
A1 CP in Multi-Step Setting479

Algorithm 1 Multi-step LLM planning with human help.

1: for time t←0 to T−1 do
2: Observe input xt

test
3: Predict a set C(xt

test)
4: if C(xt

test) is a singleton then
5: execute corresponding action
6: else
7: ask for help, which is always assumed to provide the correct label, or the human provide clarification only
8: end if
9: end for

Proof of Claim 1: Suppose y∈C(xtest). We have,480

y∈C(xtest)⇐⇒min
t

f̂(xttest)yt ≥1−q̂ (A1)

⇐⇒ f̂(xttest)yt ≥1−q̂, ∀t∈ [T ] (A2)

⇐⇒yt∈Ct(xttest), ∀t∈ [T ] (A3)
⇐⇒y∈C(xtest). (A4)

Proof of Proposition 2: Since we can bound the probability that ytest /∈ C(xtest), we can also bound481

the probability that ytest /∈C(xtest). From the conformalization procedure, we have the following dataset-482

conditional guarantee: with probability 1−δ over the sampling of the calibration set Z, we have483

P
(
ytest∈C(xtest)|Z

)
≥Beta−1

N+1−v,v(δ), v=⌊(N+1)̂ϵ⌋ (A5)
Claim 1
====⇒P

(
ytest∈C(xtest)|Z

)
≥Beta−1

N+1−v,v(δ), (A6)

where ϵ̂ is chosen such that ϵ=1−Beta−1
N+1−v,v(δ). Hence, the following marginal guarantee also holds:484

P
(
ytest∈C(xtest)

)
≥1−ϵ̂

Claim 1
====⇒P

(
ytest∈C(xtest)

)
≥1−ϵ̂.

This result provides a bound on the task completion rate if xtest is drawn using the distribution D. However,485

recall that the sequence x of augmented contexts as defined in Section 3.3 arises from having performed486

the correct actions in previous steps; incorrect actions may result in a distribution shift. In order to obtain a487

bound on the task completion rate, we consider three cases at any given timestep: (1) the prediction set is a488

singleton and contains the correct label, (2) the prediction set is not a singleton but does contain the correct489

label, and (3) the prediction set does not contain the true label. The robot performs the correct action in the490

first two cases (without help in (1) and with help in (2)), while CP bounds the probability of case (3). Thus,491

the CP bound translates to a bound on the task success rate.492

As seen in Eq. (3), we have from [10, Thm. 1], that we achieve the smallest average set size among all493

possible sequence-level prediction schemes, C, if f̂ models the prediction uncertainty accurately,494

min
C∈C

E
(x,·)∼D

[
|C(x)|

]
, subject to P

(
y∈C(x)

)
≥1−ϵ̂. (A7)

A2 CP in Settings with Multiple Acceptable Options Per Step495

Proposition 3 (Multi-label uncertainty alignment) Consider a setting where we use CP with coverage496

level 1−ϵ to construct the prediction set when there are multiple true labels and seek help whenever the set497

is not a singleton at each timestep. With probability 1−δ over the sampling of the calibration set, the task498

completion rate over new test scenarios drawn from D is at least 1−ϵ.499

Proof: We have a dataset of Z={(x̃i,Yi),...}Ni=1 sampled i.i.d. from a data distribution D for calibration500

(we use the same notation D as in the single-label setting here), where Yi :={yi,j}Ji
j=1 is the set of true501

labels for a single trial. For each label, we use the same heuristic notion of confidence, f̂(x)y∈ [0,1].502
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We define an operator β :X×YJ→Y where X is the space of contexts and Y is the space of labels:503

β(x,Y ):=argmax
y∈Y

f̂(x)y, (A8)

which takes the true label with the highest confidence value from the true label set.504

If we consider applying β to every point in the support of D, a new distribution D′ is induced. We also505

consider the induced dataset of samples S′ = {(xi,ymax
i )}Ni=1, where ymax

i := β(xi,Yi). Then we can506

perform the usual conformalization and obtain the guarantee that with507

C(xtest):={y|f̂(xtest)y≥1−q̂}, (A9)

the following marginal guarantee holds,508

P(ymax
test /∈C(xtest))≤ ϵ̂, (A10)

⇒P(argmax
y∈Ytest

f̂(xtest)y /∈C(xtest))≤ ϵ̂, (A11)

⇒P(β(xtest,Ytest) /∈C(xtest))≤ ϵ̂, (A12)

and the following dataset-conditional guarantee holds when we choose ϵ̂ such that ϵ=1−Beta−1
N+1−v,v(δ)509

where v=⌊(N+1)̂ϵ⌋,510

P(β(xtest,Ytest)∈C(xtest)|Z)≥1−ϵ. (A13)

Hence, C(xtest) contains the true label with the highest confidence with probability at least 1−ϵ.511

At test time, we sample (xtest,Ytest) from D that is i.i.d. with samples in S — for the guarantee to hold for512

β(xtest,Ytest), we need to show β(xtest,Ytest) is a sample from D′ that is i.i.d. with samples in S′. This is true513

since functions of independent random variables are independent, and functions of identically distributed514

random variables are identically distributed if the functions are measurable.515

A3 CP in Multi-Step Setting with Multiple Acceptable Options Per Step516

Proposition 4 (Multi-step, multi-label uncertainty alignment) Consider a multi-step setting where we517

use CP with coverage level 1−ϵ to causally construct the prediction set when there may be multiple true518

labels at any step and seek help whenever the set is not a singleton at each timestep. With probability 1−δ519

over the sampling of the calibration set, the task completion rate over new test scenarios drawn from D is520

at least 1−ϵ.521

Proof: For the multi-step setting, each trial now involves a sequence of contexts x and a set of sequences522

of true labels:523

Y ={y1,y2,...,yM}, (A14)

where ym :=(y0m,y2m,...,yT−1
m ). For example, Y can contain the sequence of “blue block, yellow block,524

green block”, “green block, blue block, yellow block”, ..., for the task of picking up three blocks. We525

collect a dataset of Z={(xi,Y i)} of i.i.d. samples from the data distribution D.526

Unlike the single-step setting, here we cannot apply β to the set of true labels in each step since we are527

reasoning over a set of sequences, and not a sequence of sets of true labels. Notably, the true label set at528

time step t depends upon the sequence of previously chosen true labels.529

Let Y t[x0,ȳt−1] denote the set of true labels at timestep t, conditioned upon the initial context x0 and a530

partial sequence of past true labels ȳt−1 :=(y0,...,yt−1) extracted from Y . We then autoregressively define531

the following sequence:532

β0(x,Y ):=argmax
y∈Y 0

f̂(x0)y, Y 0 :={y01,...,y0M} (A15)

βt(x,Y ):=βt−1(x,Y )
⋃

argmax
y∈Y t[x0,βt−1(x,Y )]

f̂(xt)y, t=1,...,T−1. (A16)

For convenience, we denote βt(x,Y )[τ ] the τ element in βt(x,Y ),τ≤t. An intuitive interpretation is that,533

we can consider Y forming a tree of valid executions (all possible actions that can be taken by choosing534

each of true labels). Hence, at each time step t, βt(x,Y ) prunes the tree to a single branch by taking the535

true label with the highest heuristic value f̂(xt). This reduces the tree of all possible sequences of true536
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labels to a single branch of true labels with highest confidence. Given this single branch of true labels, we537

can now perform CP as shown in the multi-step setting in Section A1.538

We apply βT−1 to every point in the support of D, and a new distribution D′
is induced. We consider539

S
′
={(xi,ymax

i )}, where ymax
i :=βT−1(xi,Y i). Let Y test be the set of sequences of true labels for xtest.540

Suppose we get the marginal bound with βT−1 as the labels:541

P(βT−1(xtest,Y test) /∈C(xtest))≤ ϵ̂, (A17)

and dataset-conditional bound when we choose ϵ̂ such that ϵ=1−Beta−1
N+1−v,v(δ) where v=⌊(N+1)̂ϵ⌋,542

P(βT−1(xtest,Y test) /∈C(xtest)|Z)≤ϵ, (A18)

which states that at test time, given a context sequence xtest, we produce a prediction set of sequences; if543

we consider a sequence consisting of the true label with the highest score at each step, the probability of544

this sequence covered by C(xtest) is lower bounded by 1−ϵ. However, we need to be careful of following545

βt at each step at test time. Conside the three cases:546

• (1) At a given time-step, the prediction set Ct(xttest) does not contain the true label, βt(x,Y )[t].547

• (2a) The prediction set is a singleton and does contain the true label.548

• (2b) The prediction set is not a singleton (but does contain the correct label).549

We already bound the probability of (1) happening with the CP bound; (2a) is fine since the LLM will take550

the correct action; (2b) is more challenging — in this case the robot asks the human for help, and we need551

to make sure the human “follows” the true label, by choosing the true label in the prediction set with the552

highest confidence by f̂ . In practice, we present the labels ranked by f̂ and ask the human to choose the553

true label with the highest rank.554

Now let’s derive the bound in Eq. (A17) and Eq. (A18). Again we need to consider the causal construction555

issue. As seen in Section 3.3, we construct the prediction set C(xtest) non-causally using the score function556

si=1−f̂(xi)ymax
i

(taking minimum over steps). For a test sequence xtest, we apply βT−1 to the true label557

set of sequences Y test to get ymax
test =βT−1(xtest,Y test). Now suppose ymax

test ∈C(xtest), then we can show558

ymax
test ∈C(xtest) with the same proof as the single-label setting, which gives us the bound.559

Lastly we need to show the sampled test sequence from D leads to a sample from D′
i.i.d. with S

′
. This is560

true with the same argument that functions of independent random variables are independent.561

A4 Additional Experiment Setting: Real Bimanual Setup562

In this example, a real bimanual setup with two Kuka IIWA 7 arms move objects on the table, with one bin563

at each side (Fig. 5 right). The reachable workspace of each arm is limited so that one arm cannot reach the564

other end of the table or the other bin. Thus, there can be ambiguities in the choice of the arm depending565

on the task; e.g., Fig. 5 shows the human asking the robot to pass over the mango, but not specifying566

where the human is. KNOWNO is able to capture such ambiguities and triggers clarification. We design a567

scenario distribution with all instructions being ambiguous (thus requiring high human intervention rate):568

with ϵ=0.15, the robot achieves 84% plan success with 92% help. With 10 real trials, the robot succeeds 9569

times while triggering help for 9 times.570

A5 LLM Prompt Setup571

Next we detail the LLM prompt setup for MCQA applied in KNOWNO. We will use the Mobile572

Manipulation setting from Section 4.3 as the example.573

Multiple choice generation. Given a scenario, we first prompt the LLM to generate four options for574

possible actions. We apply few-shot prompting as shown in Fig. A1 below with zero temperature. In this575

scenario, there is a Coke, a bottled tea, and a Pepsi on the counter, and the task is to put the Coke in the top576

drawer but the choice of drawer is under-specified (“Put the Coke in the drawer please.”).577
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We: You are a robot operating in an office kitchen. You are in front of a counter with two closed drawers, 
a top one and a middle one. There is also a landfill bin, a recycling bin, and a compost bin.

We: On the counter, there is an orange soda, a Pepsi, and an apple.
We: Put that drink in the top drawer.
You:
A) open the top drawer and put the orange soda in it
B) open the middle drawer and put the Pepsi in it
C) open the middle drawer and put the orange soda in it
D) open the top drawer and put the Pepsi in it

We: On the counter, there is an energy bar, a banana, and a microwave.
We: Put the snack next to the microwave.
You:
A) pick up the energy bar and put it next to the microwave
B) pick up the banana and put it next to the energy bar
C) pick up the banana and put it next to the microwave
D) pick up the energy bar and put it next to the banana

We: On the counter, there is a Coke, a Sprite, and a sponge.
We: Can you dispose of the can? It should have expired.
You:
A) pick up the sponge and put it in the landfill bin
B) pick up the Coke and put it in the recycling bin
C) pick up the Sprite and put it in the recycling bin
D) pick up the Coke and put it in the landfill bin

We: On the counter, there is a bottled water, a bag of jalapeno chips, and a bag of rice chips.
We: I would like a bag of chips.
You:
A) pick up the bottled water
B) pick up the jalapeno chips
C) pick up the kettle chips
D) pick up the rice chips
(The correct option is either B or D, since either jalapeno chips or rice ships are fine.)

We: On the counter, there is a Coke, a bottled unsweetened tea, and a Pepsi. 
We: Put the Coke in the drawer please.
You:

Figure A1: Prompt used for multiple choice generation in the Mobile Manipulation setting.

After the LLM generates four options, we append an additional option ‘an option not listed here’ to the578

four generated ones and then randomize the order to further prevent bias. We then use a zero-shot prompt579

in Fig. A2 for querying next-token probabilities (‘A’, ‘B’, ‘C’, D’, ‘E’).580

We: You are a robot operating in an office kitchen. You are in front of a counter with two closed drawers, 
a top one and a middle one. There is also a landfill bin, a recycling bin, and a compost bin.

We: On the counter, there is a Coke, a bottled unsweetened tea, and a Pepsi. 
We: Put the Coke in the drawer please.
You:
A) pick up the coke 
B) pick up the coke and put it in the top drawer
C) pick up the coke and put it in the bottom drawer
D) a different option not listed here
E) pick up the pepsi
We: Which option is correct? Answer with a single letter.
You:

Figure A2: Prompt used for next-token prediction with generated multiple choices in the Mobile Manipulation setting.

A6 Additional Experiment Details581

Environments. In addition to Fig. 1 and Fig. 5, here Fig. A3 shows the office kitchen environment with582

the set of drawers and bins used in the Mobile Manipulator experiments (left), and the bimanual setup with583

the set of objects used on the mat (right). There is another set of drawers used in the mobile manipulation584

experiments underneath a much bigger countertop not shown here.585

Tasks and instructions. Next, we provide more details on the task settings, in particular, the possible586

ambiguities:587

• Attribute ambiguities in Simulated setting: besides non-ambiguous terms like “green”, “yellow”, “blue”,588

“block” and “bowl” (“put green block in yellow bowl”), refer to the block as one of “cube”, “cuboid”,589

“box”, “square object”, to the bowl as one of “container”, “round object”, “receptacle”, or to either block590

or bowl as one of “object”, “item”, “thing” (“move the blue object in yellow bowl”); refer to “blue” as591

one of “cyan”, “navy”, to “green” as one of “greenish”, “grass-colored”, and to “yellow” as “orange” or592

“gold”.593

• Numeric ambiguities in Simulated setting: besides non-ambiguous terms like “a”, “one”, “a single of”,594

“two”, “a pair of”, “three”, “all” (“put a block in yellow bowl”), refer to either two or three numerically595

with one of “a few”, “a couple of”, “some”, “a handful of” (“put some blocks in the green bowl”).596
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KnowNo

white shallow container

Figure A3: (Left) Office kitchen environment with drawers and bins for the Mobile Manipulation setting. (Right)
Bimanual setup with the set of objects used in the experiments.

• Spatial ambiguities in Simulated setting: besides non-ambiguous terms like “in front of“, “behind”, “to597

the left”, and “to the right” (“put the green block to the left of green bowl”), refer to any of the four598

possible directions with “near”, “close to”, “beside”, “next to”, refer to either left to right with “lateral599

to”, and refer to either front or behind with “along the line of sight”.600

• Real Tabletop Rearrangement setting: we split the 28 toy items (Fig. A4) into two categories of human601

liking them or disliking them: the things the human likes include corn, avocado, celery, carrot, tomato,602

lettuce, apple, orange, pear, lemon, peanut butter, sunny-side-up egg, egg, and pea; the human dislikes603

pretzel, cracker, waffle, mustard, ketchup, pizza, meat patty, cheese, chicken drumstick, peach, mango604

M&M, Skittles, and donut.605

• Real Mobile Manipulator setting: please refer to https://tinyurl.com/robot-help for the full list.606

• Bimanual setting: please refer to https://tinyurl.com/robot-help for the full list.607

Next we provide more details on some of the baselines.608

Baselines - Ensemble Set. Admittedly, our ensemble-based method is a weaker method than the traditional609

model-based ensemble where multiple copies of neural network are trained and inferred with; however, this610

is infeasible with the LLM we use. In our work, we randomize over the few-shot examples in the prompt611

as the ensemble. We select a pool of 20 possible MCQA examples (see examples in Fig. A1), and then612

randomly sample a certain amount from it for each inference. Note that in this case, Ensemble Set actually613

has advantage over KNOWNO and Simple Set that, for the same data, it has seen many more examples than614

the fixed ones in the prompt used in KNOWNO and Simple Set. We only apply ensemble for next-token615

prediction; the same set of multiple choices generated is used.616

Baselines - Prompt Set. MCQA is also applied. Similar to Fig. A1, in the few-shot examples in the prompt,617

we show the true possible labels. For example, “We: Which options are possibly correct? You: A, C, D.”618

Baselines - Simple Set. Instead of MCQA, the LLM is first prompted to give the most likely action (e.g.,619

“We: Put the Coke can in the drawer. You: I will” as the prompt). And then we attach the generated620

response to the same prompt, and ask LLM to label “Certain/Uncertain:”, given few-shot examples.621

A7 Additional Implementation Details622

While the focus of KNOWNO is mainly on providing uncertainty alignment for the LLM-based planner,623

below we provide details of the perception and action modules applied in all examples.624

Perception. For all settings except for the Mobile Manipulator, we use either MDETR [52] (UR5625

tabletop setting) or Owl-ViT [53] (Simulated and Bimanual settings) open-vocabulary object detector for626

recognizing the objects in the environment and obtaining the object locations for low-level action. In627

Simulated and Bimanual settings, the variations of the object types are limited, and with general prompting,628

the objects are detected without issue. In the UR5 tabletop setting, since we are use a wide variety of toy629

items (Fig. A4 right), the detector has issues often differentiating objects like peanut butter and meat patty630

that are both darker colors. We modify the scenario distributions to avoid using such items together in one631

scenario. In addition, we apply the Segment Anything model [54] to extract the object segmentation masks632

(shown overlaid in Fig. A4 left), and then use the polylabel algorithm [55] to find the most distant633

internal point of the mask as the suction point (shown as red dots).634

Low-level action. In Simulated setting and UR5 tabletop setting, simple pick-and-place actions are635

executed based on object locations and solving the inverse kinematics. In Bimanual setting, the reachability636

of the Kuka arm is limited, and the pick-and-place action trajectories are solved using Sequential Quadtratic637
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KnowNo

white shallow containerFigure A4: (Left) MDTER [52] object detection with Segment Anything [54] and most distant internal point (red dots)
for UR5 tabletop setting. (Right) The total 28 toy items used for the experiments.

Programming (SQP) instead [56]. In the Mobile Manipulator setting, for most of the tasks that involve638

simple pick-and-place and opening the drawers, the action is from an end-to-end policy from the RT-1639

policy (please refer to [57] for details), which takes in the raw observation. For some of the hard tasks such640

as putting the plastic bowl in the microwave and putting the metal bowl on the bowl, object locations are641

assumed known and we use scripted action policies.642

A8 Additional Discussions643

Sentence-level score leads to worse performance. In Section 2 we hypothesize that the distribution of644

probabilities (perplexity) of LLM outputs p(y) is highly sensitive to the output length. Here we explore the645

effect of using sentence output and the perplexity score for CP. We still apply multiple choice generation646

first to obtain the possible options from LLM, and then query LLM scoring, for example, the probability647

of “put the blue block in the green bowl” with the prompt ending with “I will”. Table A1 shows that648

for all three settings, using CP with perplexity leads to worse performance, and performance degradation649

correlates with variance of the multiple choice lengths.650

Setting Variance Method Set Size Help

Attribute 1.52 KNOWNO 1.18 0.18
CP w/ Perplexity 1.33 0.32

Spatial 2.81 KNOWNO 2.23 0.69
CP w/ Perplexity 2.50 0.82

Numeric 8.51 KNOWNO 2.17 0.79
CP w/ Perplexity 4.06 1.00

Table A1: Comparison of KNOWNO with CP with sentence output and perplexity score in the three settings in the
Simulated setting. ϵ=0.15.

Potentially stronger baselines with model fine-tuning. In Section 4 we introduce the two prompt-based651

baselines Prompt Set and Binary, and demonstrate them being (1) inflexible (not allowing controlling652

the target success rate) and (2) do not properly model the uncertainty. We note that these two baselines653

can be potentially strengthened by fine-tuning the LLM to better predict the binary uncertainty or the654

uncertainty set, if the true labels can be properly defined. In fact, some recent work [37, 36] have explored655

model fine-tuning and exhibiting the effectiveness of Binary for uncertainty calibration. We also explored656

fine-tuning the GPT3 model (davinci) from OpenAI, which is the most powerful one from OpenAI657

available for fine-tuning. However, we find the model performing at very low accuracy with MCQA, and658

fine-tuning the model always results in overfitting to the dataset, even with thousands of data and varying659

hyperparameters (including ones from [37]). We suspect that our scenarios exhibit high complexity and660

variance, and it is non-trivial to fine-tune the model well with our dataset. Nonetheless, we do hope to have661

future work looking into better training the model for proper uncertainty, and then applying CP on top of it662

to achieve set-based calibration.663
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