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ABSTRACT

The behavior of neural networks remains opaque, and a recently widely noted
phenomenon is that networks often achieve similar performance when initialized
with different random parameters. This phenomenon has attracted significant at-
tention in measuring the similarity between features learned by distinct networks.
However, feature similarity could be vague in describing the same feature while
similar features could yield different outputs. In this paper, we expand the con-
cept of equivalent feature and provide the definition of what we call functionally
equivalent features. These features produce equivalent output under certain trans-
formations. Using this definition, we aim to derive a more intrinsic metric for the
layer-wise feature complexity regarding the redundancy of features learned by a
neural network at each layer. We offer a formal interpretation of our approach
through the lens of category theory, a well-developed area in mathematics. To
quantify the feature complexity, we further propose an efficient algorithm named
Iterative Feature Merging (IFM). Our experimental results validate our ideas and
theories from various perspectives. We empirically show that the functionally
equivalence widely exists among different features learned by the same network
and we could reduce network size almost without affecting the performance.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved significant success across diverse fields, including
vision, texts and other areas. However, DNNs are often regarded as “black box” models associated
with high dimensional feature maps and numerous parameters. Recently, many studies report an
interesting phenomenon that neural networks with different random initialization often converge
to solutions with similar performance on the test set (Dauphin et al., 2014; Frankle et al., 2020).
Meanwhile, methods such as pruning (Wen et al., 2016; Ye et al., 2018; Peng et al., 2019) and
knowledge distillation (Hinton et al., 2015) have been proposed to reduce the complexity of the
neural network structure, leading to a more compact DNN achieving similar performance to their
dense/large counterparts. These phenomena further draw increasing studies on the features1 learned
by neural networks and a popular treatment is measuring the so-called feature similarity2. Various
feature similarity measures (Li et al., 2016; Morcos et al., 2018) have been devised to quantify the
distance between two features, and some works have further empirically found that similar features
can be learned from either between different networks (Li et al., 2016; Wang et al., 2018) or within
a (wide) network (Nguyen et al., 2021). In literature, feature similarity measures are often designed
to be invariant to certain transformations under certain transformations e.g. permutation (Li et al.,
2016), isotropic scaling (Barannikov et al., 2022), invertible linear transformation (Wang et al.,

∗Correspondence author. This work was in part supported by NSFC (92370201, 62222607) and SJTU
Trans-med Awards Research (STAR) 20210106.

1More precisely speaking, the feature here is the layer-wise feature map corresponding to a data point. Note
that most previous works, e.g. measuring feature similarity, are based on a set of features corresponding to a
specific dataset, while our definition and method are data-agnostic and may be more fundamental.

2The feature similarity is also referred to as representational similarity.
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Figure 1: An illustration of our proposed functionally equivalent features and feature complexity.
Two different models learn functionally equivalent features if the features and outputs of the two
models are equivalent under certain invertible linear transformations. Feature complexity (layer-
wise) is the dimensionality of the most compact representation of the feature at a certain layer. In
order to retrieve the most compact version, we propose iterative feature merging (IFM).

2018), affine transformation (Raghu et al., 2017; Williams et al., 2021) etc. However, previous
work (Ding et al., 2021) has shown similar features could also yield different outputs. It shows that
previous feature similarity measures are often vague in exactly describing the inherent structure of
the neural networks (e.g. the redundancy of features learned by a neural network or the same feature
learned by different neural networks) and can hardly provide actionable insights.

In this paper, we expand the concept of feature equivalence and formally define a more general
form, the so-called functional equivalence. Features are considered functionally equivalent if they
produce outputs that are equivalent under certain transformations. Based on the functionally equiv-
alent features, one can derive a metric to reflect the inherent layer-wise feature complexity of the
network regarding the redundancy of features learned by neural networks. In another word, the
feature complexity corresponds to the most compact representation of the feature at a certain layer.

For a clearer and more formal description of our approach, we provide an abstract view of neural
networks and interpret our approach using the language of category theory, a branch of mathematics,
which is widely applied in various fields, including mathematics, physics, and computer science. In
general, a category is a graph with objects and arrows (or “morphisms”) between objects. The map-
pings between categories are called functors that preserves the structure and the mappings between
functors are called natural transformations (for a formal introduction, see Sec. 2.2). In the context
of neural networks, we abstractly represent the network structure as a category and a certain neural
network as a functor that maps this structure to specific parameters. Through the lens of category
theory, we prove that functional equivalence between features can be elegantly represented as the
existence of a natural transformation between two functors defined above.

To empirically measure the feature complexity, we propose an algorithm called Iterative Feature
Merging (IFM) to merge the weights corresponding to redundant features. By iteratively matching
the weights corresponding to different features, we merge functionally equivalent features. Ex-
perimental results show that DNNs learns a lot of functionally equivalent features which could be
merged or removed with little impact on the neural network performance. We also provide many
valuable insights that may inspire future works. Our major contributions are as follows:

• We provide a definition for functionally equivalent features (in Sec. 2.3) and the layer-wise feature
complexity (in Sec. 2.4). This differs largely from existing works dwelling on feature similarity.

• We provide a category theory perspective on neural network structure and training. From the
category theory perspective, we further offer insights into phenomena like linear mode connectivity.

• We propose an algorithm called Iterative Feature Merging (IFM) (in Sec. 3) to measure the feature
complexity. Experimental results show its efficiency and potential as an effective pruning method.
Experiments with IFM also yield valuable insights.
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2 DEFINITION OF NEURAL NETWORK FEATURE COMPLEXITY

In this section, we define the feature complexity of a neural network from a category theory perspec-
tive. We first introduce an abstract view of neural networks using the language of category theory
(in Sec. 2.2) and further define functionally equivalent feature from the category theory view (in
Sec. 2.3). Finally, we provide the definition of feature complexity in Sec. 2.4.

2.1 NOTATIONS

Consider an L-layer neural network f(θ; ·) where θ is the parameter. We use f l(θl, ·) to denote the
l-th layer. For the feature map Zl(θ,x), we have Zl(θ,x) = f l(θl, Zl−1(θ,x)) and Z1(θ,x) =
f1(θ1,x). When x is not of concern, we abbreviate Zl(θ) for Zl(θ,x).

To take a closer look, we proceed with an L-layer MLP for its ease of presentation, despite the fact
that our definition of feature complexity is architecture agnostic and our proposed method could be
applied to arbitrary architectures. For a MLP, the feature map Zl(θ) ∈ Rdl contains dl features.
We use Zl

i(θ), i ∈ [1, dl] to denote the i-the feature. The θl corresponds to a weight matrix W l ∈
Rdl×dl−1 and a bias vector bl ∈ Rdl and we have Zl(θ) = σ(W lZl−1(θ)+b), where σ corresponds
to the activation function. For a permutation π on θ, we have Zl

π(θ) = PlZ
l(θ) for each l ∈ [1, L],

where Pl ∈ Rdl×dl is a permutation matrix. The weight is also permuted as W l
π = PlW

lP⊤
l−1 and

bl
π = Plb

l, which make sure that ∀x, f(θ,x) = f(π(θ),x).

2.2 CATEGORY THEORY VIEW OF NEURAL NETWORKS

We introduce basic and necessary concepts in category theory which is a branch of mathematics.
For more comprehensive introduction please refer to (Mac Lane, 2013; Adámek et al., 1990).

Category: A category C is a graph with a set of objects and arrows (or “morphisms”). For an arrow
f ∈ A from object a to b, it is written as f : a→ b where a is the domain of f written as domf = a
and b is the codomain of f written as codf = b. A category also has two additional operations:
Identity: For each object a there exists an arrow ida : a→ a. Composition: For each pair of arrows
< f, g > with domg = codf , there is an arrow g ◦ f : domf → codg called their composite.

For the set of arrows from b to c in category C, it is written as HomC(a, b) called ”hom-set”.

Functor: A functor is the morphism between categories. For two category C and B, a functor
T : C → B consists two suitably related functions: the object function, which assigns each object c
of C an object Tc of B and the arrow function which assigns each arrow f : c → c′ of C an arrow
Tf : Tc→ Tc′ of B, in such way that:

T (idc) = idTc, T (g ◦ f) = Tg ◦ Tf (1)
It means the mappings defined by the functor T preserves the structure of the category C.

Natural transformation: Given two functor S, T : C → B, a natrual transformation τ : S → T
is a function assigns each object c of C an arrow τc : Sc → Tc of B, in such way that every arrow
f : c→ c′ of C yields a commutative graph:

Sc Tc

Sc′ Tc′

τc

τc′
Sf Tf

(2)
Here commutative graph means that different paths between two objects yield, by composition, an
equal arrow between the two objects, such that Tf (τc(Sc)) = τc′ (Sf(Sc)).

For a neural network structure f(·, ·), it could be abstracted into a category F where objects are
the shape of feature (feature map) and arrows are the type of transformation applied to the features,
e.g. linear transformation, convolution, attention etc.. For an identity arrow, it simply applies no
transformation on the feature while the composite of arrows is the composite of the corresponding
transformations. Take a simple L-layer neural network structure for instance, it could be abstracted
as the category depicted in Eq. 3, where each object corresponds to the shape of the input, feature
maps and output while each arrow corresponds to the type of transformation applied to the feature
(we omit identity circle and composites of arrows for simplicity).

x
f1

→Z1 f2

→Z2 f3

→· · · f
L

→ f(·, x). (3)
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Terms in category theory Corresponding specific concept in our definition
Category Neural network structure.

Object Shape of feature maps including input and output
(e.g. a tensor of shape 3× 224× 224).

Arrow (Morphism) Type of layers (transformations applied on the feature maps)
(e.g. linear layer, convolution layer, etc.)

Functor Parameterization of neural network
Mapping each arrow (type of layer) to parameterized layer.

Natural transformation There exist a natural transformation iff
two neural network learn Functionally Equivalent Features.

Table 1: Terms in category theory and their embodiment in our definitions about neural networks.

In the context of neural network structure, the training process aims to discover suitable parameters.
In other words, it seeks to find a functor T : F → P , where P represents a category describing the
shapes of features, and its arrows encompass all possible transformations with specific parameters.
For example, consider a network f(θ, ·) with parameter θ, the corresponding functor Tθ maps each
arrow f l(·, ·) to f l(θl, ·) with specific parameters θl. To paint a clearer picture, as an analogy, we
could think of the category F as a class in object-oriented programming language and think of the
functor T as creating an object instantiating the corresponding class. In Table 1, we list the terms in
category theory that used in our definition and the corresponding concepts about neural networks.

2.3 DEFINITION OF FUNCTIONALLY EQUIVALENT FEATURE FROM THE CATEGORY VIEW

Through the lens of category theory, as introduced in Sec. 2.2, we further define functionally equiv-
alent feature using natural transformation. Consider a natural isomorphism τ between two functors
Tθa , Tθb : F → P satisfying that for each object z ∈ F , the transform τz : Tθaz → Tθbz is an
invertible linear transformation. Natural transformations require naturality, ensuring that each arrow
in categoryF results in a commutative graph in category P , as described in Eq. 2. Therefore, natural
isomorphisms between parameters are non-trivial.

Definition 2.1. [Functionally Equivalent Features] For a L-layer neural network f(·, ·) and two
different parameter θa and θb, if there is a natural isomorphism between functor Tθa and Tθb then
model f(θa, ·) and model f(θb, ·) have functionally equivalent features such that

∀x ∈ D,∀l ∈ [1, L− 1], τZl+1(Zl+1(θb,x)) = f l+1
(
θl+1
a , τZl(Zl(θb,x))

)
. (4)

where τZl+1 and τZl represents the invertible linear transformation defined by the natural isomor-
phism and Zl(θb,x) ∈ Rdl is the feature at the l-th layer.

According to Definition 2.1, natural isomorphisms between networks indicate the features modeled
by two networks are functionally equivalent i.e. we could replace any feature maps of one model
with the feature map from the other model through invertible linear transformation. Since it is a
strong condition, simple transformations between different networks are unlikely to exist.

Specifically, we notice linear mode connectivity (LMC) (Frankle et al., 2020), an empirical phe-
nomenon that have drawn extensive attention. It says that there may exist a linear path between two
different neural networks such that along the path, the loss is nearly constant. Various methods (En-
tezari et al., 2022; Ainsworth et al., 2023; Liu et al., 2022) have been proposed to find networks
satisfying LMC while recently a stronger notion of linear connectivity called Layerwise Linear Fea-
ture Connectivity (LLFC) was observed coexist with LMC (Zhou et al., 2023). We show that LMC
actually indicates the functional equivalence between features.

Proposition 2.2. [LMC indicates functionally equivalent features] (Proof in Appendix C). For two
different parameter θa and θb, if there is a permutation π such that θa and π(θb) satisfy LMC, then
there exists a natural isomorphism τ between functor Tθa and Tθb .

Proposition 2.2 provides an interpretation of linear mode connectivity from category theory per-
spective such that there always exists a natural isomorphism between two networks satisfying LMC,
which indicates the two networks have functionally equivalent features. Note that Entezari et al.
(2022); Ainsworth et al. (2023); Liu et al. (2022) showed that different networks can be linearly
connected after permutation, therefore we assume each τz to be permutation in the following, which
means establishing a one to one correspondence between the features of the two networks.
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Figure 2: The empirical evidences that functionally equivalent features exist. (a): The heatmap of the
distances between different features from the last convolution layer of VGG16 on CIFAR10. (b):The
test accuracy on CIFAR10 of a model interpolating between a VGG16 and the same model after
permutation on each layer. The solid lines are the result of permutation on functionally equivalent
features while the dashed lines are the result of random permutation on the same number of features.

2.4 DEFINITION OF FEATURE COMPLEXITY FROM THE EQUIVALENT FEATURE

Based on the definition of functionally equivalent feature, we could further define the feature com-
plexity. Consider natural transformations mapping the functor Tθ to itself. The natural transforma-
tion that maps each arrow to itself must exist. In the case of other natural transformations, they map
Zl(θ) to Zl(θ)P where P ∈ Rdl×dl is a non-identity permutation matrix, which means mapping
feature Zl

i(θ) to Zl
j(θ) with i ̸= j, i, j ∈ [1, dl]. This approach allows us to establish a partial order

among features. For two features Zl
i(θ), Z

l
j(θ), i, j ∈ [1, dl] at l-th layer of network f(θ, ·), if there

exists a simple transformation between Tθ to itself that maps Zl
i(θ) to Zl

j(θ), we say Zl
i(θ) ≤ Zl

j(θ).
It indicates that feature Zl

j(θ) covers the feature represented in Zl
i(θ) and could be used to replace

Zl
i(θ). It is obvious that if Zl

i(θ) and Zl
j(θ) is comparable then Zl

i(θ) = Zl
j(θ).

Theorem 2.3. [Feature duality] (Proof in Appendix C). For a L-layer neural network f(θ, ·), there
are multiple natural isomorphisms between Tθ to itself if and only if

∃l ∈ [1, L],∃i, j ∈ [1, dl], s.t. Zl
i(θ) = Zl

j(θ), i ̸= j. (5)

Finally, we formally define feature complexity based on the partial ordering between features.

Definition 2.4. [Feature complexity] Given a L-layer neural network f(θ, ·), the feature at l-th
layer compose a poset {Zl

n(θ)|n ∈ [1, dl]}. The maximum number of features that are not equivalent
i.e. the width of the corresponding poset is defined as the feature complexity at l-th layer.

3 MEASURING NEURAL NETWORK FEATURE COMPLEXITY

In this section, we propose an algorithm to empirically measure the complexity of the features by
finding equivalent features with weight matching and merging the equivalent features. Firstly, we
devise and introduce two components to find and merge equivalent features.

Feature weight matching: Drawing inspiration from the weight matching method used to identify
permutations in linear mode connectivity literature, we propose matching the weights corresponding
to each feature. Denote W l

[i,:] as the i-th row of W l and W l
[:,j] as the j-th column of W l. For two

features Zl
m, Zl

n,m, n ∈ [1, dl], the weight distance between the two features is defined as:

Dl
mn = ∥W l

[m,:] −W l
[n,:]∥

2 + ∥W l+1
[:,m] −W l+1

[:,n]∥
2 (6)

When matching the weights, we consider the layers such as linear fully connected layers or convo-
lution layers at the l-th layer, while ignoring the activation and normalization layers in the network.
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Figure 3: Results for iterative feature merging on CIFAR10. (a): Testing accuracy to the percentage
of remaining parameters. Each dot corresponds to a different hyper-parameter β in iterative feature
merging. (b): Testing accuracy to the number of parameters. We conduct a grid search on β and
choose the largest β with testing accuracy larger than 95% of the testing accuracy before merging.

Feature merging: Given two functionally equivalent features Zl
m, Zl

n at the l-th layer, where
m,n ∈ [1, dl], To obtain the merged weight at the l-th layer W ′l ∈ R(dl−1)×dl−1 , the row of
weight matrix W ′l corresponding to the merged feature is calculated by:

W ′l
merged = W l

[m,:] +W l
[n,:] (7)

The other dl − 2 rows of W ′l correspond to the dl − 2 rows in W ′l such as W l
[i,:], i ̸= m,n.

Therefore the merged feature at l-th layer becomes Z ′l ∈ Rdl−1 where the merged feature Z ′l
dl−1 =

Zl
m + Zl

n and the other dl − 2 features correspond to Zl
i , i ̸= m,n.

To process the Z ′l, we adjust the weight at l+1-th layer. For W ′(l+1) ∈ Rdl+1×dl−1, the column of
W ′(l+1) corresponding to the merged feature is:

W
′(l+1)
merged = mean(W l+1

[:,m],W
l+1
[:,n]) (8)

The other dl−2 columns of the weight W ′(l+1) corresponds to the dl−2 columns W l
[:,j], j ̸= m,n.

Using this method, we could merge features to obtain an approximately functionally equivalent
neural network. Note that when merging several features the process is similar to Eq. 7 and Eq. 8.

Iterative Feature Merging with Weight Matching: Composing the two components proposed
above, we get the algorithm to measure the feature complexity. We iteratively merge the features in
each layer l with the smallest weight distance defined in Eq. 6 until

min
m,n∈[1,dl],m ̸=n

Dl
mn > β max

m,n∈[1,dl],m ̸=n
Dl

mn (9)

With hyper-parameter β, Dl
mn corresponds to the weight distance as defined in Eq. 6.

To get the mean value in Eq. 8, we also keep track of the number of features merged into one feature.
Consider merging two feature Zl

m and Zl
n where Zl

m is the merged feature of Nm features and Zl
n

is the merged feature of Nn features, then we have:

W
′(l+1)
merged =

(
Nmmin

W l+1
[:,mmin]

+Nnmin
W l+1

[:,nmin]

)
/ (Nmmin

+Nnmin
) (10)

The detailed algorithm for Iterative Feature Merging (IFM) is represented in Algorithm 1.

4 EXPERIMENTS

In Sec. 4.1, we empirically verify the existence of functionally equivalent features. In Sec. 4.2,
we show that the iterative feature merging could greatly reduce the number of parameters while
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Figure 4: Results of iterative feature merging on ImageNet. (a): Testing accuracy (top-1) in relation
to the percentage of remaining parameters of VGGs after feature merging with different β. (b): Test-
ing accuracy (top-1) to the percentage of remaining parameters of ResNet50 after feature merging.
“ResNet50 v1” and “ResNet50 v2” corresponds to the two different checkpoints in torchvision.

maintaining the performance without fine-tuning. In Sec. 4.3, we provide more empirical results
regarding the iterative feature merging. We conducted experiments using VGG and ResNet models
on CIFAR10 and ImageNet, respectively. For more details, refer to Appendix D.

4.1 EXISTENCE OF EQUIVALENT FEATURES

In this section, we empirically show that the functionally equivalent feature as defined in Sec. 2.3
actually exist in vanilla networks. We conduct experiments on VGG16 trained on CIFAR10 with
SGD optimizer for 150 epochs. For details, refer to Appendix D.

As shown in Fig. 2(a), we visualize the normalized distances between 512 different features from
the last convolution layer of the VGG16. The minimum distance between two features is 2e − 15.
For most features, the distance between them is relatively low. Similar results were observed for
other layers. For more results please refer to Appendix E.

For a model f(θ, ·), we further consider the permutation π that swaps the functionally equivalent
features found by the feature weight matching introduced in Sec. 3. Similar to the metric used to
identify LMC, we further interpolate between the parameter θ and the parameter after permutation
π(θ) and test the accuracy of model f ((1− λ)θ + λπ(θ), ·). The results are shown in Fig. 2(b)
where solid lines correspond to the permutation swapping equivalent features and dashed lines cor-
respond to random permutation swapping the same number of features for comparison. The results
shows that interpolating between functionally equivalent features does not affect the performance.

4.2 ITERATIVE FEATURE MERGING

In this section, we present the results of iterative feature merging with VGG (Simonyan & Zisser-
man, 2015) and ResNet (He et al., 2016) on CIFAR10 (Krizhevsky et al., 2009) and ImageNet (Deng
et al., 2009). We trained models on CIFAR10 and use pretrained checkpoints on ImageNet provided
by torchvision (maintainers & contributors, 2016). For details, refer to Appendix D.

Iterative Feature Merging on CIFAR10

By varying β in Algorithm 1, we could observe the change of testing accuracy as different number
of features are merged. The results for VGG networks on CIFAR10 are shown in Fig. 3(a), with
the x-axis representing the percentage of remaining parameters and the y-axis representing testing
accuracy. It is clear that the larger the network is, the more equivalent features could be
merged before significantly affecting the performance. Specifically, for VGG16, we could reduce
the number of parameters to 23.03% while keeping the testing accuracy at 91.78% which is relatively
close to the original testing accuracy at 93.51%.

We further demonstrate the relationship between testing accuracy and the number of network pa-
rameters in Fig. 3(b). Here we apply grid search on β and choose the largest β with the testing
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Figure 5: Empirical results regarding feature complexity. (a): The plot of feature complexity at each
layer of VGG networks that is trained on CIFAR10. (b): The results of guided backpropagation of
three different sets of equivalent features in the VGG16 on three different images from CIFAR10.

accuracy larger than 95% of the testing accuracy before feature merging. With iterative feature
merging, larger models (e.g. VGG16 and ResNet50) could reduce more parameter with a
smaller decrease on testing accuracy. Note that we also find ResNet18 outperforming ResNet34
and ResNet50 on CIFAR10. For the reason of this phenomenon, we believe that the capacity of
ResNet18 is already enough to deal with the simple classification task on CIFAR10, e.g. we could
reduce up to 60% of the parameters of ResNet-18 without significantly affecting the testing accuracy.

Iterative Feature Merging on ImageNet

We find that neural networks learn more complex features to solve the more difficult task, i.e. image
classification on ImageNet. As shown in Fig. 4, iterative feature merging only reduce approximately
5% parameters for VGG and approximately 10% parameters for ResNet50.

We observe the same trend as on CIFAR10 that the larger the network is, the more equivalent features
could be merged, as shown in Fig. 4(a). For different parameters with the same network structure, we
conduct experiments on two different parameters of ResNet50 in torchvision, where ”ResNet50 v2”
achieves higher top-1 accuracy than ”ResNet50 v1” (80.86% to 76.13%) due to different training
hyper-parameters. As shown in Fig. 4(b), the testing accuracy of ResNet50 v2 decreases faster than
the testing accuracy of ResNet50 v1 as more features are merged. It indicates that ResNet50 v2
learns more diverse features, which may explain the superior performance of ResNet50 v2.
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Figure 6: Pruning results of ResNet18
on CIFAR10. The INN experiments are
conducted with the released official code.

The potential of IFM for pruning

IFM merges functionally equivalent features, which is
similar to the channel pruning (Wen et al., 2016; Ye
et al., 2018) that remove channels to reduce computa-
tional cost. Note that conventional pruning methods re-
quire fine-tuning the pruned model while our proposed
method does not. In Fig. 6, we compare our IFM with
a recently SOTA pruning method ”INN” (Solodskikh
et al., 2023) which also does not require the fine-tuning.
Specifically, INN requires changing the training proce-
dure while our IFM can be directly applied to vanilla
pre-trained models with high efficiency. See Appendix E
for the time complexity analysis. However, it is worth
noting that the pruning effect of IFM may be limited on
complex tasks such as image classification on ImageNet.

4.3 EMPIRICAL RESULTS ON FEATURE COMPLEXITY

Fig. 5(a) shows the feature complexity at each layer of the VGG networks trained on CIFAR10. We
find that the feature complexity is increasing at the first several layers and decreasing at the
last several layers while the maximum feature complexity is reached in the middle. Several
possible reasons could be used to explain this phenomenon, e.g. the neural network starts to forget
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features or many simple features compose complex features at the last several layers. We leave the
explanation of this phenomenon for future work.

In Fig. 5(b), we visualize the guided backpropagation of various features in VGG16. Guided back-
propagation (Springenberg et al., 2015) is a method to visualize the part of the image that activate
neurons in the neural network by applying ReLU on the gradient through backpropagation. Here
we visualize the guided backpropagation of a group of functionally equivalent features by setting
the gradient of other features to be zero. As shown in Fig. 5(b), a group of functionally equivalent
features capture the similar features on different images. The three different groups of functionally
equivalent features we demonstrate capture the cabin, wheel and container of trucks respectively. It
shows the possibility to align semantics to a group of equivalent features learned by the neural
network for classification. Please refer to Appendix E for more results.

5 RELATED WORKS

Model Similarity. To harness the behaviour of neural networks in train/test, efforts have been made
especially for features (representations) learned by networks: the transferability of features (Yosin-
ski et al., 2014), the training dynamics (Morcos et al., 2018), the effect of network width and depth
on the learned feature (Nguyen et al., 2021). Among them, measuring the feature similarity (rep-
resentational similarity) has become an important issue, with various metrics to measure the fea-
ture similarity including those based on canonical correlation analysis (Raghu et al., 2017; Morcos
et al., 2018); the measures based on alignment (Li et al., 2016; Williams et al., 2021); the mea-
sures based on representational similarity matrix (Shahbazi et al., 2021; Tang et al., 2020) and the
measures based on topology (Barannikov et al., 2022). Based on various feature similarity mea-
sures, previous works have shown that different networks with similar performance learn similar
features (Li et al., 2016; Wang et al., 2018) and there are similar features within a network with in-
creased width/depth (Nguyen et al., 2021). For measuring similarity between models, another focus
is functional similarity (Madani et al., 2004; Bansal et al., 2021; Bhojanapalli et al., 2021; Klabunde
et al., 2023) i.e. measuring the similarity of outputs. However, Ding et al. (2021); Hayne et al.
(2022) show that functional similarity and feature similarity are not necessarily correlated such that
similar features can yield different outputs while similar outputs can be obtained from different fea-
tures. In this paper, we propose functionally equivalent feature, extending the concept of equivalent
feature in feature similarity literature and functional measures in functional similarity literature.

Linear Mode Connectivity. Freeman & Bruna (2017); Draxler et al. (2018); Garipov et al. (2018)
observed Mode Connectivity, i.e., different well-trained models can be connected through a non-
linear path of nearly constant loss. Frankle et al. (2020) first proposed the notion of Linear Mode
Connectivity (LMC), where models are connected through linear path of constant loss. Frankle
et al. (2020) observed LMC for networks that are jointly trained for a short amount of time before
going through independent training (referred as the spawning method). Later, Entezari et al. (2022);
Ainsworth et al. (2023); Liu et al. (2022) showed that even independently trained networks can be
linearly connected when permutation invariance is taken into account. In particular, Ainsworth et al.
(2023) utilized the permutation invariance to align the neurons of two neural networks and formu-
late the neuron alignment problem as a bipartite graph matching problem. More recently, Zhou et al.
(2023) discovered a stronger notion of linear connectivity, called Layerwise Linear Feature Connec-
tivity (LLFC), which indicates that the feature maps of every layer in different trained networks are
also linearly connected, and demonstrated the co-occurrence of LLFC and LMC.

Category Theory in Machine Learning. Category theory have been used in machine learn-
ing (Shiebler et al., 2021) for various topics including backpropagation (Fong et al., 2019), cate-
gorical probabilities (Fritz, 2020), conditional independence (Mahadevan, 2022a), supervised learn-
ing (Harris, 2019), reinforcement learning (Mahadevan, 2022b) and so on. More recently, Yuan
(2023) provides an analysis upon the power of perfect foundation models using category theory.

6 CONCLUSION

We have defined functionally equivalent features and introduce the concept of feature complexity,
as learned by the network. To measure the feature complexity, we propose an efficient algorithm
called Iterative Feature Merging (IFM). Experiments on CIFAR10 and ImageNet show its efficiency
and inspire insights regarding the feature complexity. Our IFM also shows potential in pruning
pre-trained models without fine-tuning. See more discussion in Appendix A.
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A DISCUSSION ON LIMITATION AND FUTURE WORK

Since we do not proactively modify the structure and training procedure of the neural network, when
facing difficult tasks (ImageNet classification), the number of parameters that could be reduced by
IFM is limited. For better pruning performance, designing network structure and training algorithms
to learn a more compact representation could be a promising direction, which we leave for future
researches. Though our proposed definition and method are structure and data agnostic, another
major limitation is that we only conduct experiments for image classification task. More experiments
could be done regarding different network structures and different tasks. We hope that our proposed
feature complexity will inspire future research for a better understanding and enhancement of neural
network behavior.

B ALGORITHM FOR ITERATIVE FEATURE MERGING

In this section, we present the detailed algorithm for iterative feature learning (IFM) in Algorithm 1.

Algorithm 1 Iterative Feature Merging with Weight Matching
Input: Parameter θ for a L-layer neural network f(·, ·), where the weight at the l-th layer is
W l ∈ Rdl×dl−1 ; hyperparameter β
for l ∈ [1, L] do

while True do
for m ∈ [1, dl] do

Nm ← 1
for n ∈ [1, dl] do
Dl

mn ← ∥W l
[m,:] −W l

[n,:]∥
2 + ∥W l+1

[:,m] −W l+1
[:,n]∥

2

end for
end for
if minm ̸=n D

l
mn > βmaxm ̸=n D

l
mn then

break
else
mmin, nmin ← argminm,n,m̸=n D

l
mn

W ′l
merged ←W l

[mmin,:]
+W l

[nmin,:]

W
′(l+1)
merged ← (Nmmin

W l+1
[:,mmin]

+Nnmin
W l+1

[:,nmin]
)/(Nmmin

+Nnmin
)

Nmerged ← Nmmin +Nnmin

end if
end while

end for

C PROOFS

C.1 PROOF FOR PROPOSITION 2.2

Let us first formally define linear mode connectivity.

Definition C.1. [Linear Mode Connectivity] Given a dataset D and two neural networks of the
same structure and different parameters θa and θb with similar loss LD(θa) ≈ LD(θb), the two
networks are linearly connected if

LD(θa) ≈ LD(θb) ≈ LD (αθa + (1− α)θb) ; ∀α ∈ [0, 1]. (11)

Beyond LMC, the linear layer-wise feature connectivity (LLFC) was observed coexist with LMC.

Definition C.2. [Layerwise Linear Feature Connectivity] Given a dataset D and two L-layer
neural networks of the same structure and different parameters θa and θb. They satisfy LLFC if

∀x ∈ D,∀l ∈ [1, L],∀α ∈ [0, 1], Zl (αθa + (1− α)θb,x) = αZl(θa,x)+ (1−α)Zl(θb,x). (12)
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Proof. [Proof for Proposition 2.2] Consider two parameter θa and θb satisfying LMC, according
to Eq. 12 we have

f l
(
αθa + (1− α)θb, αZ

l−1(θa,x) + (1− α)Zl−1(θb),x)
)
= αf l

(
θa, Z

l−1(θa,x)
)
+(1−α)f l

(
θb, Z

l−1(θb,x)
)

(13)
When f l is activation layer such as ReLu, we have

σ
(
αZl−1(θa,x) + (1− α)Zl−1(θb),x)

)
= ασ

(
θa, Z

l−1(θa,x)
)
+ (1− α)σ

(
θb, Z

l−1(θb,x)
)

Here σ(·) represent the non-linear function, therefore we have

Zl(θb,x) = f l(θa, Z
l−1(θb,x))

For layers that perform linear transformation such as linear layer, we can write Eq. 13 in matrix
form:(
αW l

θa + (1− α)W l
θb

) (
αZl−1(θa,x) + (1− α)Zl−1(θb,x)

)
= αW l

θaZ
l−1(θa,x)+(1−α)W l

θb
Zl−1(θb,x)

Then we have
W l

θaZ
l−1(θa,x) +W l

θb
Zl−1(θb,x) = W l

θaZ
l−1(θb,x) +W l

θb
Zl−1(θa,x)

Derive it, we get (
W l

θa −W l
θb

) (
Zl−1(θa,x)− Zl−1(θb,x)

)
= 0

Therefore, we have
Zl(θb,x) = f l(θa, Z

l−1(θb,x))

Similarly, when θa and π(θb) satisfy LMC, we have

P lZl(θb,x) = Zl(π(θb),x) = f l(θa, Z
l−1(π(θb),x)) = f l(θa, P

l−1Zl−1(θb,x)) (14)
Here P l and P l−1 is the permutation matrix defined by π. Therefore, we could simply define a
corresponding natural isomorphism such that each τzl is P l

C.2 PROOF FOR THEOREM 2.3

Proof. According to the partial order between features defined in Sec. 2.4, when there is more than
one natural isomorphisms between Tθ to itself then we have

∃l ∈ [1, L],∃i, j ∈ [1, dl], s.t. Zl
i(θ) ≤ Zl

j(θ), i ̸= j. (15)
Next, we need to prove that

Zl
i(θ) = Zl

j(θ) (16)

Consider the poset {Zl
n(θ)| n ∈ [1, dl]}, since the natural isomorphism defines a one-to-one cor-

respondence between the features, the objects in the same chain are equal. Otherwise, the maximal
element Zl

max S in a chain S must have

Zl
max S ≤ Zl

k, Zl
k /∈ S (17)

which contradict to the statement that Zl
max S is in chain S. Therefore we have

∃l ∈ [1, L],∃i, j ∈ [1, dl], s.t. Zl
i(θ) = Zl

j(θ), i ̸= j. (18)

C.3 DETAILED INTRODUCTION OF THE FORMULATION WITH CATEGORY THEORY

The Category Corresponding to Model Structure. As we abstractly present the model structure
with a category, it could be depicted as follows (we omit identity circle and composites of arrows
for simplicity).

x
f1

→Z1 f2

→Z2 f3

→· · · f
L

→ f(·, x).
The objects (x, Z1, etc.) in the category are the shape of the feature maps (including inputs and

output). For example, for neural network structures designed for ImageNet, the x here is a tensor of
shape 3 × 224 × 224. Arrows between the objects indicate the type of transformations applied on
the feature maps. For example, the first layer f1 for VGG is a convolution with a 3× 3 convolution
kernel. For it to be a category, according to the definition of category, two additional conditions
should be satisfied:
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• Identity: For each object a there exists an arrow ida : a→ a.

• Composition: For each pair of arrows < f, g > with domg = codf , there is an arrow
g ◦ f : domf → codg called their composite.

Identity condition could be easily satisfied where we add identity arrow to each object which means
we conduct no transformation to the feature maps. For composition, we add composition of arrows
corresponds to composition of transformations (e.g. f1 ◦ f2 means we firstly apply transformations
in the first layer on x then apply transformations in the second layer and produce Z2).

The Functor Corresponding to Parameterization of Neural Network. Functors, by definition,
map each object and arrow from on category to another category, while preserving the structure. For
functors in our definition, it map the category of network structure to the category of tensors where
objects are tensors while arrows are transformations between them. For a functor T, it maps each
arrow (the type of a transformation) to a specific transformation with specific parameters.

D EXPERIMENT DETAILS

Training details for models on CIFAR10 We train models with the same hyper-parameters. For
each model, we train it using SGD with momentum at 0.9 and weight decay at 1e−4 for 150 epochs.
The initial learning rate is at 0.1 and we reduce learning rate at 80 and 120 epoch by multiply it with
0.1. For data augmentation, we only use random horizontal flip with probability set at 50%.

Note that the model structures are a little bit different to the structures on ImageNet. For VGGs, the
number of layers for the classifier is reduced to 1 instead of 3. For ResNet, we apply the conventional
change such that the convolution kernel size is set to be 3 at the first layer.

Checkpoint details for models on ImageNet For each model, we use pretrained check-
points on ImageNet provided by pytorch (maintainers & contributors, 2016). Note that there
are two different checkpont for ResNet50 named ”ResNet50 Weights.IMAGENET1K V1” and
”ResNet50 Weights.IMAGENET1K V2”

Details for Iterative Feature Merging For IFM, the only hyper-parameter is the β in Algorithm 1.
We grid search it in the list [0.01, 0.03, 0.05, 0.07, 0.1, 0.12, 0.14, 0.15, 0.18, 0.2].

Note that for ResNet, we only merge the features of the last two block for better merging effect.

E ADDITIONAL RESULTS

E.1 TIME COMPLEXITY OF IFM

The comutational cost of IFM is relative low since we only need to compute the weight matching
distance between features, which is faster than conducting model inference. Table E.1 shows the
time consumption of one iteration for different models on CIFAR10 and ImageNet where each result
if average over 100 iteration. The result is conducted with one Geforce RTX 2080Ti.

Table 2: Time consumption for one iteration with different models on different dataset. The result
is averaged over 100 iterations.

dataset model time for one iteration (s)

CIFAR10

VGG13 0.018± 0.003
VGG16 0.027± 0.005

ResNet18 0.015± 0.003
ResNet50 0.127± 0.012

ImageNet

VGG13 0.802± 0.053
VGG16 0.814± : 0.054
VGG19 0.822± 0.045

ResNet18 0.015± 0.002
ResNet50 0.127± 0.010
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Figure 7: Distance weight between features at the first 12 layers of a VGG16 trained on CIFAR10.

E.2 WEIGHT DISTANCE BETWEEN FEATURES

In Fig. 2.4, we present the weight distance between features at the last convolution layer of a VGG16
trained on CIFAR10. In this section, we present the result of the first 12 layers in Fig. E.2.

E.3 GUIDED BACK-PROPAGATION RESULTS

In this section, we show more empirical results of the guided backpropagation of different groups of
functionally equivalent features. In Fig. 5(b), we show that a group of features may corresponds to
a semantic in a class. In Fig. 8, we further show that a group of functionally equivalent features may
correspond to a semantic across different classes, where the specific group of features are activated
by legs which is presented both on horses, cats and dogs. We also provide results in Fig. 9 that are
similar to Fig. 5(b) where different semantics regarding boats are learned by groups of functionally
equivalent features. Note that all these results are from features at the middle of VGG16, since the
result of most features at the last layer cover the whole image. Future works may explore more on
the different groups of functionally equivalent features.

F FURTHER DISCUSSION: RELATIONSHIP BETWEEN IFM AND MODEL
COMPRESSION METHODS

Brief Introduction of Model Compression and Channel Pruning. The increasing size of neural
networks have motivated the standing research on network compression over the decade. To reduce
the computation cost, various methods have been proposed: knowledge distillation (Hinton et al.,
2015), quantization (Gong et al., 2014; Wu et al., 2016), low-rank factorization (Tai et al., 2015), etc.
Specifically, network pruning (Hanson & Pratt, 1988) tend to reduce redundant parameters that are
not sensitive to the performance. The pruning methods include unstructured pruning (LeCun et al.,
1989; Hassibi et al., 1993; Srinivas & Babu, 2015) and structured pruning (Zhou et al., 2016; Wen
et al., 2016; Ye et al., 2018). The unstructured pruning remove connections between neurons that

16



Published as a conference paper at ICLR 2024

Legs

Horse Cat Dog

Figure 8: Guided backpropagation result of the VGG16 on CIFAR10. Here we show that a group of
functionally equivalent features may corresponds to a semantic across several classes.

Boat Bridge Side Fore

Figure 9: Guided backpropagation result of the VGG16 on CIFAR10. Here we show that a group of
functionally equivalent features may corresponds to a semantic regarding boats.

Table 3: Comparison between popular pruning methods about whether they require access to data
before and after pruning. Note that our method requires no data both before and after pruning.

Method access to data before pruning training (fine-tuning) after pruning
Structured Sparsity Learning (SSL)
(Wen et al., 2016) ✓ ×
Iterative Magnitude Pruning(IMP)
(Frankle & Carbin, 2019; Frankle et al., 2019) ✓ ✓

SNIP
(Lee et al., 2019) ✓ ✓

Iterative Synaptic Flow Pruning (SynFlow)
(Tanaka et al., 2020) × ✓

Integral Neural Network (INN)
(Solodskikh et al., 2023) ✓ ×
Iterative Feature Merging (IFM)
(Ours) × ×

the dimensionality of the feature map does not change. The structured pruning, on the other way,
removes groups of weights (filters, channels, etc.) and reduces the dimension of the feature map.
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Difference between IFM and Channel Pruning Methods. In general, the effect of IFM and chan-
nel pruning is similar: reducing the dimension of the feature map. The key difference is that IFM
has different purpose compared with channel pruning methods. The proposed IFM aims at finding
the most compact representation without significantly affect the performance while the purpose of
channel pruning is better preserving the performance under certain computation budget. The em-
pirical difference is that the proposed IFM does not require access to any data. Efforts have also
been made to develop data agnostic prune methods. For pruning at initialization (PaI) (Wang et al.,
2021), Tanaka et al. (2020) propose a data agnostic method to prune the network before training.
For pruning after training (PaT), Solodskikh et al. (2023) propose a new training algorithm that does
not require fine-tuning to prune the model after training. However, they either require the access
to training (fine-tuning) procedure after pruning or before pruning. When considered as a prune
method, to the best of our knowledge, the IFM is the first data-agnostic prune method not requiring
any training or fine-tuning (as shown in Table 3). On the other hand, the compression ratio could
not be precisely controlled in IFM. Therefore, fine-tuning might also be required after IFM for the
proposed method to be an actual prune method.
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