

Introduction:

- Video frame interpolation algorithms generate one or multiple frames between two consecutive frames in a video.
- Optical flow-based frame interpolation approaches estimate intermediate optical flow from interpolated frame to input frames and warped frames are fused to generate interpolated frame.
- However, intermediate flow estimates can itself be erroneous leading to inaccurate interpolation results.
- In this work, we improve an optical flow-based interpolation algorithm, Super-SloMo by residual refinement.
- Specifically, we feed intermediate flowmaps, visibility map, warped input frames and intermediate interpolation estimate to a refinement network to predict a frame residual.
- We have also experimented with different architecture choices to be used in different modules to further improve the results.
- We found out that GridNet with four pyramid levels achieves the best results whereas UNet++ performs moderately well with significantly less number of parameters.

ReFIn: A Refinement Approach for Video Frame Interpolation Saikat Dutta and Anurag Mittal IIT Madras, India

Methodology:

Flow Estimation Module:

- First step of our algorithm is to estimate bidirectional optical flowmaps between input frames.
- Instead of using UNet for flow estimation as in SuperSloMo, we use pretrained state-of-the-art flow estimator PWCNet.

> Interpolation Module:

> After computing bidirectional optical flows using Flow Estimation module, we compute approximation of flow from intermediate image to input images.

$$\hat{F}_{t\to 0} = -(1-t)tF_{0\to 1} + t^2F_{1-1}$$
$$\hat{F}_{t\to 1} = (1-t)^2F_{0\to 1} - t(1-t)F_{1-1}$$

- > However, this approximation is not true in case of motion boundaries. Interpolation module acts as a correction step for computing final intermediate flowmaps.
- \succ This module generates residual flowmaps to refine the intermediate flowmaps.

$$F_{t\to0} = \hat{F}_{t\to0} + \triangle \hat{F}_{t\to0}$$
$$F_{t\to1} = \hat{F}_{t\to1} + \triangle \hat{F}_{t\to1}$$

 \succ Additionally, it computes soft visibility maps required for fusing the warped input frames. \succ Intermediate frame is synthesized as,

$$\hat{I}_t = \frac{(1-t)V_{t\to 0} \odot bw \left(I_0, F_{t\to 0}\right) + tV_{t\to 1}}{(1-t)V_{t\to 0} + tV_{t\to 1}}$$

Refinement Module:

- > Although the formulation of intermediate frame is compact, the synthesized frame can still have erroneous predictions.
- > Hur et al. has shown that iterative residual refinement of optical flow predictions can improve optical flow accuracy.
- \succ Inspired by this, we introduce one step of refinement. We compute residual of the predicted frame using a Refinement module.
- \succ Final frame is synthesized as,

$$\tilde{I}_t = \hat{I}_t + \triangle \hat{I}_t$$

Results:

 $_1 \odot bw\left(I_1, F_{t \to 1}\right)$

Method	Vimeo-Triplet		UCF101	
	PSNR	SSIM	PSNR	SSIM
TOFlow	33.73	0.9682	34.58	0.9667
SepConv	33.79	0.9702	34.78	0.9669
SuperSloMo	33.44	0.9673	34.09	0.9655
CtxSyn	34.39	0.9610	34.62	0.9490
CyclicGen	32.10	0.9490	35.11	0.9680
MEMC-Net	34.29	0.9739	34.96	0.9682
DAIN	34.71	0.9756	34.99	0.9683
CAIN	34.65	0.9730	34.91	0.9690
BMBC	35.01	0.9764	35.15	0.9689
AdaCoF	34.35	0.9714	35.16	0.9689
Ours (GridNet-4)	35.15	0.9773	34.96	0.9690

DAIN

Conclusion:

- In this work, we adopt SuperSloMo and improve interpolation accuracy with the help of a refinement network.
- > We show this refinement module can help in case of incorrect intermediate flow estimation.
- It can also help in enhancing edges and textures in the generated frame.
- We have explored a variety of network architectures to be used in Interpolation and Refinement modules.
- Our experiments show that GridNet-4 performs better than the rest
- being parameter-efficient.

Deep Learning and Inverse Problems

On the other hand, UNet++ achieves good performance while