z
q
i −z

q
s)δrq(δik−δsk)(z`j−z`i)2+2ψ̃ij(Z)(z

`
j−z`i)δ`r(δjk−δik),

where we have simply written ψ̃ij
(
||zi − z1||2, . . . , ||zi − zn||2

)
= ψ̃ij(Z). Therefore, we can write

(14) as

∂S[Z]

∂zrk
=

n∑
j,s=1

Akj(∂sψ̃kj(Z))(z
r
k − zrs)||zj − zk||2

+

n∑
i,j=1

Aij(∂kψ̃ij(Z))(z
r
k − zri)||zj − zi||2

+

n∑
j=1

Akj(ψ̃kj + ψ̃jk)(Z))(z
r
k − zrj).

We now use the assumption (ii) to see that ∂sψ̃kj = Aks∂sψ̃kj and similarly for ∂kψ̃ij = Aki∂kψ̃ij .
Up to renaming dummy indices we get

∂S[Z]

∂zrk
=
∑

j:(j,k)∈E

((ψ̃kj + ψ̃jk)(Z) +
∑

p:(k,p)∈E

∂jψ̃kp(Z)||zp − zk||2 +
∑

p:(j,p)∈E

∂kψ̃jp(Z)||zp − zj ||2)(zrk − zrj).

By inspection, we see that the right hand side can be rewritten as

∂S[Z]

∂zrk
=

∑
j:(j,k)∈E

a(zk, zj)(z
r
k − zrj),

with a the diffusivity given in the statement of Theorem 1. Therefore, the gradient flow associated
with S[Z] is

∂zrk(t)

∂t
= −∂S[Z]

∂zrk
=

∑
j:(j,k)∈E

a(zk(t), zj(t))(z
r
j (t)− zrk(t)),

for each 1 ≤ k ≤ n and 1 ≤ r ≤ d′ + d. This completes the proof.

C Implementation Details

Runtimes We include below the training and inference runtimes of BLEND and BLEND-kNN,
compared with corresponding runtimes of GAT. We use a standard GAT implementation (also used
to generate results in the main paper) with two layers and eight heads (all other hyperparameters are
tuned). Experiments used a Tesla K80 GPU with 11GB of RAM. The relative runtimes of BLEND
and BLEND-kNN are largely driven by the respective edge densities and so we also report these in
the table. For the small graph BLEND-kNN significantly densifies the graphs (as is consistent with
DIGL) and runtimes are longer. For the large graphs the effect is less pronounced and even reversed
in the case of Computers.

Computational cost can be computed using from the runtimes based on the AWS rental cost of a
Tesla K80 GPU, which is currently less than $1 / hour.

5

Cora Citeseer Pubmed CoauthorCS Computers Photo
BLEND (s) 26.79 27.74 168.71 183.29 230.20 69.85
BLEND_kNN (s) 44.65 83.84 387.86 216.94 157.77 73.86
Av. degree 4.1 3.5 4.5 8.9 36.70 31.8
Av. degree kNN 32 64 61.1 12.4 22 38.2
GAT (s) 1.68 1.76 9.85 18.96 27.12 10.65
BLEND / GAT 15.95 15.72 17.12 9.67 8.49 6.56
BLEND_kNN / GAT 26.59 47.51 39.36 11.44 5.82 6.93

Table 3: Training times (s) for 100 epochs

Cora Citeseer Pubmed CoauthorCS Computers Photo
BLEND (s) 0.0712 0.0878 0.2955 0.449 0.4603 0.2071
BLEND_kNN (s) 0.114 0.2458 0.9463 0.4945 0.3029 0.2246
Av. degree 4.1 3.5 4.5 8.9 36.7 31.8
Av. degree kNN 32 64 61.1 12.4 22 38.2
GAT (s) 0.0031 0.0039 0.0070 0.0326 0.0165 0.0093
BLEND / GAT 22.72 22.46 42.5 13.8 27.91 22.35
BLEND_kNN / GAT 36.40 62.88 136.08 15.19 18.37 24.23

Table 4: Inference times (s)

Hyperparameter Tuning We tuned the neural ODE based methods using Ray Tune. The remaining
results were taken from the Pitfalls of GNNs paper. As this paper applied a thorough hyperparameter
search and we replicated their experimental methodology we did not feel that it was necessary to
independently tune these methods.

We did not apply Jacobian or kinetic regularisation for CGNN, GODE or GDE. We used regularisation
to reduce the number of function evaluations made by the solver, which made training faster and
more stable, but did not improve performance.

Softmax versus Squareplus In some cases we found it beneficial to replace the softmax operator
with squareplus which replaces ex with 1

2 (x+
√
x2 + 4). This normalises logits (like the softmax),

but has a gradient approaching one for large x, preventing one edge from dominating the diffusivity
function.

References
[1] Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of

graphs in hyperbolic space. arXiv:1705.10359, 2017.

[2] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In NeurIPS, pages 6571–6583, 2018.

[3] Ron Kimmel, Nir Sochen, and Ravi Malladi. From high energy physics to low level vision. pages
236–247. Springer, 1997.

[4] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In NeurIPS, volume 32, 2019.

[5] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In ICML, pages 3779–3788. PMLR, 2018.

[6] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social represen-
tations. In SIGKDD, pages 701–710, 2014.

[7] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv:1811.05868, 2018.

[8] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, pages 40–48, 2016.

	Additional experimental results and implementation details
	Theory of Beltrami flow
	Polyakov action and Beltrami flow on manifolds
	A discrete Polyakov action
	Proof of Theorem 1

	Implementation Details

