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A Experiment Settings

A.1 Experimental Settings on FEVER

Bias-only Model The bias-only model is a nonlinear classifier trained on top of the vector represen-
tation of the claim sentence. We obtain this vector representation by max-pooling word embeddings
into a single vector as in Utama et al. [13].

Training Details We follow Schuster et al. [11] to fine-tune the bert-base-uncased model
using the following configuration:learning rate is set to 2× 10−5 and training for 3 epochs. Early
stopping on validation accuracy is adopted. We use 5-fold internal cross-validation to train the
Dirichlet calibrator and ensemble these calibrators by averaging their predictions. For the Dirichlet
calibrator, we drop the bias term, and consider λ ∈ {0.03, 0.06, 0.003, 0.006} and set λ = 0.06 in
all experiments, according to the in-distribution performance on the development sets. We use 5-fold
internal cross-validation to train the Dirichlet calibrator and ensemble these calibrators by averaging
their predictions.

A.2 Experimental Settings on MNLI

Bias-only Model For syntactic bias, we train a nonlinear classifier on top of the hand-crafted
features. Following Clark et al. [4], the hand-crafted features include (1) whether all words in the
hypothesis exist in the premise; (2) whether the hypothesis is a continuous subsequence of the
premise; (3) the fraction of premise words that shared with hypotheses; (4) the mean, min, max of
cosine similarities between word vectors in the premise and the hypothesis. We consider the same
weight for neutral and contradiction class during training by mapping these labels into non-entailment
and divide the outputs of non-entailment during debiasing training. For hypothesis-only bias, we
train a nonlinear classifier on top of an LSTM-based sentence encoder, which only uses hypothesis
sentence as input to predict the labels, as in Utama et al. [13]. For unknown bias, we build a ‘shallow’
model as the bias-only model. It is a bert-base-uncased model fine-tuned on a subset of MNLI
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training set for 3 epochs using the learning rate of 5 × 10−5. The subset contained 2K examples
randomly sampled from MNLI training set, as in Utama et al. [14].

Training Details For both hypothesis-only bias and syntactic bias, we fine-tune the
bert-base-uncased model for all settings using the default configuration: learning rate is set
to 5× 10−5 and training for 3 epochs, as in Utama et al. [13]. The exception is for DRiFt on syntactic
bias since we found it convergences slow on the in-distribution development set. We train it for
6 epochs for all settings. Early stopping on validation accuracy is adopted. For unknown bias,
we following Utama et al. [14] to fine-tune bert-base-uncased model for all settings using the
following configuration: learning rate is set to 5 × 10−5 and training for 5 epochs. We observed
that MoCaD framework converges faster on the challenging dataset than the original EBD methods.
Since the assumption is not having access to any out-of-domain test data, and there is no available
development set for HANS, we follow [2; 10] to perform the model section on the test set. Here,
we simply pick the model trained at the second-to-last epoch for MoCaD on unknown bias. For the
Dirichlet calibrator, we use the same configuration as in FEVER.

B Proof for Decomposition

Proof. In Zhang et al. [15], it is assumed that there exists a leakage-neutral distribution D with
domain X ×Y ×L×S , where X is the input feature space, L is the sampling strategy feature space
and S is the binary sampling intention space. The observed distribution is denoted as D̂ , which
satisfies PD̂(x, y, l) = PD(x, y, l|S = Y ). In the following, we omit the subscripts for D . The
following assumptions are adopted in [15]:

P(Y |L) = P(Y ), (1)
P(S|X,Y, L) = P(S|L) (2)

In this framework, P(Y |X) is supposed to be the true principle to learn, corresponding to PD(Y |XS)
in our notation. Now we prove the following decomposition

PD̂(Y |X) ∝ PD̂(Y |L)P(Y |X)
1

PD̂(Y )
(3)

Correspondingly, by our notations we have

PD̂ = PD, L = XB .

As a result, equation 3 is equivalent to the decomposition (1) in the main paper. To prove this equation,
firstly,

PD̂(Y = y|X) = P(Y = y|X,S = Y )

=
P(Y = y, S = y,X)

P(X,S = Y )

=
P(S = y|Y = y, L,XS)P(Y = y,X)

P(X,S = Y )

= P(S = y|L)P(Y = y|X)
P(X)

P(X,S = Y )

∝ P(S = y|L)P(Y = y|X)

Secondly,

PD̂(Y = y|L) = P(Y = y|L, S = Y )

=
P(Y = y, S = y, L)

P(L, S = Y )

=
P(S = y|Y = y, L)P(Y = y, L)

P(L, S = Y )

= P(S = y|L)P(Y = y)
P(L)

P(L, S = Y )
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By the above equations we have

PD̂(Y = y|X) ∝
PD̂(Y = y|L)

P(Y = y)
P(Y |X)

P(L, S = Y )

P(L)

∝ PD̂(Y = y|L)P(Y |X)
1

P(Y = y)

As P(Y ) is a prior parameter chosen to balance the posterior distribution, it can be proved that this
condition is satisfied when it equals PD(Y ), as follows:

Pw(Y ) ∝
∑
l

P(Y )

PD̂(Y |L = l)
PD̂(Y |L = l)PD̂(L = l) = P(Y )

where Pw(Y ) denotes the distribution of Y after the reweighting. As a result Pw(Y = y) ∝ PD(Y =
y) is satisfied when P(Y = y) = PD(Y = y). That ends our proof.

C Useful Notations

We introduce some notations used in the proof of theorems.

Notations (Level sets).

SB(b) := {x ∈ X |PD(Y = 0|XB = xb) = b}
SfB (l) := {x ∈ X |pb0(X = x) = l}.
SE(a) := {x ∈ X |PD(Y = 0|X = x) = a}
SR(s) := {x ∈ X |P(Y = 0|XS = xs) = s}

Notation (s̃).

s̃a,b =
a(1− b)

a(1− b) + b(1− a)

Notations (Y S , Ỹ , Ŷ ).

Y S(x) := argmaxi∈Y PD(Y = i|XS = xs), (4)

Ỹ (x) := argmaxi∈Y PD,f∗M (Y = i|X = x). (5)

Ŷ (x) := argmaxi∈Y PD(Y = i|X = x) (6)

Notation (Pi(·)). Denote Pi(S) := PD(Y S = i|S).

Definition 1 (False Reversal Rate). For an input x, we say fB(x) induces a false reversal if Ỹ (x) 6=
Ŷ (x) = Y S(x). The false reversal rate of a set S is defined as PD(Sfr)

PD(S) , where x ∈ Sfr if it occurs
false reversal and x ∈ S.

Similarly we define the False Agreement Rate:
Definition 2 (False Agreement Rate). For an input x, we say fB(x) induces a false agreement, if
Ỹ (x) = Ŷ (x) 6= Y S(x). The false agreement rate of a set S is defined as PD(Sfa)

PD(S) , where x ∈ Sfa if
it occurs false agreement and x ∈ S.

D Proof of Theorem 1

First we prove the following lemma.
Lemma 1. DenoteRb(a) := P1(SE(a) ∩ SB(b)), and pB(a|b) := PD(SE(a)|SB(b)). We have

Rb(a) = P1(SR(s̃a,b)) = I(s̃a,b < 0.5), (7)
pB(a|b) = Ca,bPD(SR(s̃a,b)), (8)

where Ca,b = 1
2 (ab + 1−a

1−b )−1.
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Proof. For the first equation, it is obvious that SE(a) ∩ SB(b) = SR(s̃a,b) ∩ SB(b). Then we have

P1(SE(a) ∩ SB(b)) = P1(SR(s̃a,b) ∩ SB(b)).

By the definition of P1 we have

P1(SR(s̃a,b) ∩ SB(b)) = P1(SR(s̃a,b)) = I(s̃a,b < 0.5)

The first equation follows.

By XS ⊥⊥ XB |Y on PD, As P(Y = 0|XS) is a function of XS , PD(Y = 0|XB) is a function of
XB , we have

PD(Y = 0|XS)⊥PD(Y = 0|XB)|Y (9)

Without loss of generality, we can assume that PD(Y = 0|XS) takes value in a discrete set V . By
the decomposition that

PD(Y |X) ∝ PD(Y |XB)PD(Y |XS)

We have

PD(SE(a)|SB(b)) =
∑
i=0,1

PD(SR(s̃a,b)|SB(b), Y = i)PD(Y = i|SB(b))

=
∑
i=0,1

PD(SR(s̃a,b)|Y = i)PD(Y = i|SB(b))

=
∑
i=0,1

1

2
PD(Y = i|SR(s̃a,b))PD(SR(s̃a,b))PD(Y = i|SB(b))

=
1

2
(s̃a,b · b+ (1− s̃a,b)(1− b))PD(SR(s̃a,b))

=
1

2
(
a

b
+

1− a
1− b

)−1PD(SR(s̃a,b)).

The second equation follows.

Now we start the proof of the theorem.

Proof. Without the loss of generality, consider the case when l0 > 0.5. The proof for l0 < 0.5 has
a symmetric form. DenoteR(a) := P1(SE(a) ∩ SfB (l)), and pf (a|l) := PD(SE(a)|SfB (l)). The
False Reversal Rate and False Agreement Rate on SfB (l) is

FR(l) =
∑
a

R(a)pf (a|l)I(a > l)I(a < 0.5) + (1−R(a))pf (a|l)I(a < l)I(a > 0.5) (10)

FA(l) =
∑
a

(1−R(a))pf (a|l)I(a < l)I(a < 0.5) +R(a)pf (a|l)I(a > l)I(a > 0.5) (11)

The total debiasing error on SfB (l) is the summation of False Reversal Rate and False Agreement
Rate, which denoted as E(l). The difference of total debiasing error at l = a is

∆E(a) = (1− 2R(a))pf (a|l) (12)

∆E(a) < 0 whenR(a) ∈ [0, 0.5), pf (a|l) > 0, ∆E(a) > 0 whenR(a) ∈ (0.5, 1], pf (a|l) < 0. By
that, when pf (a|l) > 0,∀a ∈ (0, 1), the total debiasing error is minimized at a s.t. R(a) = 0.5.

Denote pBf (b|l) := PD(SB(b)|SfB (l)). We have

R(a) =
∑
b

Rb(a)pB(a|b)pBf (b|l) 1

pf (a|l)
(13)

We suppose the support of PD(Y = 0|XB) condition on SfB (l) is on (l0 − ε, l0 + ε), i.e. pBf (b|l) is
non-zero only if b ∈ (l0 − ε, l0 + ε).

By Lemma 1, we have
Rb(a) = I(s̃a,b < 0.5) (14)
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When a ∈ (l0 + ε, 1), s̃a,b > 0.5,∀b. ThusRb(a) = 1,∀b. We have

R(a) =
∑
b

pB(a|b)pBf (b|l) 1

pf (a|l)
= 1 (15)

Similarly it can be derived that R(a) = 0 when a ∈ (0, l0 − ε). As a result, the debiasing error is
non-decreasing as l decreases on the interval (0, l0 − ε) or increases on the interval (l0 + ε, 1), i.e.
The debiasing error increases as |l − PD(Y = 0|SfB (l))| increases. Denote the absolute difference
between PD(Y = 0|SfB (l)) and lopt which minimizes the debiasing error E as δ(l0, ε, α). As

PD(Y = 0|SfB (l)) =
∑
b

bpBf (b|l) ∈ (l0 − ε, l0 + ε), (16)

lopt ∈ (l0 − ε, l0 + ε), we have δ(l0, ε, α) < 2ε.

Now we consider the case when α := minXS maxi∈{0,1} PD(Y = i|XS) > 0, i.e. PD(SR(s)) = 0
when s ∈ (1− α, α). When s̃a,b ∈ (1− α, α), by Lemma 1 pB(a|b) = 0, and we have

a ∈ (
b

1−b
1−α + 2b− 1

,
b

1−b
α + 2b− 1

) =: (Lα,b, Uα,b) (17)

Both Lα,b and Uα,b increase as b increase. As a result, for ∀a ∈ (Lα,l0+ε, Uα,l0−ε), pf (a|l) =∑
b pB(a|b)pBf (b|l) = 0. When l0 − ε = Lα,l0+ε, we have

α =
1

2
+

ε

2l0(1− l0) + 2ε2
=: Cα (18)

When l0 + ε = Uα,l0−ε, we also have α = Cα. As Lα,l0+ε decreases and Uα,l0−ε increases with
α, when α < Cα, we have the same conclusion: ∆E(a) ≥ 0 when a ∈ (l0 + ε, 1) and ∆E(a) ≤ 0
when a ∈ (0, l0 − ε), and δ(l0, ε, α) < 2ε. That gives the first conclusion in Theorem 1.

For the case when α > Cα, Lα,l0+ε < l0 − ε and Uα,l0−ε > l0 + ε. We consider the quantity
l0 − ε− Lα,l0+ε and Uα,l0−ε − l0 + ε. Denote D(α, l0, ε) = 2l0 − (Lα,l0+ε + Uα,l0−ε). We have

∂D

∂α
=

(l0 + ε)(1− l0 − ε)
(1− (l0 + ε) + 2(l0 + ε− 1)(1− α))2

− (l0 − ε)(1− l0 + ε)

(1− (l0 − ε) + 2(l0 − ε− 1)α)2
(19)

=
−(2l0 − 1)[2εα2 + 2α(l0 + ε)(l0 − ε)− 2α(l0 + ε)− (l0 + ε)(l0 − ε) + l0 + ε]

(1− (l0 + ε) + 2(l0 + ε− 1)(1− α))2(1− (l0 − ε) + 2(l0 − ε− 1)α)2
(20)

=: − 1

A
[2εα2 + 2α(l0 + ε)(l0 − ε)− 2α(l0 + ε)− (l0 + ε)(l0 − ε) + l0 + ε], A > 0 (21)

There exists α′ s.t. ∂D∂α (α, l0, ε) < 0 when α < α′, ∂D∂α (α, l0, ε) > 0 when α > α′. When α = Cα,

∂D

∂α
(Cα, l0, ε) =

2ε(l0 + ε)(l0 − ε)(1− (l0 + ε))(1− (l0 − ε))
A[2(l0 + ε)(l0 − ε)− 2l0]2

> 0 (22)

Thus D(α, l0, ε) > D(Cα, l0, ε) = 0 when α > Cα. Denote C := l0 − ε− l0+ε
(l0+ε)+(1−l0−ε) α

1−α
, we

have lopt ∈ (l0 − ε− C,Uα,l0−ε), as a result C < δ(l0, ε, α) < 2ε+ C. That ends our proof.

E Proof of Theorem 2

Proof. As Ỹ (X) = 0 if and only if PfB (Y = 0|X) > PfB (Y = 1|X). The later is equivalent to

PD(Y = 0|X)/qb0(x) > PD(Y = 1|X)/qb1(x),

equivalently
PD(Y = 0|X) > qb0(x).

As a result, when Ŷ (X) 6= Ỹ (X), we have

PD(Y = Ŷ (x)|X = x) < qb
Ŷ (x)

(x)

Conversely, the above equation induces Ỹ (X) 6= Ŷ (X).
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Figure 1: Reliability diagrams of the bias-only models on MNLI. On MNLI, (a) the syntactic bias-only
model and (c) the unknown bias-only model are over-confident, (b) the hypothesis-only bias-only
model is under-confident.

F Over- or Under-Confidence of the Bias-only Model on MNLI

We plot the confidence-reliability diagram [6] of these three models in Figure 1. The wide blue bars
show the average accuracy of the bias-only model, and the narrow red bars show the gap between
the average accuracy and the confidence of the bias-only model, i.e., the uncertainty estimation on
the predicted class. For perfectly calibrated predictions, the curve in a reliability diagram should
be as close as possible to the diagonal. Most of the blue bars below the diagonal indicate that the
model is over-confident, otherwise is under-confident. It can be observed that the syntactic bias-only
model and unknown bias-only model are over-confident, and the hypothesis-only bias-only model is
under-confident.

G The Classification Accuracy of the Calibrated Bias-only Models

To facilitate the study, we demonstrate the classification accuracy of the calibrated bias-only models
on different training datasets, as shown in Table 1. In the table, Un-Cal, Dirichlet, and TempS
denote the bias-only model without calibration, with temperature scaling and Dirichlet calibrator,
respectively.

Table 1: Accuracy of the calibrated bias-only models on different training datasets.
FEVER HANS MNLI Unknown

Un-Cal 60.6 54.8 63.8 63.2

TempS 60.6 54.8 63.8 63.2

Dirichlet 62.7 69.9 64.0 63.4

H Experiment on Image Classification

In image classification experiments, we validate the effectiveness of MoCaD on the texture bias in
realistic images.

Datasets We follow Bahng et al. [1] to conduct our experiment. The experiment is conducted on
the 9-Class Imagenet dataset [1], which is a subset of ImageNet [5] containing 9 super-classes. The
validation dataset and ImageNet-A [8] are used for evaluation. For the in-distribution validation
dataset, an ‘unbiased’ accuracy measurement is used to evaluate the debiasing performance, denoted
as Unbiased. It first obtains the proxy ground truths c ∈ {1, . . . ,K} for texture bias using texture
feature clustering. Then the dataset is grouped according to the texture-class combination (c, y).
The combination-wise accuracy Ac,y is computed by Corr(c, y)/Pop(c, y), where Corr(c, y) is the
number of correctly predicted samples in (c, y) and Pop(c, y) is the total number of samples in
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(c, y). Finally, Unbiased is the mean accuracy over all Ac,y where the population Pop(c, y) > 10.
Specifically, the texture features are extracted from images by computing the gram matrices of
low-layer feature maps to capture the edge and color cues. It uses the feature maps from layer
relu1_2 of the ImageNet pre-trained VGG16 [12]. The clustering process is done with the mini-batch
k-means algorithm with k = 9 and batch size 1024. As k-means clustering is non-convex, the
clustering is repeated three times with different initialization, and the averaged performance across
the three trials is reported. ImageNet-A [8] is a dataset of natural adversarial filtered images that
fool ImageNet-trained ResNet50 [7]. The images consist of many failure modes of networks when
“frequently appearing background elements” [8] become erroneous cues for recognition.

Main Model and Bias-only Model Following [1], the main model is a fully convolutional network
followed by a global average pooling (GAP) layer and a linear classifier. Specifically, ResNet-50
architecture [7] is adopted as the main model. The bias-only model is a CNN with smaller receptive
fields, which is expected to biased towards texture bias. Specifically, it is a BagNet [3], which is
a variant of the ResNet50 architecture, by replacing many 3 × 3 with 1 × 1 convolutions, thereby
limiting the receptive field size of the topmost convolutional layer.

Table 2: Classification accuracy on image classification.
Method ID UnBiased ImageNet-A
PoE 94.6 ± 0.2 94.3 ± 0.3 31.8 ± 1.9

PoETempS 94.7 ± 0.3 94.5 ± 0.3 31.9 ± 1.1
PoEDirichlet 94.6 ± 0.4 94.3 ± 0.4 30.5 ± 1.2

DRiFt 94.6 ± 0.2 94.4 ± 0.3 31.9 ± 0.8

DRiFtTempS 94.8 ± 0.4 94.4 ± 0.4 32.5 ± 1.2
DRiFtDirichlet 94.5 ± 0.2 94.3 ± 0.2 32.4 ± 1.0

InvR 94.5 ± 0.4 94.1 ± 0.5 31.6 ± 0.3

InvRTempS 94.3 ± 0.1 93.8 ± 0.1 32.2 ± 1.5

InvRDirichlet 94.4 ± 0.4 94.2 ± 0.2 31.8 ± 0.9

LMin 90.9 ± 0.5 90.5 ± 0.6 27.7 ± 1.6

LMinTempS 91.1 ± 0.6 90.6 ± 0.6 28.1 ± 1.8

LMinDirichlet 91.2 ± 0.2 90.9 ± 0.2 26.1 ± 0.8

Training Details and Configurations We follow the configuration in [1]: the batch size is set to
128; learning rates are initially set to 0.001 and are decayed by cosine annealing and training for
120 epochs. As advised by Bahng et al. [1], we use AdamP optimizer [9] in the experiment. We
experiment with 8 implementations of MoCaD, i.e. two different calibrators combined with four
different ensembling strategies as the same as in previous experiments. For Learned-Mixin, the
entropy term weight is set to the value suggested by [1]. We run each experiment five times and
report the mean scores and the standard deviations. For the Dirichlet calibrator, we use the same
configuration as in FEVER.

Experimental Results Table 2 shows the experimental result on image classification. We can
see that our MoCaD can achieve the best debiasing performance among all EBD methods, but the
improvement is inconsistent. According to our theoretical analysis, that may because the invariant
mechanism for image classification task has a higher certainty (bigger α), reducing the impact of
calibration error on debiasing.
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