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ABSTRACT

Point processes model the distribution of random point sets in mathematical
spaces, such as spatial and temporal domains, with applications in fields like seis-
mology, neuroscience, and economics. Existing statistical and machine learning
models for point processes are predominantly constrained by their reliance on
the characteristic intensity function, introducing an inherent trade-off between ef-
ficiency and flexibility. In this paper, we introduce POINT SET DIFFUSION, a
diffusion-based latent variable model that can represent arbitrary point processes
on general metric spaces without relying on the intensity function. By directly
learning to stochastically interpolate between noise and data point sets, our ap-
proach effectively captures the distribution of point processes and enables effi-
cient, parallel sampling and flexible generation for complex conditional tasks. Ex-
periments on synthetic and real-world datasets demonstrate that POINT SET DIF-
FUSION achieves state-of-the-art performance in unconditional and conditional
generation of spatial and spatiotemporal point processes while providing up to
orders of magnitude faster sampling.

1 INTRODUCTION Forward Process Reverse Process
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Figure 1: Illustration of POINT SET DIFFUSION for
earthquakes in Japan. The forward process stochasti-
cally interpolates between the original data point set
X0 and a noise point set XT , progressively remov-
ing data points and adding noise points. To generate
new samples from the data distribution, we approxi-
mate the reverse posterior q(Xt|X0, Xt+1) and add ap-
proximate data points and remove noise points.

Point processes describe the distribution
of point sets in a mathematical space
where the location and number of points
are random. On Euclidean spaces, point
processes (e.g., spatial and/or temporal;
SPP, STPP, TPP) have been widely used
to model events and entities in space and
time, such as earthquakes, neural activity,
transactions, and social media posts.

Point processes can exhibit complex inter-
actions between points, leading to corre-
lations that are hard to capture effectively
(Daley & Vere-Jones, 2007). The distri-
bution of points is typically characterized
by a non-negative intensity function, rep-
resenting the expected number of events in
a bounded region of space (Daley et al.,
2003). A common approach to modeling
point processes on general metric spaces
is to parameterize an inhomogeneous in-
tensity as a function of space. However, this approach assumes independence between points, which
restricts its ability to model complex interactions and hinders generalization across different point
sets (Daley et al., 2003; Daley & Vere-Jones, 2007).

∗Equal contribution
Code is available at https://www.cs.cit.tum.de/daml/point-set-diffusion
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For ordered spaces like time (STPP, TPP), the predominant approach is to model the conditional
intensity autoregressively, conditioning each point on its past, allowing temporal causal dependen-
cies, which can be conveniently captured by state-of-the-art machine learning models (Shchur et al.,
2021). While this enables point interactions, these models rely on likelihood-based training and se-
quential sampling, which require integrating the intensity function over the entire space. Ultimately,
this constrains models, as it either necessitates oversimplified parameterizations that restrict point
dependencies and introduce smoothness (Ozaki, 1979; Ogata, 1998; Zhou & Yu, 2023), or approx-
imations using amortized inference (Zhou et al., 2022), numerical (Chen et al., 2020), or Monte
Carlo methods (Hong & Shelton, 2022). Thus, capturing complex point dependencies and sampling
from point processes, particularly on general metric spaces, remains an open research challenge.

Lüdke et al. (2023) overcame the limitations of the conditional intensity function for temporal point
processes by proposing ADD-THIN, a diffusion model for TPPs based on the thinning and super-
position property of TPPs directly modeling entire event sequences. In this paper, we generalize
this idea to point processes on general metric spaces and derive a diffusion-based latent variable
model, POINT SET DIFFUSION, that directly learns to model the stochastic interpolation between
a data point set and samples from any noise point process (see Figure 1). Furthermore, we show
how to generate conditional samples with our unconditional POINT SET DIFFUSION model to solve
arbitrary conditioning tasks on general metric spaces. Our experiments demonstrate that POINT SET
DIFFUSION achieves state-of-the-art results on conditional and unconditional tasks for SPPs, TPPs
and STPPs. Our contributions can be summarized as follows:

• We derive a diffusion-based latent variable model that captures the complex distribu-
tion of point processes on general metric spaces by learning stochastic interpolations
between data and noise point sets.

• Our model enables efficient and parallel sampling of point sets while supporting flex-
ible conditioning through binary functions on the metric space.

• We propose a model-agnostic evaluation framework for assessing generative point pro-
cess models on Euclidean spaces.

• Our method achieves state-of-the-art results for conditional and unconditional genera-
tion of SPPs, TPPs, and STPPs while offering orders of magnitude faster sampling.

2 BACKGROUND

2.1 POINT PROCESSES

A point process (Daley et al., 2003) is a stochastic process where realizations consist of finite sets of
points randomly located in a mathematical space. More formally, let (D, d) be a complete, separable
metric space equipped with its Borel σ-algebra B. A point process on D is a mapping X from a
probability space (Ω,A,P) into N lf , the set of all possible point configurations, such that for any
bounded Borel set A ⊆ D, the number of points in A, denoted by N(A), is a finite random variable.

Given a realization of the point process X = {xi ∈ D}1≤i≤n, where n is the number of points, the
number of points in a region is expressed as the counting measure N(A) =

∑n
i=1 1{xi ∈ A}. Here,

we assume the point process is simple, i.e., almost surely N({xi}) ≤ 1 for all xi ∈ D, meaning no
two points coincide. Point processes are commonly characterized by their intensity function, which
is defined through the following random measure:

A 7→ µ(A) := E[N(A)] =

∫
A

λ(x) dx, (1)

where µ(A) represents the expected number of points in a region A. Then, a point process is said to
have intensity λ if the measure µ above has a density λ with respect to the Lebesgue measure µ(A).
Thus, the intensity function λ(x) gives the expected number of points per unit volume in a small
region of the Borel set A ⊆ D.

The points in a realization X can exhibit complex correlations, so the intensity function is non-
trivial to parameterize. On a Euclidean space R we can specify the Papangelou intensity (Daley
et al., 2003):

λ(x) = lim
δ→0

P{N(Bδ(x)) = 1|C(N(R \Bδ(x)))}
|Bδ(x)|

, (2)
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where Bδ(x) is the ball centered at x with a radius of δ, and C(N(R \ Bδ(x))) represents the
information about the point process outside the ball. If the Euclidean space is ordered, for instance,
representing time, the conditioning term would represent the history of all points prior to x.

In general, effectively modeling and sampling from the conditional intensity (or related measures,
e.g., hazard function or conditional density), for arbitrary metric spaces is a fundamental problem
(Daley et al., 2003; Daley & Vere-Jones, 2007). This difficulty has led to a variety of simplified
parametrizations that restrict the captured point interactions (Ozaki, 1979; Zhou & Yu, 2023; Daley
et al., 2003; Daley & Vere-Jones, 2007); discretizations of the space (Ogata, 1998; Osama et al.,
2019); and numerical or Monte Carlo approximations (Chen et al., 2020; Hong & Shelton, 2022).

In contrast, we propose a method that bypasses the abstract concept of a (conditional) intensity
function by directly manipulating point sets through a latent variable model. Our approach leverages
the following point process properties:1

Superposition: Given two point processes N1 and N2 with intensities λ1 and λ2 respectively, we
define the superposition of the point processes as N = N1+N2 or equivalently X1

⋃
X2. Then, the

resulting point process N has intensity λ = λ1+λ2. Independent thinning: Given a point process N
with intensity λ, randomly removing each point with probability p is equivalent to sampling points
from a point process with intensity (1− p)λ.

2.2 DIFFUSION MODELS

Ho et al. (2020) and Sohl-Dickstein et al. (2015) introduced a new class of generative latent
variable models – probabilistic denoising diffusion models. Conceptually, these models learn
to reverse a probabilistic nosing process to generate new data and consist of three main compo-
nents: a noising process, a denoising process, and a sampling procedure. The noising process
is defined as a forward Markov chain q(Xt+1|Xt), which progressively noises a data sample
X0 ∼ pdata(X) over T steps, eventually transforming it into a sample from a stationary noise
distribution XT ∼ pnoise(X). Then, the denoising process is learned to reverse the noising
process by approximating the posterior q(Xt|X0, Xt+1) with a model pθ(Xt|Xt+1). Finally,
the sampling procedure shows how to generate samples from the learned data distribution
pθ(X) =

∫
pnoise(XT )

∏T−1
t=0 pθ(Xt|Xt+1) dX1 . . . dXT .

3 POINT SET DIFFUSION

In this section, we derive a diffusion-based latent variable model for point sets on general metric
spaces by systematically applying the thinning and superposition properties of random sets. This
approach allows direct manipulation of random point sets, avoiding the need for the abstract concept
of an intensity function. We begin by outlining the forward noising process in Section 3.1, which
stochastically interpolates between point sets from the generating process and those from a noise dis-
tribution. Subsequently, we demonstrate how to learn to reverse this noising process to generate new
random point sets in Section 3.2. Finally, in Section 3.3, we show how to sample from our uncondi-
tional model and generate conditional samples for general conditioning tasks on the metric space.

3.1 FORWARD PROCESS

Let X0 ∼ pdata(X) be an i.i.d. sample from the generating point process, and let XT ∼ pnoise(X)
represent a sample from a noise point process. We define the forward process as a stochastic
interpolation between the point sets X0 and XT over T steps. This process is modeled as a
Markov chain q(Xt+1|Xt), where Xt is the superposition of two random subsets: Xthin

t ⊆ X0

and Xϵ
t ⊆ XT . Specifically, ∀t : Xt = Xthin

t

⋃
Xϵ

t , where Xthin
t and Xϵ

t are independent samples
from a thinning and a noise process, respectively. We define the thinning and noise processes given
two noise schedules {αt ∈ (0, 1)}Tt=1 and {βt ∈ (0, 1)}Tt=1 as follows:

Thinning Process: This process progressively thins points in Xthin
0 = X0, removing signal over

time. At every step t+1, each point x ∈ Xthin
t is independently thinned with probability 1−αt+1:

q(x ∈ Xthin
t+1 |x ∈ Xthin

t ) = αt+1. (3)
1We provide a proof of both properties for general Borel sets in A.1.
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Figure 2: The forward process is a Markov Chain q(Xt+1|Xt), that stochastically interpolates a data
sample X0 with a noise point set XT over T steps by applying a thinning and a noise process.

Consequently, the thinning defines n independent Bernoulli chains, and the probability of any point
x ∈ X0 remaining in Xthin

t is:

q(x ∈ Xthin
t |x ∈ X0) = ᾱt, (4)

where ᾱt =
∏n

i=1 αi. Equivalently, the intensity of the thinned points at step t is given by
λthin
t = ᾱtλ0 and the number of remaining points follows a Binomial distribution: Pr[nt|Xthin

0 ] =
Binomial(|X0|, ᾱt),where nt = |Xthin

t |.
Noise Process: This process adds random points Xϵ

T ∼ pnoise(X) sampled from a noise point
process with intensity λϵ. At step t+ 1, we express Xϵ

t+1|Xϵ
t as:

Xϵ
t+1 = Xϵ

t ∪X∆ϵ
t+1, where X∆ϵ

t+1 ∼ βt+1λ
ϵ. (5)

By the superposition property, the intensity of Xϵ
t is λϵ

t = β̄tλ
ϵ,where β̄t =

∑t
i=1 βi and β̄t ∈

[0, 1]. Alternatively, we can view the noise process as a reversed thinning process: we sample
Xϵ

T ∼ pnoise(X) and thin it by 1− β̄t to obtain Xϵ
t . Given a noise sample Xϵ

T , we then find that:

q(x ∈ Xϵ
t |x ∈ Xϵ

T ) = β̄t. (6)

Notably, this process is independent of the random point set X0, i.e., ∀t : q(Xϵ
t |X0) = q(Xϵ

t ).

We present a visual depiction of the two forward processes in Figure 2. Finally, given that ∀t : Xt =
Xthin

t

⋃
Xϵ

t it follows that for limt→T ᾱt = 0 and limt→T β̄t = 1 the stationary distribution is
q(XT |X0) = pnoise(X), which can be seen by applying the superposition property and finding the
intensity of Xt|X0 to be ᾱtλ0 + β̄tλ

ϵ. To summarize, the forward process gradually removes points
from the original point set X0 ∼ pdata(X) while progressively adding points of a noise point set
XT ∼ pnoise(X), stochastically interpolating between data and noise.

3.2 REVERSE PROCESS

To generate samples from our diffusion model, i.e., XT → · · · → X0, we need to learn how
to reverse the forward process by approximating the posterior q(Xt|X0, Xt+1) with a model
pθ(Xt|Xt+1). We will start by deriving the posterior q(Xt|X0, Xt+1) from the forward process
q(Xt+1|Xt) and then show how to parameterize and train pθ(Xt|Xt+1) to approximate the posterior.

Since the forward process consists of two independent processes (thinning and noise) and noticing
that Xthin

t+1 = X0

⋂
Xt+1 and Xϵ

t+1 = Xt+1 \X0, the posterior can be derived in two parts:

Thinning posterior: Since all points in Xthin
t+1 have been retained from t = 0, it follows that

Xthin
t+1 ⊆ Xthin

t . Then for each point in x ∈ X0 \ Xthin
t+1 , we derive then posterior using Bayes’

theorem, applying Equation 3, Equation 4 and the Markov property:

q(x ∈ Xthin
t |x /∈ Xthin

t+1 ,x ∈ X0) =
q(x /∈ Xthin

t+1 |x ∈ Xthin
t )q(x ∈ Xthin

t |x ∈ X0)

q(x /∈ Xthin
t+1 |x ∈ X0)

(7)

=
(1− αt+1)ᾱt

(1− ᾱt+1)
=

ᾱt − ᾱt+1

1− ᾱt+1
. (8)

Thus, we can sample Xthin
t by superposition of Xthin

t+1 and thinning X0 \Xthin
t+1 with Equation 7.
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Figure 3: The posterior reverses the stochastic interpolation of X0 → XT of the forward process by
adding back thinned points from the thinning process and thinning point added in the noise process.

Noise posterior: Following the reverse thinning interpretation of the noise process, each point in
Xϵ

t must have been in both Xϵ
t+1 and Xϵ

T . Hence, we derive the posterior for each point in Xϵ
t+1 to

still be in Xϵ
t by following Equation 6, along with the fact that Xϵ

t is independent from X0:

q(x ∈ Xϵ
t |x ∈ Xϵ

t+1,x /∈ X0) =
q(x ∈ Xϵ

t+1|x ∈ Xϵ
t )q(x ∈ Xϵ

t )

q(x ∈ Xϵ
t+1)

(9)

=
1 · β̄t

(β̄t+1)
=

β̄t

β̄t+1
. (10)

Thus, we can sample Xϵ
t by thinning Xϵ

t+1 with probability (1− β̄t

β̄t+1
).

Parametrization: Given X0 and XT , the derived posterior can reverse the noising pro-
cess to generate X0. However, to generate a new approximate sample X0 ∼ pdata(X),
we need to be able to sample from the posterior q(Xt|X0, Xt+1) without knowing X0.
For this reason we approximate the posterior with a model pθ(Xt|Xt+1), where we choose
pθ(Xt|Xt+1) =

∫
q(Xt|X̃0, Xt+1)pθ(X̃0|Xt+1) dX̃0 and training a neural network pθ(X̃0|Xt) to

approximate X0|Xt+1 for each t+ 1.

To effectively train this model, we have to condition our model pθ(X̃0|Xt) on Xt. We propose to
embed the points x ∈ Xt permutation invariant with a Transformer encoder with full attention and
apply a sinusoidal embedding to embed n = |Xt| and t. Then, to probilistically predict X0|Xt, we
make use of the following case distinction for Xthin

t = X0

⋂
Xt and X0 \Xt:

First, predicting the retained points in Xt, i.e., the intersection of X0 and Xt, is a binary classifica-
tion task for which we train a multi-layer-perceptron (MLP) gθ(x ∈ Xthin

t |Xt, t) with binary cross
entropy loss LBCE. Second, the thinned points in X0, i.e., X0 \Xt, is a point set N , which can be
represented by its counting measure, as a mixture of n Dirac measures:

N =

n∑
i=1

δXi . (11)

In A.2, we prove that any finite mixture of Dirac deltas, such as N , can be approximated by an
L2 function in L2(D,µ) for any metric space D. In Euclidean spaces, we approximate the Dirac
measure with a mixture of multivariate Gaussian distributions with diagonal covariance matrices.
Note that the multivariate Gaussian density function is a standard approximation of the Dirac delta
function and, as the determinant of a diagonal covariance matrix Σ := σI approaches zero, the
Gaussian increasingly resembles the Dirac delta (See Equation A.2). We parameterize the number
of points to sample nθ and the components of the mixture — weights wθ, mean µθ and diagonal
covariance matrix Σθ — with an MLP fθ and train it with the negative log likelihood LNLL.

Lastly, to ensure the expected number of points at any time t throughout the diffusion process is
constant, we use ᾱt = 1 − β̄t and a noise process with a constant intensity such that

∫
A
λϵ =

E[N(A)] for the bounded Borel set A that represents our domain.

3.3 SAMPLING PROCEDURE

Unconditional sampling: Starting from a sample XT of the noise distribution, we apply our POINT
SET DIFFUSION model to sample a new X0 over T steps. We start by sampling XT ∼ λϵ and
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then for all t ∈ (T, . . . , 1) sample X̃0 ∼ pθ(X0|Xt) to subsequently apply the denoising posterior
q(Xt−1|X̃0, Xt) and attain Xt−1. Finally, at step 1 we sample X̃0 ∼ pθ(X0|X1). We present the
extended sampling algorithm in Algorithm 2.

Figure 4: Examples of conditioning
masks for R≥0 and R2.

Conditional sampling: Let C : D → {0, 1} be
a conditioning mask on our metric space D, where
we define the masking of a subset X ⊆ D as
C(X) := {x ∈ X|C(x) = 1} and its comple-
ment as C ′(X) := {x ∈ X|C(x) = 0}. Then, we
can leverage our POINT SET DIFFUSION model to
conditionally generate random point sets outside
the conditioning mask by applying Algorithm 1:

Algorithm 1 Conditional sampling

Require: Xc
0 = C(X0)

1: XT ∼ λϵ

2: for t = T, . . . , 1 do
3: X̃0 ∼ pθ(X0|Xt)

4: X̃t−1 ∼ q(Xt−1|X̃0, Xt) (reverse 3.2)
5: Xc

t−1 ∼ q(Xc
t−1|Xc

0) (forward 3.1)
6: Xt−1 = C ′(X̃t−1) ∪ C(Xc

t−1)
7: end for
8: return C ′(X0)

Thus, following this sampling procedure, we can generate conditional samples for any conditioning
mask C, where we represent some illustrative conditioning masks for bounded sets on R≥0 and R2

depicting temporal forecasting, history prediction and general imputation tasks in Figure 4.

4 RELATED WORK

Since large parts of the real-world can be effectively captured by Euclidean spaces, point processes
have mainly been defined on spatial and temporal dimensions, represented by an Euclidean space.
Hence, for this discussion of the related work, we will focus on unordered and ordered point pro-
cesses on Euclidean spaces, mainly SPPs, TPPs and STPPs. For completeness, we want to mention
traditional parametric point processes defined on manifolds, such as determential point processes
(Berman, 2008; Katori & Shirai, 2022) and cluster point processes (Bogachev & Daletskii, 2013).

Unordered Point Processes (SPP): Modeling a permutation-invariant intensity for unordered point
sets that captures complex interactions while remaining efficient for sampling is challenging (Daley
& Vere-Jones, 2007), seemingly limiting the development of machine-learning-based models for
SPPs. Classical models like the Poisson Point Process (Kingman, 1992) use either homogeneous
or inhomogeneous intensity functions across space. More flexible models, such as Cox processes
(Cox, 1955), and specifically the popular Log-Gaussian Cox Process (Jesper Møller, 1998), extend
this by modeling the intensity function through a doubly stochastic process, allowing for flexible
spatial inhomogeneity. A recent approach, the Regularized Method by Osama et al. (2019), parame-
terizes a spatial Poisson process on a hexagonal grid with splines, offering out-of-sample guarantees.
However, these methods often rely on spatial discretization and simple parametric forms and some
require separate intensity estimates for each point set, limiting their ability to capture the underlying
distribution across different samples (Daley & Vere-Jones, 2007; Osama et al., 2019).

Ordered point processes (TPP and STPP): The causal ordering of time enables the parametriza-
tion of a conditional intensity, which classically is being modeled with parametric functions, where
the Hawkes Process (Hawkes, 1971) is the most widely used model and captures point interaction
patterns like self-excitation. Given the sequential nature of ordered point process, a variety of Ma-
chine Learning based approaches for TPPs and STPPs have been proposed (see Shchur et al. (2021)
for a review on neural TPPs). Where recurrent neural network- (Du et al., 2016; Shchur et al.,
2020a) and transformer-based encoders (Zhang et al., 2020a; Zuo et al., 2020; Chen et al., 2020)
are leveraged to encode the history and neurally parameterized Hawkes (Zhou & Yu, 2023; Zhang
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et al., 2020a; Zuo et al., 2020), parametric density functions (Du et al., 2016; Shchur et al., 2020a),
mixtures of kernels (Okawa et al., 2019; Soen et al., 2021; Zhang et al., 2020b; Zhou et al., 2022),
neural networks (Omi et al., 2019; Zhou & Yu, 2023), Gaussian diffusion (Lin et al., 2022; Yuan
et al., 2023) and normalizing flows (Chen et al., 2020; Shchur et al., 2020b) have been proposed to
(non)-parametrically decode the conditional density or intensity of the next event.

Differences to ADD-THIN (Lüdke et al., 2023): Since our method is closely related to ADD-THIN,
we want to highlight their key methodological differences. While ADD-THIN proposed to leverage
the thinning and superposition properties to define a diffusion process for TPPs, POINT SET DIF-
FUSION generalizes this idea to define a diffusion-based latent variable model for point processes
on general metric spaces. In doing so, we disentangle the superposition and thinning to attain two
independent processes to allow for more explicit control and define the diffusion model independent
of the intensity function as a stochastic interpolation of point sets. Furthermore, ADD-THIN has to
be trained for specific conditioning tasks, while we show how to condition our unconditional POINT
SET DIFFUSION model for arbitrary conditioning tasks on the metric space. Lastly, POINT SET
DIFFUSION and its parametrization are agnostic to the ordering of points, making it applicable to
model the general class of point processes on any metric space, including, for example, SPPs.

5 EXPERIMENTS

Although point processes are fundamentally generative models, the standard evaluation method re-
lies on reporting the negative log-likelihood (NLL) on a hold-out test set, effectively reducing the
evaluation to single-event predictions for STPPs and TPPS. However, this approach presents two
key issues. First, computing the NLL depends on the specific implementation and parameterization
of the (conditional) intensity function and is intractable for many models, necessitating approxima-
tions using Monte Carlo methods, numerical integration, or the evidence lower bound (ELBO). This
complicates fair comparisons between models. Second, evaluating the likelihood conditioned on
ground-truth history, does not necessarily reflect how well a model captures the data distribution or
its ability to perform on complex conditional generation tasks (Shchur et al., 2021). To overcome
these limitations, we evaluate the generative capabilities of our proposed POINT SET DIFFUSION
model by benchmarking it on a range of unconditional and conditional generation tasks for SPP
and STPP. Further, we compare our model’s performance with the state-of-the-art TPP model ADD-
THIN in A.6. Details of our model’s training and the hyperparameters are in A.4, while all baselines
are trained reproducing their reported NLL using their proposed hyperparameters and code.

5.1 DATA

We follow Chen et al. (2021) and evaluate our model on four benchmark datasets with their proposed
pre-processing and splits: three real-world datasets — Japan Earthquakes (U.S. Geological Survey,
2024), New Jersey COVID-19 Cases (The New York Times, 2024), and Citibike Pickups (Citi Bike,
2024) —and one synthetic dataset, Pinwheel, based on a multivariate Hawkes process (Soni, 2019).

5.2 METRICS

To evaluate both unconditional and conditional tasks, we compute distances between point process
distributions and individual point sets, assuming the space is normed, and all points are bounded,
i.e., ∀i,xi ∈ [−1, 1]d. We use the following metrics in our evaluation:

Sequence Length (SL): To compare the length distribution of point sets, we report the Wasserstein
distance between the two categorical distributions. For conditional tasks, we compare the length of
the generated point set to the ground truth by reporting the Mean Absolute Error (MAE).

Counting Distance (CD): Xiao et al. (2017) introduced a Wasserstein distance for ordered TPPs
based on Birkhoff’s theorem. We generalize this counting distance to higher-dimensional ordered
Euclidean spaces (e.g., STPPs) using the L1 distance:

CD(X,Y ) =
1

d

k∑
i=1

||xi − yi||1 +
l∑

j=k+1

||U − yj ||1, (12)
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Table 1: Density estimation results on the hold-out test set for SPPs, averaged over three random
seeds (bold best and underline second best).

Earthquakes Covid NJ Citybike Pinwheel

SL(↓) MMD(↓) SL(↓) MMD(↓) SL(↓) MMD(↓) SL(↓) MMD(↓)
LOG-GAUSSIAN COX 0.047 0.214 0.209 0.340 0.104 0.336 0.017 0.285
REGULARIZED METHOD 2.361 0.391 0.255 0.411 0.097 0.342 0.039 0.411
POINT SET DIFFUSION 0.038 0.173 0.199 0.268 0.056 0.092 0.017 0.099

Table 2: Conditional generation results on the hold-out test set for SPP, averaged over three random
seeds (bold best).

Earthquakes Covid NJ Citybike Pinwheel

MAE(↓) WD(↓) MAE(↓) WD(↓) MAE(↓) WD(↓) MAE(↓) WD(↓)
REGULARIZED METHOD 30.419 0.162 16.075 0.148 7.740 0.115 3.547 0.150
POINT SET DIFFUSION 4.651 0.106 5.056 0.119 3.498 0.085 2.256 0.122

where X = {xi}ki=1 and Y = {yi}li=1 are two ordered samples from a point process on a metric
space of dimensionality d, i.e. D ⊆ Rd. Further, U := (u1, . . . ,ud) represents the upper bounds of
the metric space D along each dimension and we assume, without loss of generality, l ≥ k.

Wasserstein Distance (WD): An instance of a Point Process is itself a stochastic process of points in
space. Hence, we can compute a distance between two point sets based on the Wasserstein distance
on the metric space D ⊆ Rd between the two sets of points.

Maximum Mean Discrepancy (MMD) (Gretton et al., 2012): The kernel-based statistic test com-
pares two distributions based on a distance metric; we use the WD for SPPs and CD for STPP.

5.3 SPATIAL POINT PROCESSES

Figure 5: SPP condi-
tioning task: top ground
truth, middle REGULAR-
IZED METHOD and bottom
POINT SET DIFFUSION.

We evaluate our model’s ability to capture the distribution of spa-
tial point processes (SPP) by benchmarking it against two methods.
The first is the widely used LOG-GAUSSIAN COX PROCESS (Jes-
per Møller, 1998), a doubly stochastic model that parameterizes the
intensity function using a Gaussian process. The second is the REG-
ULARIZED METHOD (Osama et al., 2019), leveraging a regularized
criterion to infer predictive intensity intervals, offering out-of-sample
prediction guarantees and enabling conditional generation.

Unconditional Generation (Density Estimation): In this experi-
ment, we generate 1,000 unconditional samples from each model and
compare their distribution to a hold-out test set using the WD-SL and
WD-MMD metrics. As shown in Table 1, our POINT SET DIFFUSION
model consistently generates samples most closely matching the data
distribution across all datasets. While the baseline models perform
reasonably well in capturing the count distributions for most datasets,
their reliance on spatial discretization and smoothness properties of
the intensity function limit their ability to capture the complex spatial
patterns in the data, as reflected by higher WD-MMD scores.

Conditional Generation: To assess POINT SET DIFFUSION’s ability
to solve spatial conditioning tasks, we sample 50 random bounding
boxes (with widths uniformly sampled between 1/8 and 3/8 of the
metric space) for imputation on the hold-out test set, and report the
results in Table 2. The REGULARIZED METHOD fits a spatial Pois-
son model with out-of-sample accuracy guarantees and has been shown by Osama et al. (2019) to
outperform the LOG-GAUSSIAN COX PROCESS on interpolation and extrapolation tasks. However,
we find that the REGULARIZED METHOD’s reliance on predicting a smooth and discretized inten-
sity function conditioned on neighboring areas leads to inaccurate imputations when the adjacent
regions contain significantly different numbers of points (see the hexagonal discretization structure

8
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Table 3: Density estimation results on the hold-out test set for STPP, averaged over three random
seeds (bold best and underline second best).

Earthquakes Covid NJ Citybike Pinwheel

SL(↓) MMD(↓) SL(↓) MMD(↓) SL(↓) MMD(↓) SL(↓) MMD(↓)
DEEPSTPP 0.105 0.266 0.169 0.166 3.257 0.677 1.067 0.197
DIFFSTPP 0.088 0.064 0.332 0.146 0.560 0.611 0.196 0.055
AUTOSTPP 0.073 0.062 0.364 0.280 0.598 0.331 0.127 0.147
POINT SET DIFFUSION 0.042 0.023 0.189 0.043 0.032 0.020 0.023 0.020

Table 4: Forecasting results on the hold-out test set for STPP, averaged over three random seeds
(bold best and underline second best).

Earthquakes Covid NJ Citybike Pinwheel

MAE(↓) CD(↓) MAE(↓) CD(↓) MAE(↓) CD(↓) MAE(↓) CD(↓)
DEEPSTPP 10.154 11.211 6.264 8.492 127.968 125.747 18.651 15.792
DIFFSTPP 16.027 17.466 18.822 14.302 7.516 8.460 14.461 13.062
POINT SET DIFFUSION 7.407 10.458 7.293 10.865 5.928 7.225 6.341 6.437

and smoothness in Figure 5). This issue is exacerbated by not capturing a shared intensity func-
tion across point sets, making it difficult for the REGULARIZED METHOD to handle non-smooth
spatial patterns, such as varying inhomogeneous intensities shared across multiple point sets. This
highlights a core limitation of SPP models that rely on instance-specific intensity functions.

5.4 SPATIO-TEMPORAL POINT PROCESSES

For STPPs, we compare our model to three state-of-the-art STPP models, which parameterize an au-
toregressive intensity function, to assess the model’s ability to capture the point process distribution.
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Figure 6: STPP runtime for sampling n points.

DEEPSTPP (Zhou et al., 2022) uses a la-
tent variable framework to non-parametrically
model the conditional intensity based on ker-
nels. DIFFSTPP (Yuan et al., 2023) is based
on a diffusion model approximating the con-
ditional intensity. Lastly, AUTOSTPP (Zhou
& Yu, 2023) uses the automatic integration for
neural point processes, presented by Lindell
et al. (2021), to parameterize a generalized spa-
tiotemporal Hawkes model.

Sampling Runtime: We report the median
sampling runtime over ten runs generating ten
point sets of length n on an NVIDIA A100-
PCIE-40GB for all STPP models in Figure 6.
POINT SET DIFFUSION maintains a nearly con-
stant runtime for all point set lengths as it generates all points in parallel, whereas autoregressive
baselines, due to their sequential sampling, exhibit a linear relationship between runtime and n.

Unconditional Generation (Density Estimation): We evaluate the performance of each model by
comparing the WD-SL and CS-MMD between the hold-out test set and 1,000 samples generated by
the trained models, as shown in Table 3. Again, the POINT SET DIFFUSION model best captures the
distribution of the point process distribution for all datasets. The autoregressive intensity functions
of the baseline models fail to generate point sets that align closely with the data distribution for most
datasets, as reflected in the differences in the WD-SL and CD-MMD metrics compared to POINT
SET DIFFUSION. While these baselines are trained to predict the next event given a history window,
they struggle to unconditionally sample realistic point sets when starting from an empty sequence.
Consequently, this highlights our argument that the standard evaluation based on NLL is insufficient
to assess the true generative capacity of point process models.

Conditional Generation (Forecasting): Forecasting future events based on historical data is a chal-
lenging and a fundamental task for STPP models. To evaluate this capability, we uniformly sampled
50 random starting times from the interval [ 58Utime,

7
8Utime], where Utime is the maximum time, for
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Figure 7: Complex spatial conditioning tasks solved with POINT SET DIFFUSION: Top condition
and ground truth data, bottom density plots for predictions.

each point set in the hold-out test set. The results are detailed in Table 4.2 The autoregressive base-
lines, trained to predict the next event based on history, achieve good forecasting results for most
datasets, one even surpassing POINT SET DIFFUSION on the Covid NJ dataset. Still, our uncondi-
tional model outperforms the autoregressive baselines across all other datasets.

5.5 OTHER CONDITIONING TASK

Since the STPP baselines are autoregressive models, they are limited to forecasting tasks. However,
our model can generate conditional samples for any conditioning mask C on our metric space. To
showcase this feature, we present a few visual examples of complex conditioning tasks in Figure 7.

6 CONCLUSION

To model general point processes on metric spaces, we present POINT SET DIFFUSION, a novel
diffusion-based latent variable model. We derive POINT SET DIFFUSION as a stochastic interpola-
tion between data point sets and noise point sets governed by the thinning and superposition prop-
erties of random point sets. Thereby, we attain a very flexible, unconditional Point Process model
that can be conditioned for arbitrary condition masks on the metric space and allows for efficient
and parallel sampling of entire point sets without relying on the (conditional) intensity function. In
conditional and unconditional experiments on synthetic and real-world SPP, TPP and STPP data, we
demonstrate that POINT SET DIFFUSION achieves state-of-the-art performance while allowing for
up to orders of magnitude faster sampling.

We have introduced a generative model for point processes on general metric spaces, prioritizing
generality, scalability, and flexibility to address key limitations of intensity-based models. While
this enables unconditional modeling and flexible generation for arbitrary conditional tasks on any
metric space, it does not permit interpreting the conditional intensity or its parameters. Thus, for
inference applications of STPPs or TPPs that require estimating the conditional intensity of the next
event, point process models that directly approximate this conditional intensity are better suited.
Ultimately, with POINT SET DIFFUSION, we have presented a novel set modeling approach and
would be interested to see how future work explores its limitations on other (high-dimensional)
metric (e.g., Riemannian manifolds), topological and discrete spaces with potential applications
extending beyond traditional point sets including but not limited to natural language and graphs.

2AutoSTPP is not included in this analysis due to its prohibitively slow sampling speed (see Figure 6 and
the limitations discussed in Zhou & Yu (2023)), which made it impractical to sample the 50 forecast windows
for all instances in the test set within a reasonable timeframe.
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poral point processes: A review. arXiv preprint arXiv:2104.03528, 2021.

Alexander Soen, Alexander Mathews, Daniel Grixti-Cheng, and Lexing Xie. Unipoint: Universally
approximating point processes intensities. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9685–9694, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Sandeep Soni. MHP: Generation and MLE Estimation for Multivariate Hawkes Process, 2019. URL
https://github.com/sandeepsoni/MHP. Accessed: 2024-09-25.

The New York Times. Coronavirus (Covid-19) Data in the United States, 2024. URL https:
//github.com/nytimes/covid-19-data. Accessed: 2024-09-25.

U.S. Geological Survey, 2024. URL https://earthquake.usgs.gov/earthquakes/
search/. Accessed: 2024-09-25.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein
learning of deep generative point process models. Advances in Neural Information Processing
Systems, 30, 2017.

Yuan Yuan, Jingtao Ding, Chenyang Shao, Depeng Jin, and Yong Li. Spatio-temporal Diffusion
Point Processes. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, pp. 3173–3184, New York, NY, USA, 2023. Association for Computing
Machinery.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In
International conference on machine learning, pp. 11183–11193. PMLR, 2020a.

12

https://openreview.net/forum?id=tn9Dldam9L
https://github.com/sandeepsoni/MHP
https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data
https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/earthquakes/search/


Published as a conference paper at ICLR 2025

Wei Zhang, Thomas Panum, Somesh Jha, Prasad Chalasani, and David Page. Cause: Learning
granger causality from event sequences using attribution methods. In International Conference
on Machine Learning, pp. 11235–11245. PMLR, 2020b.

Zihao Zhou and Rose Yu. Automatic Integration for Spatiotemporal Neural Point Processes. In
Advances in Neural Information Processing Systems, volume 36, pp. 50237–50253, 2023.

Zihao Zhou, Xingyi Yang, Ryan Rossi, Handong Zhao, and Rose Yu. Neural Point Process for
Learning Spatiotemporal Event Dynamics. In Learning for Dynamics and Control Conference,
pp. 777–789, 2022.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes
process. arXiv preprint arXiv:2002.09291, 2020.

13



Published as a conference paper at ICLR 2025

A APPENDIX

A.1 POINT PROCESS PROPERTIES

The thinning and superposition properties have been proved by other works for different versions
of point processes. For completeness and generality, we prove them for a general Borel set A. To
apply these proofs for SPPs consider A ⊆ S, where S is a metric space in Rd and for STPPs consider
A ⊆ [0, T ]× S , where T > 0.

Superposition: Proof. It is straightforward to obtain the superposition expectation measure from
Equation 1:

µ(A) = E[N(A)] = E[N1(A) +N2(A)] = E[N1(A)] + E[N2(A)] = µ1(A) + µ2(A). (13)

Then, every point process has an intensity of λ1 and λ2 for each of the expectation measures µ1

and µ2, respectively. Therefore, taking the right-hand side of Equation 1, we obtain the following
intensity function for the superposition of point processes:

µ(A) = µ1(A) + µ2(A) =

∫
A

λ1(x)dx+

∫
A

λ2(x)dx =

∫
A

λ1(x) + λ2(x)dx. (14)

This states that the density function for expectation measure µ is λ := λ1 + λ2, and concludes the
proof for the superposition property of intensities for point processes. □

Thinning: Proof. For this property, we need to assume that the singletons are simple, so we can
only have one point at each position: N({x}) ≤ 1; these point processes are called simple. Simple
point processes can be represented as a sum of Dirac measures at the random points Xi ∈ S:

N =
∑
i

δXi
. (15)

The previous assumption on singletons makes the sum above a finite sum. If Zi ∈ {0, 1} are
Bernoulli random variables with a success probability p we can define a random thinning process as
the superposition of the following point processes:

N1 =
∑
i

ZiδXi
. (16)

N2 =
∑
i

(1− Zi)δXi . (17)

Since there are only two options for the Bernoulli random variable, it holds that the superposition
of the point processes defined in Equations 16 and 17 are equivalent to the original point process,
i.e., N = N1 +N2.

Given that all Zi ∼ Bern(p) are i.i.d., we obtain a conditional probability distribution on
the thinned point process N1(A)|N(A) = n ∼ Binom(n, p). And by the law of total expectation,
we derive:

µ1(A) = E[N1(A)] = E
[
E[N1(A)|N(A)]

]
= E[N(A)p] = µ(A)p. (18)

We can write the terms of the equation before in terms of the intensity measure of the point process:

µ1(A) = p · µ(A) = p

∫
A

λ(x)dx =

∫
A

pλ(x)dx. (19)

Hence, the equation above implies that the intensity of the new point process N1, which keeps the
points of the original point process N with probability p, is pλ.

By the property of superposition, since N = N1 + N2, then λ = pλ + (1 − p)λ. There-
fore, the intensity of the point process N2, containing the thinned points, is (1− p)λ.

This proves that, in the opposite case, when removing points with probability p from a given
point process with intensity λ, the intensity of the point process with the points kept after thinning
is (1− p)λ. □
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A.2 APPROXIMATION OF MIXTURE OF DIRAC DELTA FUNCTIONS BY L2-FUNCTIONS

Definition 1 (Dirac delta function) Let (D, d, µ) be a general metric space equipped with a mea-
sure µ. A Dirac delta function δx at a point x ∈ D is defined as a distribution such that for any test
function f : ∫

D

f(y)δx(y)dµ(y) = f(x). (20)

Theorem 1 Let fM (y) be a finite mixture of Dirac deltas:

fM (y) =

n∑
i=1

wiδxi(y), (21)

where x1, . . . ,xn ∈ D are points in the metric space, and wi ∈ R are weights associated with
each Dirac delta function. Then, this finite mixture of Dirac deltas fM can be approximated by L2

functions in L2(D,µ).

Proof. We use a sequence of smooth functions that approximate each Dirac delta in the mixture and
then show that this approximation converges in the L2-norm.

Firstly, we show how to approximate Dirac delta functions. Let us consider a family of smooth
functions ϕϵ(x) (such as bump functions or mollifiers) that approximate the Dirac delta function δx
as ϵ → 0. These functions ϕϵ(x− xi) are supported near xi and satisfy:

lim
ϵ→0

ϕϵ(x− xi) = δxi
(x). (22)

In particular, for any test function f , we have:∫
D

f(y)ϕϵ(y − xi)dµ(y) → f(xi) as ϵ → 0. (23)

Hence, ϕϵ(x−xi) has a similar property as the one of Dirac deltas given in Equation 20 and serves
as an approximation of the Dirac delta δxi(x) for a small ϵ.

Secondly, we approximate the mixture of Dirac deltas fM by a function in L2(D,µ) using the same
ϕϵ(x)-based approximation for each Dirac delta, defining:

fϵ(y) =

n∑
i=1

wiϕϵ(y − xi). (24)

Each term ϕϵ(y − xi) is a smooth approximation of the corresponding Dirac delta δxi
(y), and the

sum represents the approximation of the entire mixture of Diracs.

Thirdly, we show that the sequence fϵ converges to fM in the L2-norm, i.e., that:

lim
ϵ→0

∥fϵ − fM∥L2(D,µ) = 0. (25)

Since fM is a sum of Dirac deltas, it is not directly in L2(D,µ), but its approximation fϵ is because
each ϕϵ is a smooth function and smooth functions with compact support are in L2(D,µ).

We compute now the squared L2 norm of the difference in Equation 25:

∥fϵ − fM∥2L2(D,µ) =

∫
D

|fϵ(y)− fM (y)|2 dµ(y). (26)

Note that the squared difference of fϵ and fM in the above equation will
have quadratic and crossed terms. However, we can neglect the crossed terms:
2
∑

i<j wiwj

∫
D
(ϕϵ(y − xi)− δxi

(y))
(
ϕϵ(y − xj)− δxj

(y)
)
dµ(y), since every smooth

function ϕϵ(y − xi) is concentrated near xi and terms involving different indices do not contribute
to the limit.

Hence, we can simplify the norm in Equation 26 into the sum of the individual terms:

∥fϵ − fM∥2L2(D,µ) =

n∑
i=1

∫
D

w2
i |(ϕϵ(y − xi)− δxi

(y))|2dµ(y). (27)
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For every i, the term
∫
D
|ϕϵ(y − xi)− δxi

(y)|2dµ(y) becomes small as ϵ → 0, because by con-
struction ϕϵ(y − xi) → δxi

(y) in the sense of distributions. Thus, by the properties of ϕϵ, we
conclude that:

lim
ϵ→0

∥fϵ − fM∥L2(D,µ) = 0. (28)

□

Lemma 1 Let p(x;µ,Σ) be the probability density function (PDF) of a multivariate Gaussian
distribution. Then p ∈ L2(Rd).

Proof. The PDF of a multivariate Gaussian distribution in Rd with mean vector µ ∈ Rd and
covariance matrix Σ (which is positive definite) is given by:

p(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (29)

where x ∈ Rd, |Σ| is the determinant of the covariance matrix Σ, and Σ−1 is the inverse of the
covariance matrix. We show that ∥p∥L2 =

(∫
Rd |p(x)|2 dx

)1/2
is finite.

We need to compute the following integral:∫
Rd

p(x)2 dx =
1

(2π)n|Σ|

∫
Rd

exp
(
−(x− µ)TΣ−1(x− µ)

)
dx. (30)

To simplify the calculation, we perform a change of variables: y = Σ−1/2(x − µ). Under this
transformation: (x − µ)TΣ−1(x − µ) = yTy = ∥y∥2, and the differential dx transforms as:
dx = |Σ1/2| dy = |Σ|1/2 dy. Substituting these into the integral, we get:∫

Rd

exp
(
−(x− µ)TΣ−1(x− µ)

)
dx = |Σ|1/2

∫
Rd

exp(−∥y∥2) dy = πn/2, (31)

since the remaining integral is a standard Gaussian integral. Thus, the L2-norm integral becomes:∫
Rd

p(x)2 dx =
1

(2π)n|Σ|
|Σ|1/2πn/2 =

1

2nπn/2|Σ|1/2
. (32)

Since the integral is a finite constant, we conclude that the PDF belongs to L2(Rd).

□

Corollary 1 Given an Euclidean space D ⊆ Rd, a finite sum of Dirac deltas can be approximated
with a mixture of multivariate Gaussian distributions:

pM (x) =

n∑
i=1

wi · N (x;µi,Σi). (33)

Proof. Note that we do not show that a mixture of multivariate Gaussian distributions is the best
candidate to approximate a finite sum of Dirac deltas. However, note that a multivariate Gaussian
distribution is a standard approximation of a Dirac delta function and can, in the limit of a small
covariance matrix, i.e. |Σ| << 1, approximate it.

The aim of this proof is to show that the mixture of Gaussians pM can be a candidate to approximate
the Dirac deltas. From Theorem 1, this is equivalent to showing that pM is a L2 function.

To prove this, we need to integrate:∫
D

pM (x)2dx =

k∑
i=1

w2
i

∫
D

N (x;µi,Σi)
2dx+ 2

∑
i ̸=j

wiwj

∫
D

N (x;µi,Σi)N (x;µj ,Σj)dx.

(34)

On the one hand, Lemma 1 shows that the integrals of the first sum are finite constants. On the other
hand, the integrals on the second sum cannot be computed in a closed form, but it is well known
that the product decays exponentially as ∥x∥ → ∞ ensuring a finite integral. Therefore, the squared
integral is just a sum of finite constants and hence finite. □
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A.3 SAMPLING ALGORITHM

Algorithm 2 Sampling
1: XT ∼ λϵ

2: for t = T, . . . , 1 do
3: X̃thin

t ∼ gθ(x ∈ Xthin
t |Xt, t)

4: X̃0 \Xt ∼ fθ(X|Xt, t)

5: X̃0 = (X̃0 \Xt) ∪ X̃thin
t

6: Xt−1 ∼ q(Xt−1 | X̃0, Xt)
7: end for
8: return Xt−1

A.4 MODEL SETUP

Architecture: The classifier to predict X0 ∩ Xt is a MLP with 3 layers and ReLU as activation
function. The mixture of multivariate Gaussian distribution that approximates X0 \Xt contains 16
components, and the parameters are learned with an MLP of 2 layers and ReLU as an activation
function.

Training: All models have been trained on an NVIDIA A100-PCIE-40GB. We use Adam as the
optimizer and a fixed weight decay of 0.0001 to avoid overfitting. To avoid exploding gradients, we
clip the gradients to have a norm lower than 2.

Hyperparameters: We use the same hyperparameters for all datasets and types of point processes.
In a hyperparameter study A.8, we have found T = 100 for our cosine noise schedule (Nichol et al.,
2021) to give a good trade off between sampling time and quality. Further, we leverage a hidden
dimension and embedding size of 32. For training, we use a batch size of 128 and a learning rate of
0.001.

Early stopping: We train the models up to 5000 epochs with early stopping, sampling 100 se-
quences from the model and comparing them to the validation split, with WD-SL metric for SPP
and the CD-MMD metric for STPPs.

A.5 EXPERIMENTAL RESULTS WITH STANDARD DEVIATIONS

Table 5: Density estimation results on the hold-out test set for SPPs averaged over three random
seeds.

Earthquakes Covid NJ Citybike Pinwheel

SL(↓) MMD(↓) SL(↓) MMD(↓) SL(↓) MMD(↓) SL(↓) MMD(↓)
Log-Gaussian Cox 0.047± 0.014 0.214± 0.004 0.209± 0.011 0.340± 0.008 0.104± 0.017 0.336± 0.014 0.017± 0.004 0.285± 0.004
Regularized Method 2.361± 0.064 0.391± 0.004 0.255± 0.011 0.411± 0.003 0.097± 0.008 0.342± 0.008 0.039± 0.003 0.411± 0.004
POINT SET DIFFUSION 0.038± 0.003 0.173± 0.004 0.199± 0.002 0.268± 0.016 0.056± 0.020 0.092± 0.020 0.017± 0.003 0.099± 0.006

Table 6: Conditional generation results on the hold-out test set for SPP averaged over three random
seeds.

Earthquakes Covid NJ Citybike Pinwheel

MAE(↓) WD(↓) MAE(↓) WD(↓) MAE(↓) WD(↓) MAE(↓) WD(↓)
Regularized Method 30.419 ±0.278 0.162 ±0.003 16.075 ±0.236 0.148 ±0.001 7.740 ±0.173 0.115 ±0.001 3.547 ±0.104 0.150 ±0.003
POINT SET DIFFUSION 4.651 ±0.159 0.106 ±0.001 5.056 ±0.115 0.119 ±0.001 3.498 ±0.365 0.085 ±0.014 2.256 ±0.037 0.122 ±0.001
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Table 7: Density estimation results on the hold-out test set for STPP averaged over three random
seeds.

Earthquakes Covid NJ Citybike Pinwheel

SL(↓) MMD(↓) SL(↓) MMD(↓) SL(↓) MMD(↓) SL(↓) MMD(↓)
DeepSTPP 0.105± 0.027 0.266± 0.041 0.169± 0.089 0.166± 0.177 3.257± 0.685 0.677± 0.056 1.067± 0.893 0.197± 0.152
DiffSTPP 0.088± 0.009 0.064± 0.024 0.332± 0.012 0.146± 0.026 0.560± 0.045 0.611± 0.113 0.196± 0.098 0.055± 0.005
AutoSTPP 0.073± 0.007 0.062± 0.004 0.364± 0.040 0.280± 0.202 0.598± 0.047 0.331± 0.099 0.127± 0.004 0.147± 0.005
POINT SET DIFFUSION 0.042± 0.003 0.023± 0.003 0.189± 0.006 0.043± 0.003 0.032± 0.004 0.020± 0.001 0.023± 0.003 0.020± 0.001

Table 8: Forecasting results on the hold-out test set for STPP averaged over three random seeds.

Earthquakes Covid NJ Citybike Pinwheel

MAE(↓) CD(↓) MAE(↓) CD(↓) MAE(↓) CD(↓) MAE(↓) CD(↓)
DeepSTPP 10.154 ± 0.918 11.211 ± 0.738 6.264 ± 0.378 8.492 ± 0.196 127.968 ± 33.298 125.747 ± 32.705 18.651 ± 7.159 15.792 ± 5.323
DiffSTPP 16.027 ±6.833 17.466 ±5.748 18.822 ±3.381 14.302 ±0.216 7.516 ±1.973 8.460 ±1.773 14.461 ±4.816 13.062 ±3.901
POINT SET DIFFUSION 7.407 ±0.285 10.458 ±0.218 7.293 ±0.082 10.865 ±0.130 5.928 ±2.881 7.225 ±2.802 6.341 ±0.108 6.437 ±0.124

A.6 PERFORMANCE COMPARISON TO ADD-THIN ON THEIR TPP EXPERIMENTS

We compare our POINT SET DIFFUSION to ADD-THIN (Lüdke et al., 2023) on their TPP experi-
ments. We use the same training and hyper-parameter setup for our model as in the SPP and STPP
experiments. For details on the experimental setup, please refer to section 5 of Lüdke et al. (2023).

A.6.1 DENSITY ESTIMATION

Table 9: MMD (↓) between the TPP distribution of sampled sequences and hold-out test set (bold
best).

Hawkes1 Hawkes2 SC IPP RP MRP PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
ADD-THIN 0.02 0.02 0.19 0.03 0.02 0.10 0.03 0.01 0.02 0.04 0.04 0.08 0.04
POINT SET DIFFUSION 0.03 0.03 0.19 0.02 0.04 0.07 0.05 0.01 0.02 0.11 0.09 0.06 0.06

Table 10: Wasserstein distance (↓) between the distribution of the number of events of sampled
sequences and hold-out test set (bold best).

Hawkes1 Hawkes2 SC IPP RP MRP PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
ADD-THIN 0.04 0.02 0.08 0.01 0.02 0.04 0.02 0.03 0.04 0.03 0.01 0.04 0.02
POINT SET DIFFUSION 0.03 0.03 0.03 0.01 0.03 0.02 0.01 0.03 0.03 0.10 0.01 0.03 0.03

A.6.2 CONDITIONAL GENERATION – FORECASTING

Table 11: Wasserstein distance (↓) between forecasted event sequence and ground truth reported for
50 random forecast windows on the test set (lower is better).

PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
Average Seq. Length 76.5 295.7 1129.0 98.4 14.9 30.5 55.2
ADD-THIN 2.03 17.18 21.32 2.42 1.48 1.00 1.54
POINT SET DIFFUSION 1.98 16.90 16.23 2.52 1.51 0.96 1.50

Table 12: Count MAPE ×100% (↓) between forecasted event sequences and ground truth reported
for 50 random forecast windows on the test set (lower is better).

PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
Average Seq. Length 76.5 295.7 1129.0 98.4 14.9 30.5 55.2
ADD-THIN 0.45 1.07 0.38 0.37 0.69 0.45 0.50
POINT SET DIFFUSION 0.44 1.13 0.26 0.41 0.60 0.46 0.47
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A.7 ADDITIONAL MATERIAL FOR COMPUTATIONAL COMPLEXITY OF STPP MODELS

Table 13: Number of learnable parameters per model.

DEEPSTPP DIFFSTPP AUTOSTPP POINT SET DIFFUSION
∼ 450, 000 ∼ 1, 600, 000 ∼ 1, 000, 000 ∼ 25, 000

Table 14: Training runtime in minutes averaged over three random seeds (all models have been
trained on an A100).

Earthquakes Covid NJ Citybike Pinwheel
DEEPSTPP 32 28 71 17
DIFFSTPP 469 492 832 392
AUTOSTPP 99 156 523 36
POINT SET DIFFUSION 52 42 68 50

A.8 HYPERPARAMETER STUDY T

To provide insight into how the number of steps affects sample quality, we have run a hyperparam-
eter study for the unconditional STPP experiment on the validation set of the Earthquake dataset,
evaluating T ∈ {20, 50, 100, 200}, averaged over three random seeds. Our findings indicate that
while fewer diffusion steps result in reduced sample quality, T = 100 strikes a good balance, al-
ready matching and even surpassing the quality observed at T = 200. Although this result may
seem counterintuitive to those familiar with standard Gaussian diffusion models, it highlights a key
distinction of our approach: unlike Gaussian diffusion processes, our model employs inherently dis-
crete Markov steps—specifically, the superposition and thinning of point sets with fixed cardinality.
As a result, only a limited number of points can be added or removed over T steps, imposing a
natural ceiling on how much additional steps can improve sample quality.

Table 15: STPP density estimation results on the Earthquake validation set for T ∈
{20, 50, 100, 200} reported as the average and standard error over three random seeds.

20 50 100 200
SL (↓) 0.018 ± 0.002 0.017 ± 0.002 0.014 ± 0.002 0.015 ± 0.001
MMD (↓) 0.020 ± 0.0015 0.020 ± 0.0002 0.018 ± 0.0012 0.018 ± 0.0005

A.9 STPP FORECASTING DENSITY EVOLUTION

Figure 8: Evolution of two STPP forecasts of POINT SET DIFFUSION across time (0 → tmax):
Density plot of forecast for a sliding window of 1

6 of the maximum time, black crosses represent
history (conditioning), blue ground-truth future.
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