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A Additional Simulations and Details

In this section, we will give some details on the experiments reported in the main paper and we will provide
the results of a different set of experiments showing the regret comparison of the different algorithms under
different exploration horizons (Section A.2). In Section A.3 we also provide numerical simulations showing
the estimation error incurred when the provided observation model is different from the real one8.

A.1 Experiment Details

A.1.1 Estimation Error of Transition Matrix

For the experiments related to the estimation error of the transition matrix in Figure 1, we generated a set
of transition and observation matrices with the following characteristics:

• for the plot on the left, we fixed the number I = 10 of possible actions and V = 10 of finite
observations. We then consider the estimation procedure for problems of different sizes with S = 5,
S = 10 and S = 15 number of states respectively;

• for the plot on the right, the considered estimated problem has S = 5 states, I = 8 possible actions,
V = 10 finite observations.

The transition and observation matrices have been generated using the mentioned hyperparameters as fol-
lows. An initial version of transition and observation matrices is generated with random elements and,
subsequently:

• regarding the transition matrix, we add a tuned diagonal matrix to the initial random version and
then normalize. In this way, we give more probability on self transitions;

• regarding the observation matrix, for each pair of states and actions, we choose a specific reward
that will be drawn with higher probability, in order to avoid having too much stochasticity in the
reward distributions.

The scheme just presented is also used for the generation of matrices in the experiments showing the regret
of the different algorithms.
For the experiments in the plot on the right, let’s denote with Gg and Gr the reduced action observa-
tion matrices containing the subset of arms for the green and the red lines respectively. Their values are
σmin(Gg) ≈ 0.14 and σmin(Gr) ≈ 0.27.

A.1.2 Algorithms Comparisons

Synthetic Experiments For this set of experiments, the parameters used for the generation of the tran-
sition and observation matrix are S = 3 states, I = 4 possible actions and V = 5 finite observations. The
generation of the matrices is not completely random and follows the same procedure explained in the previ-
ous paragraph for the experiment on the matrix estimation error. For the specific experiments considered,
we adopted for the exploration horizon T0 the result derived from theory divided by (10L)2/3. For the
plots shown in the main paper, the hyperparameters used are ϵ = 0.05 for the ϵ-greedy approach, a value
of Lw = 1000 for the sliding-window UCB algorithm, and the suggested value 1/T for the α parameter in
the Exp3.S algorithm. For the particle filter algorithm, we used 100 different particles and a resampling
threshold of 25 for the Effective Sample Size.

Movielens Experiments In this section, we give more details about the experiments on the Movielens
1M dataset. As detailed in the main body of the paper the transition matrix is constructed taking into
account the similarity between superusers. In order to do that we use the cosine similarity to define the

8The code for the experiments can be found at https://github.com/alesnow97/SwitchingLatentBandits.
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Figure 3: Empirical regret on a Switching Bandits instance with S = 3 states, I = 4 actions and V = 5
observations under different horizons (20 runs, 95%c.i.).

initial transition matrix. After that, we add a diagonal matrix to the previously obtained matrix in order
to give higher values to self-loop probabilities. The final transition matrix is obtained by normalizing along
each row. The self-loop probabilities are close to the value 0.98 thus representing a more realistic scenario
with regimes not switching too often. The rewards are obtained by scaling the ratings obtained from a single
movie in the range [0, 1].
For the plots shown in the main paper, the hyperparameters used are ϵ = 0.05 for the ϵ-greedy approach,
Lw = 300 for the sliding-window UCB algorithm, and the suggested value 1/T for the α parameter in
the Exp3.S algorithm. For the particle filter algorithm, we used 300 different particles and a resampling
threshold of 50 for the Effective Sample Size. Our SL-EC algorithm has been run using an offline arm
selection procedure for choosing the arms to use during the exploration phase. The number of selected arms
has been fixed to J = 5.

A.2 Numerical Simulation on Regret Comparison under Different Horizons

The objective of this new set of experiments is to show the regret results of our approach under different
values of the interaction horizon T . For practical reasons, we adopt a lower value for the exploration horizon
T0, following analogous considerations as those reported in Azizzadenesheli et al. (2016). We recall that
using a different exploration horizon than the one suggested by theory would mostly result in having bigger
multiplicative constants in the final regret bound or a similar bound but holding with a smaller probability.

We conducted two series of experiments:

1. the first set presents the regret over different horizons using as exploration horizon the one defined
by Equation 17 divided by (10L)2/3. The results are presented in Figure 3.

2. The second set of experiments instead shows the performance of the SL-EC algorithm when the
exploration horizon is manually chosen. The results are presented in Figure 4.

First Set of Experiments For this first set of experiments, we employ the same instance used for the
synthetic experiment in the main paper (reported in Figure 2). We run 20 experiments for each different
value of the horizon. The horizon lengths are reported on each subplot.
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Figure 4: Empirical regret on a Switching Bandits instance with S = 4 states, I = 8 actions and V = 5
observations under manually tuned values for the exploration horizon T0 (20 runs, 95%c.i.).

From Figure 3, we can observe that the SL-EC algorithm has generally better performances with respect
to most of the considered baselines even with a reduced horizon. The algorithm based on particle filter has
more advantages in shorter horizons since it does not have an initial exploration phase. However, besides
the good initial prior we provide for the transition model, it is not able to reach a good enough estimation
of the transition model and its advantage with respect to the SL-EC algorithm vanishes in the long run.

Second Set of Experiments The second set of experiments shows the performances of the SL-EC al-
gorithm when the value of the exploitation horizon is small with respect to the total horizon. In these
experiments, we consider a different Switching Bandit instance with S = 4 states, I = 8 actions, and V = 5
observations. We manually set the length of the exploration phases.
The different exploration values employed are reported as title of each subplot. For this set of experiments,
we omit the result of both the EXP3S and the sliding Window UCB algorithm, since they both experience
high error values that would make the plot visualization less clear. The experiments are reported using a
total horizon of T = 20000.

From Figure 4, we can observe that when the number of samples used for exploration is small with respect
to the problem space, the regret incurred during the exploitation phase is high since the estimated transition
model has high error. Furthermore, the estimates present high variance since they are based on few samples
and this leads to high variance as well in the exploitation phase of the SL-EC algorithm.

As the number of samples increases, we can see a reduction in the slope of the regret of the exploitation
phase and a reduced variance as well. With these experiments, we would like to highlight that our algorithm
can reach good results even when the number of samples used for estimation is particularly low with respect
to the one suggested by theory.

A.3 Numerical Simulation using Algorithm 1 with Misspecified Obsevation Model

In this set of experiments, we show the performance of the estimation algorithm (Algorithm 1) when the
observation model used by the algorithm differs from the real one.

The experiments have been conducted on two different instances of Switching Latent Bandits, characterized
as follows:
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Figure 5: Frobenious norm of the estimation error of the transition model of 2 different Switching Bandits
instances under different misspecification levels (10 runs, 95%c.i.).

• the first instance has 3 states, 4 actions, and 4 observations;

• the second instance has 5 states, 5 actions, and 5 observations.

Given the real observation model of each instance, we perturbed it according to different levels of intensity,
using a parameter m > 0 that we call misspecification level. The perturbation is done as follows. For each
combination of state s, arm a, and reward r, we sample a random value in the interval [0, 1], we multiply
the sampled quantity for the misspecification level parameter m and we add it to the quantity Pr(r|s, a).
So, the bigger the misspecification level is, the higher is expected to be the difference between the real and
misspecified observation models. After this step, we normalize the newly obtained probabilities to make
them sum to 1.

In the conducted experiments we did not apply the offline arm selection procedure, every arm is thus used
during the estimation phase. Results are reported in terms of the Frobenius norm of the error between the
real and the estimated transition matrix. For each one of the two instances, and for each value of m, 10
runs are performed. At each run a different perturbed observation model is generated using the procedure
described above.

The results of the experiment are presented in Figure 5. By observing it, we can see that the proposed
estimation algorithm is robust with respect to the misspecification of the observation model. Reasonably,
we see the estimation error growing with model misspecification. In practice, if the reward model is accurate
enough, a good estimation of the transition model can be performed.
Additionally, it can be noted that larger values of m lead to higher variance in the experiments since the
perturbed observation models differ more among themselves through the different runs.

B Theoretical Results

In this Section, we will provide the proofs of Lemma 6.1 (Section B.1) and Theorem 6.1 (Section B.2)
presented in the main paper. Finally, Section B.3 shows how to compute the exploration horizon T0 when
only the minimum value of the transition matrix ϵ is known.

B.1 Proof of Lemma 6.1

We will start by reporting Lemma 6.1 of the main paper and its proof.
Lemma 6.1. Suppose Assumption 4.2 holds and suppose that the Markov chain with transition matrix P
is ergodic, such that πmin := mins∈S π(s) > 0 with π ∈ ∆(S) being the stationary distribution of the chain.
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By assuming that the chain starts from an arbitrary distribution ν ∈ ∆(S), by pulling each pair of arms in a
round-robin fashion for N rounds and using the estimation procedure reported in Algorithm 1, we have that
with probability at least 1− δ the estimation error of the transition matrix P will be:

∥P − P̂ ∥F ≤
2I

σ2
min(O)πmin

√
2S(C + log(CI2/δ))

(1− λ2I2)N , (15)

Proof. The proof of the presented bound can be decomposed into two main parts. On one side, we can define the
bound of the estimation error of the matrix W and, secondly, the error of the transition matrix P that derives from
the estimation error of W . We will first tackle this last part.
As a relevant note, in this proof we are assuming that all the values coming from the estimated matrix Ŵ are positive.
However, being Ŵ the result of Equation Equation 14, it can also happen that, when not enough data are collected,
the estimation is less accurate and some negative terms may appear. If this happen, we can simply set to 0 the
negative terms while preserving all the theoretical steps presented here. Having clarified this aspect, we are ready to
report the following steps:

∥P − P̂ ∥F =
√ ∑

(s,s′)∈S2

(P (s, s′) − P̂ (s, s′))2 =
√∑

s∈S

∥P (s, ·) − P̂ (s, ·)∥2
2

=

√√√√∑
s∈S

∥∥∥∥ W (s, ·)
∥W (s, ·)∥1

− Ŵ (s, ·)
∥Ŵ (s, ·)∥1

∥∥∥∥2

2

≤

√√√√∑
s∈S

∥∥∥∥ W (s, ·)
∥W (s, ·)∥2

− Ŵ (s, ·)
∥Ŵ (s, ·)∥2

∥∥∥∥2

2

(P.4)

≤

√√√√∑
s∈S

4∥W (s, ·) − Ŵ (s, ·)∥2
2

max{∥W (s, ·)∥2, ∥Ŵ (s, ·)∥2}2
(P.5)

≤

√√√√∑
s∈S

4∥W (s, ·) − Ŵ (s, ·)∥2
2

∥W (s, ·)∥2
2

(P.6)

≤

√√√√∑
s∈S

4S∥W (s, ·) − Ŵ (s, ·)∥2
2

π2
min

(P.7)

=

√
4S∥W − Ŵ ∥2

F

π2
min

= 2
√

S∥W − Ŵ ∥F

πmin
. (P.8)

We recall that P (s, ·) ∈ ∆(S) denotes the distribution over the next state when starting from state s ∈ S and we
denote with W (s, ·) the vector of dimension S representing the row of the matrix W of the stationary distribution of
consecutive states. Line P.4 derives from the fact that ∥W (s, ·)∥1 ≥ ∥W (s, ·)∥2, while line P.5 is obtained by using
Lemma E.1. Line P.6 easily follows from

max{∥W (s, ·)∥2, ∥Ŵ (s, ·)∥2} ≥ ∥W (s, ·)∥2.

Line P.7 is instead derived from the following considerations. For any vector W (s, ·) of size S, it holds that:

∥W (s, ·)∥2
2 =

∑
s′∈S

W (s, s′)2 ≥ 1
S

(∑
s′∈S

W (s, s′)
)2

= 1
S

π(s)2 ≥ π2
min
S

,

where the first inequality in the expression above follows from the fact that
√

Y ∥y∥2 ≥ ∥y∥1 ∀y ∈ RY . The second
equality is instead derived from the definition of matrix W , since the sum of the elements along the row associated
with state s corresponds to the probability value π(s) of state s from the stationary distribution π induced by the
chain. In the last inequality, we bound each of these probabilities by πmin = mins∈S π(s).
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Finally, the first equality in line P.8 derives from
∑

s∈S ∥W (s, ·) − Ŵ (s, ·)∥2
2 = ∥W − Ŵ ∥2

F , which holds by the
definition of the used quantities.

We will now derive the first part of the proof by defining a high probability bound on the estimation error of the
stationary distribution over consecutive states represented by matrix W . In order to do that, we use the relation
∥W −Ŵ ∥F = ∥w−ŵ∥2, where we recall that w is obtained by the vectorization of matrix W . The bound is obtained
assuming that each pair of arms is pulled in a round-robin fashion, as required by the algorithm. The derivation is
as follows:

∥w − ŵ∥2 =
∥∥∥A†(d − d̂)

∥∥∥
2

≤∥A†∥2∥d − d̂∥2

= 1
σmin(A)∥d − d̂∥2 = 1

σ2
min(O)∥d − d̂∥2, (P.9)

where vector d̂ is obtained from the vector count n by assuming that each pair of arms has been pulled N times (refer
to Equation 13). The first inequality is obtained by the consistency property of matrices: the first norm represents
the spectral norm of matrix A†, while the second is a ∥·∥2 of a vector. The last equality is instead obtained from the
properties of the Kronecker product for which it holds that:

σmin(A) = σmin(O)σmin(O) = σ2
min(O). (P.10)

Let’s consider now the estimation error of the different vectors da,a′ constituting vector d, as defined in Equation 10.
We have seen in the main paper that each vector da,a′ denotes the distribution over consecutive rewards conditioned
on pulling the consecutive arms (a, a′) (see Equation 9).
Since the pairs of rewards are not i.i.d but depend on the underlying Markov process, we can use a suited concentration
result for discrete distributions that appears in Proposition E.4 under the assumption that the chain does not start
from its stationary distribution.
In particular, from Proposition E.4, it holds that ∀(a, a′) ∈ I2, with probability at least 1 − δ/I2:

∥da,a′ − d̂a,a′ ∥2 ≤
√(1 + λ

1 − λ

)
C + log(CI2/δ)

N
,

with N being the number of samples used for the estimation and C is a constant intuitively representing the distance
of the initial distribution from the stationary one. Considering the round-robin procedure used in the exploration
phase, the result just presented can be slightly improved. Indeed, being P the transition matrix governing the chain
and λ the modulus of its second largest eigenvalue, since samples used to estimate each d̂a,a′ are collected every 2I2

time instants, this leads to an effective transition matrix P 2I2
, with associated λ2I2

modulus of the second largest
eigenvalue. This collection policy has thus the consequence of inducing less temporal dependence among samples.
We can modify the previous result by having ∀(a, a′) ∈ I2, with probability at least 1 − δ/I2:

∥da,a′ − d̂a,a′ ∥2 ≤

√(1 + λ2I2

1 − λ2I2

)
C + log(CI2/δ)

N
. (P.11)

We can now express the following relation that easily follows from the definition of the quantities involved:

∥d − d̂∥2 =
√ ∑

(a,a′)∈I2

∥da,a′ − d̂a,a′ ∥2
2. (P.12)

By combining the results in P.9, P.11, P.12, and using a union bound, we have that with probability at least 1 − δ:

∥w − ŵ∥2 ≤ 1
σ2

min(O)

√(1 + λ2I2

1 − λ2I2

)
I2(C + log(CI2/δ))

N

≤ I

σ2
min(O)

√
2
(
C + log(CI2/δ)

)
(1 − λ2I2 )N

. (P.13)

We now have all the elements needed to show the final result. Putting together P.8 and P.13, we have that with
probability at least 1 − δ, it holds that:

∥P − P̂ ∥F ≤ 2I

σ2
min(O)πmin

√
2S(C + log(CI2/δ))

(1 − λ2I2 )N
,

which concludes the proof.
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B.2 Proof of Theorem 6.1

We are now ready to derive the main result related to the regret of the SL-EC Algorithm. We will report
here Theorem 6.1 of the main paper.
Theorem 6.1. Suppose Assumptions 4.1 and 4.2 hold and suppose that the Markov chain with transition
matrix P has stationary stationary distribution π ∈ ∆(S). By assuming that the chain starts from an
arbitrary distribution ν ∈ ∆(S) and by considering a finite horizon T , there exists a constant T0, with
T > T0, such that with probability at least 1− δ, the regret of the SL-EC Algorithm satisfies:

R(T ) ≤ 2
(

2LI2

σ2
min(O)πmin

√
S(C + log(CI2/δ))

(1− λ2I2) · T

)2/3

, (16)

Proof. The proof of the regret of the SL-EC Algorithm makes use of some of the results previously derived and it
can be divided into the regret from the exploration and regret from the exploitation phase.
Considering an exploration phase of length T0, the regret initially suffered can be trivially bounded as:

R1:T0 =
T0∑

t=1

max
a∈I

⟨µ(a), bt⟩ − rt ≤
T0∑

i=1

1 = T0, (P.14)

where vector µ(a) has dimension S and its elements are defined in Equation 4.
For the exploitation phase, we compute a belief vector b̂t at each step according to Equation 5 using the estimate
P̂ of the transition matrix. The belief vector is initialized uniformly over the states and updated starting from the
initial samples up to those collected at the end of the exploration phase. The analysis of the regret in this part is as
follows:

RT0:T =
T∑

t=T0+1

max
a∈I

⟨µ(a), bt⟩ − max
a∈I

⟨µ(a), b̂t⟩

≤
T∑

t=T0+1

max
a∈I

|⟨µ(a), bt − b̂t⟩|

≤
T∑

t=T0+1

∥µ(a)∥∞∥bt − b̂t∥1

≤
T∑

t=T0+1

∥bt − b̂t∥1

≤
T∑

t=T0+1

L∥P − P̂T0 ∥F

≤ 4LT I2

σ2
min(O)πmin

√
S(C + log(CI2/δ))

(1 − λ2I2 )T0
, (P.15)

where in the second inequality we applied Hölder’s inequality with norms ∞ and 1, while the third inequality is
obtained from ∥µ(a)∥∞ ≤ 1 ∀a ∈ I. The fourth inequality is obtained by applying Proposition E.6, while the last
inequality uses the concentration derived in Lemma 6.1, considering that the number of rounds is N = T0/(2I2) if
the exploration horizon has length T0.

Combining together the regrets of the two phases derived in Equation P.14 and in Equation P.15 we have:

R(T ) ≤ T0 + 4LT I2

σ2
min(O)πmin

√
S(C + log(CI2/δ))

(1 − λ2I2 )T0
. (P.16)

We can now optimize this bound w.r.t. the exploration length T0 by vanishing the derivative of the right-hand side
of Equation P.16. What we get is the following term:

T0 =

(
2LT I2

σ2
min(O)πmin

√
S(C + log(CI2/δ))

1 − λ2I2

)2/3

.
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By substituting this value of T0 into Equation P.16, we get the result of the Theorem.

B.3 Optimization of T0

In order to be able to compute T0, we need to have information about the minimum value of the stationary
distribution πmin and about the modulus of the second highest eigenvalue λ. If they are not available, a
slightly different version of the bound can be derived in order to compute T0 by only using the knowledge of
ϵ from Assumption 4.1.

Since Theorem 6.1 requires Assumption 4.1 to hold, which is stronger than the ergodicity of the chain, we
can further characterize the result obtained in Lemma 6.1. In particular, we can lower bound the minimum
probability of the stationary distribution πmin with the minimum quantity ϵ appearing in the transition
model P , such that:

πmin ≥ ϵ. (18)

A second step involves instead characterizing the value of λ as a function of ϵ. To do that, we resort to a
quantity ρ(·) known as Dobrushin coefficient (Krishnamurthy, 2016) that defines the rate of convergence of
ergodic chains towards their stationary distribution. Given a stochastic matrix T representing the dynamics
of a Markov chain defined on a finite state space X and given two probability vectors in ν, ν̄ ∈ ∆(X), the
Dobrushin coefficient satisfies the following relation:

∥T ⊤ν − T ⊤ν̄∥1 ≤ ρ(T )∥ν − ν̄∥1,

where T ⊤ represents the transpose of matrix T . The inequality above says that the one-step evolution of
two probability vectors induced by the same transition matrix T can be bounded by the quantity on the
right where scalar ρ(T ) ∈ [0, 1] represents the Dobrushin coefficient. For ergodic chains, this coefficient is
always strictly smaller than 1. Hence, by iteratively applying the inequality, it is possible to ensure geometric
convergence of the initial distance.
Among the properties of the Dobrushin coefficient (Krishnamurthy, 2016), we have that it is an upper bound
to the modulus of the second largest eigenvalue λ, thus:

λ(T ) ≤ ρ(T ), (19)

where here we use λ(T ) to denote the modulus of the second largest eigenvalue of matrix T . Furthermore,
the Dobrushin coefficient corresponds to the following quantity:

ρ(T ) = 1− min
i,j∈X

∑
l∈X

min{T (i, l), T (j, l)}. (20)

For a Markov chain with transition matrix P satisfying Assumption 4.1, we can set an upper bound to the
Dobrushin coefficient as follows:

ρ(P ) = 1− min
i,j∈S

∑
l∈S

min{P (i, l), P (j, l)} (21)

≤ 1−
∑
l∈S

ϵ = 1− Sϵ (22)

where the inequality derives indeed from Assumption 4.1.
Using now 19, we have that:

λ(P ) ≤ ρ(P ) ≤ 1− Sϵ. (23)

The bound on the regret of Theorem 6.1 can now be rewritten as:

R(T ) ≤ T0 + 4LTI2

σ2
min(O)ϵ

√
S(C + log(CI2/δ))
(1− (1− Sϵ)2I2)T0

, (24)
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where we have used both the results in 18 and in 23. With this expression of the bound, the value of T0
minimizing the formulation is:

T0 =
(

2LTI2

σ2
min(O)ϵ

√
S(C + log(CI2/δ))

1− (1− Sϵ)2I2

)2/3

.

which can now be obtained without requiring the knowledge of ether πmin or λ.

C Comparison with Related Works

Table 3 defines a comparison between our work and the most related works by considering different aspects
for each of them.
Some details about the table are reported below. It contains three different sub-table: the first concerns the
assumptions used, the second sub-table gives information about the employed estimation technique, and the
latter sub-table gives information about the employed regret minimization algorithm.

We highlight some important aspects that can be observed from this comparison. First of all, we notice
that, together with SD techniques, our approach can provide consistent estimation of the model parameters,
while this is not achieved with techniques relying on Bayesian updates.

It is also relevant to highlight that we compare against the oracle acting according to Equation 5, which we call
here Optimal Belief-Based Action. We opted for this choice since Equation 5 can be easily computed, differ-
ently from the more powerful optimal POMDP policy whose computation is notoriously intracatable Madani
(1999)9.

Table 3 reported below uses the following abbreviations: SD (Spectral Decomposition) and TS (Thompson
Sampling). The Best Action oracle used in Hong et al. (2020b) refers to the oracle that always pulls the best
action as if the underlying state of the environment is observable.
Furthermore, the meanings of the cells containing the following symbols are:

(*) : The agent knows a prior of both the observation and the transition model;

(**) : The assumption adopted in Jafarnia Jahromi et al. (2022) can be related to the full-rank
assumption. It states that, for any two different transition models, a different distribution over
action-observation sequences is induced;

(***) : Bayesian regret.

C.1 Differences with Azizzadenesheli et al. (2016)

We highlight here some differences with respect to the work of Azizzadenesheli et al. (2016). Mainly:

1. They consider the more classical POMDP setting without knowledge of the observation or transition
model and use SD approaches to estimate both models. Differently, in our work, we assume a
Switching Latent Bandit setting and devise a new estimation technique tailored for learning the
transition model while exploiting the knowledge of the observation model.

2. As can be seen in the Table, the regret in Azizzadenesheli et al. (2016) is defined with respect to the
optimal memoryless stochastic policy, which is a weaker oracle than the optimal belief-based policy
we use. The set of memoryless policies is less powerful than the set of belief-based policies since the
former ones are Markovian with respect to the last observation received. Furthermore, the oracle

9If we instead chose to compare against the optimal POMDP policy and we assumed an optimization oracle that is able to
compute the optimal policy given our estimate of the model given by Algorithm 1, by following analogous steps to those used
in Zhou et al. (2021) for proof of the regret, it is possible to show that under the same assumptions we use here, we would suffer
Õ(T 2/3) regret.
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Azizza. et
al. (2016)

Zhou et al.
(2021)

Jafarnia et
al. (2022)

Hong et al.
(2020b)

SL-EC

Knowledge of
Obs. Model No No Yes Yes* Yes

Knowledge of
Trans. Model No No No Yes* No

Ergodicity of
Induced Chain Yes Yes Yes - Yes

Minimum
Trans. Prob. No Yes No - Yes

Invertible
Trans. Model Yes Yes No - No

Full-rank Obs.
Model Yes Yes Yes** - Yes

Minimum
Action Prob. Yes No No No No

Consistent
Estimation of
Trans. Model

No No Yes - No

Consistent
Estimation of

Belief
No No Yes - No

Estimation
Technique SD SD Bayesian

Update
Bayesian
Update

Algorithm 1

Consistent
Estimation

✓ ✓ ✗ ✗ ✓

Oracle Optimal
Stochastic

Memoryless
Policy

Optimal
POMDP

policy

Optimal
POMDP

policy

Best Action Optimal
Belief-Based

Action

Algorithm
Type Optimistic Alternating

Explor. -
Exploit.
phases

TS-based TS-based Optimistic

Regret Õ(
√

T ) Õ(T 2/3) O(T 2/3)*** O(T 2/3)*** O(T 2/3)

Table 3: Tables comparing our work with most relevant related works. Note that the first subtable refers to
the employed assumptions.
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is stochastic since the set of considered policies includes policies having a minimum probability of
taking each action. This aspect favors model estimation and is fundamental to applying Spectral
techniques and obtaining a regret of order Õ(

√
T ).

3. While we use an Explore then Commit algorithm, an optimistic approach is used in Azizzadenesheli
et al. (2016) with each episode being characterized by an increasing length. The optimistic approach
is supported by the fact that the used policies are exploratory enough to allow state identification
since every action is constantly chosen with a minimum probability.

4. Concerning the assumptions, the minimum transition probability assumption (our Assumption 4.1)
is not needed in Azizzadenesheli et al. (2016). We recall that this assumption is required in our
setting to bound the error in the estimated belief, while memoryless policies do not use a notion of
belief and in turn this allows Azizzadenesheli et al. (2016) to get rid of this assumption. Concerning
the identifiability assumption, they also have a full-rank assumption on the observation matrix,
which Spectral Decomposition techniques require. In addition, they require the transition matrix to
be invertible, as a necessary condition to apply SD approaches.

D Comparison with Spectral Decomposition technique used in (Zhou et al., 2021)

We devote this section to the comparison of our estimation approach with spectral decomposition tech-
niques (Anandkumar et al., 2014). In particular, we will focus on the comparison with the spectral procedure
adopted in the work of Zhou et al. (2021) which faces a similar problem to the one we consider. We start by
highlighting the main differences between their work and ours:

• they consider learning both the transition and the observation models, while we assume to know the
latter.

• they have a further assumption compared to ours as they require the invertibility of the transition
matrix P .

• they assume to have access to an optimization oracle that returns the optimal policy for a given
known model. Differently, our oracle optimizes the best instantaneous expected reward given the
belief on the MABs at each timestep computed using the real transition and observation matrices.

The authors propose the SEEU (Spectral Exploration and Exploitation with UCB) algorithm that alternates
between exploration phases used to make parameter estimation and exploitation phases where the actions
are pulled according to the computed optimistic policy. During the exploration phases, they use standard
spectral decomposition methods to estimate both the observation and the transition models. The guarantees
they provide require both Assumption 4.1 and 4.2 and they further require the invertibility of the transition
matrix, which is needed for the application of SD approaches. The algorithm they devise reaches Õ(T 2/3)
regret, disregarding logarithmic terms.

To define a comparison with Spectral Decomposition techniques, we need to introduce some quantities that
will be helpful in what will follow. We will report some results appearing in Appendix B of Zhou et al.
(2021) on spectral decomposition techniques, based on the work of Anandkumar et al. (2014).
In particular, they introduce the following three matrices B1, B2, B3 ∈ RIV ×S where each row is associated
to a couple (a, r) ∈ I× V and each column is associated to a state s ∈ S. They are defined as follows:

B1
(
(a, r), s

)
= Pr(at−1 = a, rt−1 = r|st = s)

B2
(
(a, r), s

)
= Pr(at = a, rt = r|st = s)

B3
(
(a, r), s

)
= Pr(at+1 = a, rt+1 = r|st = s)

for any (a, r) ∈ I× V and for any state s ∈ S.
We can now present the bound on the error of the estimated transition matrix. From Anandkumar et al.
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(2014), it can be shown that with a sufficient number of samples N and with probability at least 1 − δ,
spectral approaches ensure that:

∥P − P̂ ∥F ≤ C2

√√√√ log
(

6 I2V 2+IV
δ

)
N

, (25)

with

C2 = 4
σmin(B2)

(
S + S3/2 ∗ 21

σ1,−1

)
C3

C3 = 2G
2
√

2 + 1
(1− θ)√πmin

(
1 + 8

√
2

π2
minσ3 + 256

π3
minσ2

)
,

where σ1,−1 is the smallest nonzero singular value of a covariance matrix computed during the estimation
process (see Section 3.1 in Zhou et al. (2021)) and σ = min{σmin(B1), σmin(B2), σmin(B3)}, where σmin(Bi)
represents the smallest nonzero singular value of the matrix Bi, for i = 1, 2, 3. π represents the stationary
distribution of the underlying chain and πmin := mins π(s) ≥ ϵ. Finally, θ and G are some mixing rate
parameters. Under Assumption 4.1, it is possible to show that we can take G = 2 thus having θ ≤ 1− ϵ.
The term C2 that we report here shows a further

√
S term with respect to the C2 term reported in Zhou

et al. (2021). This is due to the fact that the bound reported in Equation 25 uses the Frobenious norm of
the difference of the matrices, while Zhou et al. (2021) report the bound in terms of the spectral norm ∥ · ∥2.
The additional

√
S of the C2 term reported here is indeed due to the conversion between the two norms, for

which it holds that ∥P − P̂ ∥F ≤
√

S∥P − P̂ ∥2.

We can simplify the expression of C2 by reporting a new constant C ′
2 for which it can be easily shown that

C ′
2 ≤ C2. It is defined as follows:

C ′
2 = 16(2

√
2 + 1)

σmin(B2)√πmin

(
S + S3/2 ∗ 21

σ1,−1

)(
1 + 8

√
2

π2
minσ3

min(B2) + 256
π3

minσ2
min(B2)

)
.

Having defined the quantity C ′
2 containing the dependency on the problem parameters of the spectral de-

composition approach used in Zhou et al. (2021), we can now consider the guarantees of the estimation
procedure reported in Lemma 6.1.
Before proceeding with the comparison, we recall that Lemma 6.1 is expressed with respect to the number
N of pulls of each pair of arms, while the total number of samples used corresponds to Ntot = 2NI2. By
substituting the expression N = Ntot/(2I2) into the bound, we get:

∥P − P̂ ∥F ≤
4I2

σ2
min(O)πmin

√
S(C + log(CI2/δ))

(1− λ2I2)Ntot
≤ 4I2

σ2
min(O)π3/2

min

√
S(1 + log(1I2/δ))

(1− λ2I2)Ntot
,

where in the second inequality we used the fact that the maximum value of C is 1/πmin.

Using this new result, we define our constant Cour as:

Cour = 4I2

σ2
min(O)π3/2

min

√
SC

1− λ2I2 .

It is now relevant to note the similarities between matrix B2 and our action observation matrix O. Given
any state s ∈ S and any action-reward pair (a, r), we have that:

O
(
(a, r), s

)
Pr(at = a|st = s) = Pr(rt = r|st = s, at = a) Pr(at = a|st = s)

= Pr(at = a, rt = r|st = s)
= B2

(
(a, r), s

)
,
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where the first equality follows by the definition of O in Equation 2. Furthermore, since the SEEU algorithm
samples uniformly over the I actions during the exploration phase, for any (a, r) ∈ I× V and for any state
s ∈ S, we have that:

O
(
(a, r), s

)
Pr(at = a|st = s) = O

(
(a, r), s

)1
I

= B2
(
(a, r), s

)
.

Considering the minimum singular values of these matrices, the stated result allows also to say:

σmin(O) = σmin(B2)I. (26)

We can now rewrite constant Cour as:

Cour = 4I2

σ2
min(O)π3/2

min

√
S

1− λ2I2 = 4
σ2

min(B2)π3/2
min

√
S

1− λ2I2 ,

where the equality directly follows from 26.

We are now ready to compare the constant C ′
2 of SD approaches with constant Cour appearing in our

approach10. C ′
2 has a dependency of order −7/2 with respect to πmin while Cour enjoys a dependency of

order −3/2. By considering instead the number of states S, constant C ′
2 contains a term that scales with

order 3/2, while we have a dependency of order 1/2. Finally, the dependency on the minimum singular value
of the matrix B2 has order −4 in C ′

2 and order −2 in Cour
11. Again, we recall that these considerations are

made on C ′
2 which is a smaller value than the real one C2 appearing in their bound.

From this analysis, we have shown that our approach enjoys better dependence with respect to SD approaches
on all the problem parameters.

E Useful Lemmas and Deviation Inequalities

This section is devoted to the presentation of some results that are useful in understanding some proofs
appearing in Appendix B.
Lemma E.1. (Lemma A.1 in Ramponi et al. (2020)) Let x, y ∈ Rd any pair of vectors, then it holds that:∥∥∥∥ x

∥x∥2
− y

∥y∥2

∥∥∥∥
2
≤ 2∥x− y∥2

max{∥x∥2, ∥y∥2}
.

Proof. The presented result follows from a sequence of algebraic manipulations:∥∥∥∥ x

∥x∥2
− y

∥y∥2

∥∥∥∥
2

=
∥∥∥∥ x

∥x∥2
− y

∥y∥2
± y

∥x∥2

∥∥∥∥
2

=
∥∥∥∥x − y

∥x∥2
− y(∥y∥2 − ∥x∥2)

∥y∥2∥x∥2

∥∥∥∥
2

≤∥x − y∥2

∥x∥2
+ |∥x∥2 − ∥y∥2|

∥x∥2

≤2∥x − y∥2

∥x∥2
,

where the triangular inequality has been applied in the third line and the reverse triangular inequality in the last
one, i.e. |∥x∥2 − ∥y∥2| ≤ ∥x − y∥2. The result in the lemma can be derived by observing that, for symmetry reasons,
the same derivation can be performed by getting ∥y∥2.

10We only consider the terms that can be directly compared, thus disregarding the term
√

1 − λ2I2 .
11The empirical impact of this dependency is evident in the numerical comparison in Section 7.3.
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E.1 Concentration Results for Markov Chains

We report here the concentration bound on Theorem 12 from Fan et al. (2021). It is derived from Markov
chains with continuous space, but can as well be adapted to our finite space setting.
Proposition E.1. (Concentration Bound for Markov Chains) Let {Xi}i≥1 be a Markov chain with stationary
distribution π and absolute spectral gap 1 − λ. Suppose the initial distribution ν is absolutely continuous
with respect to the invariant measure π and its derivative dν

dπ has a finite p-moment for some p ∈ (1,∞]. Let
h = p/(p− 1) ∈ [1,∞) and

C = C(ν, n0, p) :=


1 + 22/pλ2n0/h

∥∥ dν
dπ − 1

∥∥
π,p

if p ∈ (1, 2),
1 + λn0

∥∥ dν
dπ − 1

∥∥
π,2 if p = 2,

1 + 22/hλ2n0/p
∥∥ dν

dπ − 1
∥∥

π,p
if p ∈ (2,∞),∥∥ dν

dπ

∥∥
π,∞ = ess sup

∥∥ dν
dπ

∥∥ if p =∞.

Then, it follows that for any ϵ > 0, uniformly for all bounded function f : X → [a, b]:

Prν

(
1
n

n0+n∑
i=n0+1

f(Xi)− π(f) > ϵ

)
≤ C exp

(
− 1

h
· 1− λ

1 + λ
· nϵ2

2(b− a)2/4

)
,

where Prν emphasizes the dependence on the initial distribution, we have π(f) =
∫

f(x)π(x)dx and also:

∥g∥π,p := (π(gp))1/p =
(∫

gp(x)π(x) dx

)1/p

.

E.2 Concentration Results for Discrete Distributions

We present here some concentration bounds that can be derived from McDiarmid’s inequality (McDiarmid,
1989). The first proposition considers samples that are i.i.d. while the second result considers samples
coming from a Markov chain and is indeed used in the proof of Lemma 6.1.
Proposition E.2. (Concentration for Discrete Distributions with Independent Samples (Proposition 19 (Hsu
et al., 2012)) Let z be a discrete random variable that takes values in {1, . . . , d}, distributed according to q.
We write q as a vector q = [Pr(z = j)]dj=1. Assume we have N i.i.d. samples, and that our empirical
estimate of q is [q̂]j =

∑N
i=1 1[zi = j]/N .

We have that ∀ϵ > 0 :

Pr

(
∥q̂ − q∥2 ≥

1√
N

+ ϵ

)
≤ exp

(
−Nϵ2

)
.

The presented result can be also written for dependent samples coming from a Markov chain. For this case,
it is possible to discount the number of samples based on the modulus of the second largest eigenvalue of the
transition matrix P (as reported in Appendix A of Hsu et al. (2012)). Also, in Fan et al. (2021), they state
that 1+λ

1−λ N Markov chain samples are needed to achieve the same accuracy with N independent samples in
the naive Monte Carlo method, with λ being the modulus of the second largest eigenvalue of P .
Proposition E.3. (Concentration for Discrete Distributions with Samples coming from a Markov Chain)
Let z be a discrete random variable that takes values in {1, . . . , d}, distributed according to q. We write q as
a vector q = [Pr(z = j)]dj=1. Assume we have N samples coming from a Markov process having a transition
matrix with the modulus of the second largest eigenvalue λ, and assume that the Markov chain starts from
its stationary distribution π. Our empirical estimate of q is [q̂]j =

∑N
i=1 1[zi = j]/N .

We have that ∀ϵ > 0 :

Pr

(
∥q̂ − q∥2 ≥

√(1 + λ

1− λ

) 1
N

+ ϵ

)
≤ exp

(
− 1− λ

1 + λ
·Nϵ2

)
.

35



Published in Transactions on Machine Learning Research (09/2024)

The previous result can be as well extended to the case where the starting distribution is arbitrary. In the
following, we will provide the statement and its proof.

Proposition E.4. (Concentration for Discrete Distributions with Samples coming from a Markov Chain
Starting From Arbitrary Distribution) Let z be a discrete random variable that takes values in {1, . . . , d},
distributed according to q. We write q as a vector q = [Pr(z = j)]dj=1. Assume we have N samples coming
from a Markov process having a transition matrix with the modulus of the second largest eigenvalue λ, assume
that the Markov chain has stationary distribution π and that the chain starts from an arbitrary distribution
ν. Our empirical estimate of q is [q̂]j =

∑N
i=1 1[zi = j]/N .

We have that ∀ϵ > 0 :

Pr

(
∥q̂ − q∥2 ≥

√(1 + λ

1− λ

)C

N
+ ϵ

)
≤ C exp

(
− 1− λ

1 + λ
·Nϵ2

)
,

where C := C(ν, 0,∞) = ∥ ν
π∥∞ is defined as in Proposition E.1 by setting n0 = 0 and p = ∞, while ν

π
represents the element-wise ratio between the vectors of probability distributions12.

Proof. First of all, we start by reporting an existing concentration result obtained by combining results in Hsu et al.
(2012) and Fan et al. (2021). In particular, we have:

P rν

(
∥q̂ − q∥2 ≥ Eν

[
∥q̂ − q∥2

]
+ ϵ

)
≤ C exp

(
− 1

h
· 1 − λ

1 + λ
· Nϵ2

)
, (P.17)

where C := C(ν, 0, p) and h are defined as in E.1, while we used P rν and Eν to emphasize the dependence on the
initial distribution ν.
To proceed with the analysis, we need to bound Eν

[
∥q̂ − q∥2

]
. In the following steps, we show how to do it using

some ideas appearing in Fan et al. (2021). We have:

Eν

[
∥q − q̂∥2

]2
≤ Eν

[
∥q − q̂∥2

2
]

= Eν

[ d∑
y=1

|qy − q̂y|2
]

=
d∑

y=1

Eν

[
(qy − q̂y)2

]
=

d∑
y=1

Eν

[(
qy − 1

n

n∑
i=1

1{f(Si) = y}
)2]

=
d∑

y=1

Eπ

[
ν(S1)
q(S1)

(
qy − 1

n

n∑
i=1

1{f(Si) = y}
)2]

[Change of Measure]

≤
d∑

y=1

Eπ

[(
ν(S1)
q(S1)

)p]1/p

Eπ

[(
qy − q̂y

)2h]1/h

[Hölder]

=
∥∥∥ν

π

∥∥∥
∞

d∑
y=1

Eπ

[(
qy − q̂y

)2]
[p = ∞, h = 1]

12Differently from the distributions defined in Proposition E.1, here ν and π are probability mass functions defined on a finite
state space.

36



Published in Transactions on Machine Learning Research (09/2024)

=
∥∥∥ν

π

∥∥∥
∞

d∑
y=1

var[q̂y] [Variance Definition]

≤
∥∥∥ν

π

∥∥∥
∞

d∑
y=1

(1 + λ

1 − λ

)
· qy

n
[Result from Fan et al. (2021)],

≤
∥∥∥ν

π

∥∥∥
∞

(1 + λ

1 − λ

)
· 1

n
[Since

d∑
y=1

qy = 1],

= C

n

(1 + λ

1 − λ

)
, (P.18)

where in the derivation we made explicit the dependence of each term q̂y from the sequence of stochastic underlying
latent states (Si)i∈[n], while 1 represents the indicator function, while f(S) represents the outcome of a categorical
distribution with size d and parameters based on the state S13.
From the obtained result, we can see that starting from a distribution that is different from the stationary one leads
to a further multiplicative term C in the final concentration result.
By using p = ∞ and h = 1 we obtain the bound appearing in P.18. Finally, by substituting this result into
Equation P.17 we obtain the result in the claim.

E.3 Bounds on the Error of the Estimated Belief

We present here the result appearing in Zhou et al. (2021) that controls the error in the estimated belief.
They consider a setting with Bernoulli rewards V = {0, 1} which results in an action observation matrix
O ∈ R2I×S . Since the rewards are Bernulli, the dimension of the action observation matrix can be halved,
because half of the probabilities contained are complementary to the other half. In particular, we will use
the reward matrix µ ∈ RI×S such that each of its elements is defined as in Equation 4 that we report here
for simplicity.

µ(a, s) =
∑
r∈V

rO
(
(a, r), s

)
∀ a ∈ I, s ∈ S.

Proposition E.5. (Controlling the belief error (Zhou et al., 2021)) Assume to have a transition matrix P of
size S×S with minimum entry ϵ > 0 and reward matrix µ ∈ RI×S. Let’s assume to have an estimator (µ̂, P̂ )
of the true model parameters (µ, P ). For an arbitrary reward-action sequence {r1:t, ai:t}t≥1, let b̂t and bt

be the corresponding beliefs in period t under (µ̂, P̂ ) and (µ, P ) respectively. Then there exists constants L1
and L2 such that:

∥b̂t − bt∥1 ≤ L1∥µ̂− µ∥1 + L2∥P̂ − P ∥F ,

where L1 = 4S( 1−ϵ
ϵ )2/ min{µmin, 1 − µmax}, L2 = 4S(1−ϵ)2

ϵ3 +
√

S, ∥·∥F is the Frobenius norm, µmax and
µmin are the maximum and minimum element of the matrix µ respectively.

We adapt the previous result to our setting with a discrete set of rewards and with a known observation
matrix O. It can be expressed as follows.
Proposition E.6. (Controlling the belief error in Switching Latent Bandits) Assume to have a transition
matrix P of size S × S with minimum entry ϵ > 0. Given a model with parameters (O, P ), we assume
to know the observation model O and to have an estimation of the transition matrix P̂ . For an arbitrary
reward-action sequence {r1:t, ai:t}t≥1, let b̂t and bt be the corresponding beliefs in period t under (O, P̂ ) and
(O, P ) respectively. Then there exists a constant L such that:

∥b̂t − bt∥1 ≤ L∥P̂ − P ∥F ,

where L = 4S(1−ϵ)2

ϵ3 +
√

S and ∥·∥F is the Frobenius norm.
13In our context, the f function represents the observation distribution given the used action and the underlying state.

Assuming to condition on action a (we refer to it as fa), we will have fa(s) = O
(

(a, ·), s
)

.
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F Continuous Reward Distributions

In the main paper, we focused on the case where the set of possible observations is discrete and the distribu-
tion of the observations O

(
(a, ·), s

)
∈ ∆(V) is categorical, for each latent state s ∈ S and action a ∈ I. In this

section, we show how we can extend the estimation procedure to also handle continuous reward distributions.
Formally, if we consider having a Switching Latent Bandit problem with continuous rewards and a number
S of bandits and a number I of actions available for each bandit, there will be IS potentially different con-
tinuous reward distributions Pr(·|s, a) for each latent state s ∈ S and action a ∈ I. If we assume to discretize
each reward distribution into U consecutive intervals, we will have U − 1 splitting points. By considering
the ordered set of splitting points and taking two consecutive splitting points uh and uk for which holds that
uh < uk, we can define the interval Ihk = (uh, uk]. The probability that a realization from a continuous
distribution Pr(·|s, a) falls within interval Ihk is defined as:

Pr(r ∈ Ihk|s, a)) =
∫ uk

uh

Pr(dr|s, a) dr.

Of course, if we are able to exactly compute the integrals in the previous formulation we will not introduce
any error in the discretization process. By applying the same procedure for all the U intervals identified,
we can define the parameters of the new categorical distribution. This procedure is then applied to all the
continuous probabilities Pr(·|s, a) for each s ∈ S and a ∈ I using the same splitting points and we finally
obtain a new action observation matrix of size IU × S, which should of course satisfy Assumption 4.2.
From this point on, we can build the new reference matrix and we can proceed with the estimation procedure
presented in Algorithm 1. Whenever a reward is observed during the estimation procedure, the count vector
is updated by considering the interval to which the observed reward belongs.
It is an interesting problem to determine in this setting the number of suitable splits and the location of the
split points that leads to an action observation matrix with higher σmin(O).

Another issue arises when the environment comprises numerous but finite observations. In such scenarios, we
can employ the inverse approach by clustering some observations, thereby reducing the scale of the problem.
By selecting a number of clusters C < V , we can divide the observations into distinct groups. This allows
us to utilize cluster-level probabilities (obtained by summing probabilities of the single observations) to
construct a new action observation matrix and then proceed with the standard estimation procedure.
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