
Supplementary Material

Algorithm 1 Streaming Probabilistic Deep Tensor Factorization (SPIDER) (the equations are refer-
enced from the main paper)

1: Initialize the spike-and-slab prior approximation and multiply it with all the other priors to
initialize qcur(·)

2: while a new batch of observed tensor entries Bt arrives do
3: for each entry in in Bt do
4: Approximate the running model evidence with (10) (binary data) or (11) (continuous data).
5: Update the posterior forW and the associated embeddings {ukinj

}k,j with (7).
6: if continuous data then
7: Update the posterior for inverse noise variance τ via conditional moment matching.
8: end if
9: Update the spike-and-slab prior approximation with standard EP.

10: end for
11: end while
12: return the current posterior qcur(·).

1 Online Posterior Update for the Inverse Noise Variance
To update qcur(τ), we consider the blending distribution only in terms of the NN output fo and τ ,
p̃(fo, τ) ∝ qcur(fo)qcur(τ)N (yin |fo, τ−1) = N (fo|αn, βn)Gamma(τ |a, b)N (yin |fo, τ−1). (1)

Following the conditional expectation propagation (CEP) framework proposed by Wang and Zhe
(2019), we first derive the conditional moments of τ given fo and then approximate the expectation
of the conditional moments to obtain the moments and update the posterior of τ . Specifically, from
(1), we can easily derive the conditional blending distribution,

p̃(τ |fo) = Gamma(τ |â, b̂) (2)

where â = a+ 1
2 and b̂ = b+ 1

2 (y2in − 2fo + f2o). We can obtain the conditional moments of τ ,

Ep̃(τ |fo)[τ] =
â

b̂
, Ep̃(τ |fo)[log(τ)] = Ψ(â)− log(b̂).

where Ψ(·) is the digamma function. Note that these moments are based on the sufficient statistics of
Gamma distribution, which are standard for moment matching in ADF and EP framework. The true
moments can therefore be calculated by taking the expectation of the conditional moments,

Ep̃[τ] = Ep̃(fo)Ep̃(τ |fo)[τ] = Ep̃(fo)[
â

b̂
],

Ep̃[log(τ)] = Ep̃(fo)Ep̃(τ |fo)[log(τ)] = Ep̃(fo)[Ψ(â)− log(b̂)].

However, the normalization constant for (1) is intractable and it is difficult to compute the marginal
blending distribution p̃(fo). To overcome this problem, we approximate p̃(fo) with the current
posterior of fo, namely qcur(fo). This is reasonable, because p̃(fo) is an integration of q(fo) and one
new data point; when we have processed many data points, adding one more data point is unlikely to
significantly change the posterior. In other words, we can assume q(fo) and p̃(fo) are close in high
density regions. Hence, we can approximate

Ep̃[τ] ≈ Eqcur(fo)[
â

b̂
],

Ep̃[log(τ)] ≈ Eqcur(fo)[Ψ(â)− log(b̂)].

A second problem is that due to the nonlinearity of the conditional moments, even with qcur(fo)
(which has a nice Gaussian form), we still cannot analytically compute the expectation. To address
this issue, we further observe that the conditional moments are functions of fo and f2o ,

h1(fo, f
2
o) =

a+ 1
2

b+ 1
2 (y2in − 2fo + f2o)

,

h2(fo, f
2
o) = Ψ(a+

1

2
)− log

(
b+

1

2
(y2in − 2fo + f2o)

)
.

1

Define f = [fo, f
2
o]>. We use a Taylor expansion at the mean of fo and f2o to approximate the

conditional moments,

h1(fo, f
2
o) ≈ h1(Eqcur [fo],Eqcur [f

2
o]) + (f − Eqcur [f])

>∇h1|f=Eqcur [f]
,

h2(fo, f
2
o) ≈ h2(Eqcur [fo],Eqcur [f

2
o]) + (f − Eqcur [f])

>∇h2|f=Eqcur [f]
. (3)

We take expectation over the Taylor expansion, and obtain a closed-form result,

Ep̃[τ] ≈ a∗

b∗
, Ep̃[τ] ≈ Ψ(a∗)− log(b∗) (4)

where
a∗ = a+

1

2
, b∗ = b+

1

2
((yin − αn)2 + βn).

Finally, from these moments, we can obtain the updated the posterior, q(τ) = Gamma(τ |a∗, b∗).

2 The Updates for Spike-and-Slab Prior Approximation

In our streaming posterior inference, after we execute ADF to process all the entries in the newly
received batch, we use standard EP to update the spike-and-slab prior approximation. In this way, we
can refine the approximation quality so as to effectively sparsify and condense the neural network
to prevent overfitting. Specifically, for each weight wmjt, we first divide the posterior by the prior
approximation to obtain the calibrated (or context) distribution,

q\(wmjt, smjt) ∝
qcur(wmjt, smjt)

A(wmjt, smjt)
= Bern(smjt|ρ0)N (wmjt|µ\mjt, v

\
mjt)

where A(wmjt, smjt) = Bern
(
smjt|c(ρmjt)

)
N (wmjt|µ0

mjt, v
0
mjt) (see (13) in the main paper).

Because both qcur and A belong to the exponential family, this can be easily done by subtracting the
natural parameters. Note that Bern(smjt|ρ0) is the prior of smjt (see (4) and (5) in the main paper)
— this comes from the fact that the (approximate) posterior of smjt is proportional to the product of
its prior and the approximation term in A.

Next, we combine the calibrated distribution and the exact prior to obtain a tilted distribution (which
is similar to the blending distribution in the streaming case),

p̃(wmjt, smjt) ∝ q\(wmjt, smjt)
(
smjtN (wmjt|0, σ2

0) + (1− smjt)δ(wmjt)
)
. (5)

We then project p̃ to the exponential family to obtain the updated posterior,

q∗(wmjt, smjt) = Bern(smjt|c(ρ∗mjt))N (wmjt|µ∗mjt, v∗mjt),

where c(·) is the sigmoid function,

ρ∗mjt = log
(N (µ

\
mjt|0, σ2

0 + v
\
mjt)

N (µ
\
mjt|0, v

\
mjt)

)
, (6)

µ∗mjt = c(ρ̂mjt)µ̂mjt, (7)

v∗mjt = c(ρ̂mjt)
(
v̂mjt + (1− c(ρ̂mjt))µ̂2

mjt

)
, (8)

(9)

and

ρ̂mjt = ρ∗mjt + c−1(ρ0),

v̂mjt =
((
v
\
mjt

)−1
+ σ−20

)−1
,

µ̂mjt = v̂mjt
µ
\
mjt

v
\
mjt

.

Finally, we can obtain the updated the prior approximation term via dividing the updated posterior
by the calibrated distribution, A∗(wmjt, smjt) ∝ q∗(wmjt, smjt)/q\(wmjt, smjt). Now, we replace
the current prior approximation by A∗ and set qcur = q∗, to prepare for the steaming inference in the
next batch.

2

0.3 0.5 1

posterior selection

-1

-0.1

0

0.1

1

p
o
s
te

ri
o
r

m
e
a
n

(a) Tanh

0.3 0.5 1

posterior selection

0

0.1

0.5

p
o
s
te

ri
o
r

v
a
ri
a
n
c
e

(b) Tanh

0.3 0.5 1

posterior selection

-1

-0.1
0

0.1

1

p
o
s
te

ri
o
r

m
e
a
n

(c) ReLU

0.3 0.5 1

posterior selection

0

0.1

0.5

1

p
o

s
te

ri
o

r
v
a

ri
a

n
c
e

(d) ReLU

Figure 1: Posterior selection probability v.s. posterior mean and variance for each NN weight.

3

3 Posterior of the NN Weights

To see if SPIDER can indeed sparsify the network in streaming factorization, we looked into the
estimated posterior distribution of the NN weights. We set the rank to 8 and streaming batch-size to
256, and ran SPIDER on DBLP dataset. In Fig. 1a and c, we show the pair of the posterior selection
probability ρmjt and the posterior mean µmjt for each weight wmjt, and in Fig. 1b and d, we show
pairs of ρmjt and the posterior variance vmjt for each weight. As we can see, when the posterior
selection probability ρsmt is less than 0.5, i.e., the weight wmjt is likely to be useless/redundant, both
the posterior mean µmjt and variance vmjt are small and close to 0. The more ρmjt approaches 0, the
closer to 0 both µmjt and vmjt are, exhibiting a shrinkage effect. Thereby the corresponding weight
wmjt is inhibited or deactivated. By contrast, when ρsmt is bigger than 0.5, the posterior mean and
variance have much larger scales and ranges, implying that the corresponding weight is active and
estimated from data freely. Therefore, the learned posterior weights and selection probabilities are
consistent, and they effectively deactivate many weights to adjust the complexity of the network.

4 Running Time

We implemented our method SPIDER by Theano and SVB-DTF, SVB-GPTF, SS-GPTF by Ten-
sorFlow. POST was implemented with Matlab. We ran all the methods on a desktop machine with
Intel i9-9900K CPU and 32GB memory. We did not use GPU acceleration to run SPIDER for a fair
comparison. SPIDER is faster than POST on MovieLen1M but slower on the other datasets. For
example, for rank r = 8 and batch-size 128, the running time (in seconds) are {SPIDER-ReLU:
6,928, SPIDER-tanh: 8,566, POST: 40,551} on MovieLen1M, {SPIDER-ReLU: 13,742, SPIDER-
tanh: 15,641, POST: 1,442} on ACC, {SPIDER-ReLU: 5,255, SPIDER-tanh: 5,356, POST: 2,459}
on Anime and {SPIDER-ReLU: 1,349, SPIDER-tanh: 1,481, POST: 371} on DBLP. Note that on
different datasets, POST may need a different number of iterations to converge in the mean-field
variational updates. The tolerance level was set to 10−5 and the maximum number of iterations
500. The results are reasonable, because SPIDER is based on neural networks, including much more
parameters than CP factorization, and the computation is much more complex. The other methods
are in general faster than SPIDER. This might be partly due to the difference in efficiency between
Theano and TensorFlow libraries. Nonetheless, as we can see from the main paper, the predictive
performance of those methods are much worse than SPIDER and even often worse than POST.

0 500 1000

Number of Batches

-0.6

-0.5

-0.4

T
e

s
t
L
L

(a) DBLP (r = 3)

0 1000 2000

Number of Batches

-0.8

-0.7

-0.6

T
e

s
t
L
L

(b) Anime (r = 3)

0 2000 4000

Number of Batches

-1.5

-1

-0.5

T
e

s
t
L
L

(c) ACC (r = 3)

1500 3000

Number of Batches

-1.7

-1.5

-1.3

T
e

s
t
L
L

(d) MovieLen1M (r = 3)

0 500 1000

Number of Batches

-0.6

-0.5

-0.4

T
e

s
t

L
L

(e) DBLP (r = 8)

0 1000 2000

Number of Batches

-0.8

-0.7

-0.6

T
e

s
t

L
L

(f) Anime (r = 8)

0 2000 4000

Number of Batches

-1.5

-1

-0.5

T
e

s
t

L
L

(g) ACC (r = 8)

1500 3000

Number of Batches

-1.7

-1.5

-1.3

T
e

s
t

L
L

(h) MovieLen1M (r = 8)

Figure 2: Running prediction accuracy along with the number of processed streaming batches. The batch size
was fixed to 256.

References

Wang, Z. and Zhe, S. (2019). Conditional expectation propagation. In UAI, page 6.

4

	Online Posterior Update for the Inverse Noise Variance
	The Updates for Spike-and-Slab Prior Approximation
	Posterior of the NN Weights
	Running Time

