Supplementary materials
A On the Definition of LOT, .

Let (X,dx) and (,dy) two nonempty compact Polish spaces, u € M{ (X), v € M{ (D) two
probability measures on these spaces and ¢ : X x ) — R, a nonnegative and continuous function.
We define the generalized low-rank optimal transport between p and v as

LOT, .(u,v) = inf / c(z,y)dn(z,y) .
€l (p,v) Jxxy
where
I (,v) 2 {r € T, v) : )y € ME(X), )iy € M), A€ Alstor =3 A}
i=1

As X and Y are compact, II,.(u, v) is tight, then Prokhorov’s theorem applies and the closure of
IL,(p, v) is sequentially compact. Let us now show that IL,.(u, v) is closed. Indeed, Let (7,,)n>0
a sequence of IT,.(u, v) converging towards . Then by definition there exists for all & € [|1,7]],

(187 )20, (4 )nz0 and (A)>0 such that for all . > 0

= A el

i=1
However, (MSZ“ ))nZO and (u,(f))nzo are also tight, and Prokhorov’s theorem applies, therefore we can

extract a common subsequence such that for all k,

(k)

k
e = s g

andv )—>V*

In addition as (A,)n>0 live in the simplex A,, we can also extract a sub-sequence, such that
An — A« € A,. Finally by unicity of the limit we obtain that

Z )\ k) Q y(k)

Finally, by denoting I £ {k : PURISS 0}, and by considering i* € I, we obtain that

r—|I|+1

T (L

(@), () Ax ) o)
g AP0 @ L g \I\Jrl Qu .
ieI\{i*}

from which follows that 7, € II,.(u, v).

B Proofs

B.1 Proof of Proposition ]|

Proposition. Letn,m > 2, X £ {z1,...,2,} CX, Y 2 {y1,...,ym} C Vand a € A}, and
b e A* . Then for 2 < r < min(n, m), we have that

[LOTc(tta, %, ¥, w) = OTe(pta, x5 v,)| < [|Cllo In(min(n, m)/(r — 1))

Proof. Let P € argminp g, ,(C, P). As P is a nonnegative matrix, its nonnegative rank cannot

exceed min(n,m). Assume for simplicity, that n = m, then there exists (R;)?_, nonnegative

matrices of rank 1 such that



As forall i € [|1,n|], R; is a rank 1 matrix, there exist ¢;,7; € R’ such that R; = ¢;7; . Then by
denoting ¢; = G; /||, m; = 7:/|7:| and \; = |G;||F;| where forany h € R™ |h| £ """ | h;, we obtain

that
P = Z Ngird
i=1

Without loss of generality, we can consider the case where A\; > --- > \,,. Let us now denote
A= (M,...,\n), and by using the fact the P is a coupling we obtain that A € A,,. Also, by
definition of A\, we have that for all k¥ € [|1,n|], Ax, < 1/k. Let us now define

r—1 n
PLS g+ (z &) 0r 67
i=1 i—r
where
a SNl
i i
A Z?:r At

ﬁr = Z;L:T )\z

Remark that P € I1, (), therefore we obtain that

Qo

[LOT, o (fta,x, Vb, v) — OTc(ta,x, v, v)| = LOTy c(fta,x, ¥, ¥) — OT4 (Lo, X, Vb, Y)
S <C7P> - <07P>

< (C, (Z Ai) a8l — (C, Z)\iQiriT>

n n 1
<Clloe Y S Ni < IICHOOZ; < [|Clloe In(n/(r — 1))
O

B.2  Proof of Proposition 2]

Proposition 10. Let i € M7 (X), v € M{ (V) and let us assume that c is L-Lipschitz w.r.t. = and
y . Then for any r > 1, we have

ILOT; (11, v) — OTc(p, v)| < 2L max(N1og, (| )y (X5 dx), Niog, (| i) (Vs d))

Proof. As X and Y are compact, V1o, (| 7)) | (X5 @) Niog, (| v7))) (Vs d) < 400 and then by de-
noting ex = N 1o, (i) (X, dx), there exists 21, ..., x| 7| € X, such that X C Uj_, B (s, €)
from which we can extract a partition (.5;, X)}[{J of X such that for all i € [|1,[+/r]]], and
z,y € S;x, dy(z,y) < ex. Similarly we can build a partition (Si,y)};/ﬂ of V. Let us now
define for all k € [|1, [\/7]]],

A /’L|Sk,X and Vké V|Sk,y
1(Sk,x) v(Sk,y)

with the convention that % = 0, we can define

Kk

Lv7]
Ty £ Z W*(Si7x X SjJ})Vj ®,uz .

4,5=1
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First remarks that 7, € IT, (i, v). Indeed we have for any measurable set B

Lvr)? r
m(X x B)= Y v;(B) > " (Six x S;y)
j=1 i=1

Lv7]

_ZV]

ij

Z V|Sj,X (B)

j=1

= v(B),

similarly 7,.(4 x )) = p(A) and we have that |/r]? < 7. Therefore we obtain that

ILOT, (1, ) — OTe(j1, )| = LOT, . (1, ) — OT (1, )

SAXyC(I,y)dﬂr(m,y)/XxyC(:C’y)dTr*(x’y)

Lv7]
<) / c(z,y)d[m, (v, y) — 7 (z,y)]
i,j:l Sl X><S7 Y
V7]
< Y (Six x Siy)
i,j=1

<[ s cmy)—  inf  cay)
(2,y)€8:, 2 XS,y (w,y) €S, x XS,y

< Llex + ey

from which the result follows. O

Corollary. Under the same assumptions of Proposition 2 and by assuming in addition that there
exists a Monge map solving OT..(u, v), we obtain that for any r > 1,

|LOTr,c(,u> ) OT )‘ < LNUng (y dy)

Proof. Let us denote T a Monge map solution of OT,.(u, ~) and as in the proof above, let us consider
a partition of (S;y)7_; of Y such that for all ¢ € [|1,7|], and z,y € S;y, dy(z,y) < ey with

£y £ Niog, (r)] (¥, dy). Let us now define for all k € [|1, [/7]]],

A V‘Sk,y

v(Sk,y)

2 'IZ'T [Sky) ang vy,

. (St.y)

with the convention that § = 0, we can define

WT—ZW Sky XSky)I/k@),LLk
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Again we have that 7, € II,.(u, ), and we obtain that
ILOT,c(pt, v) — OT¢(p, v)| = LOT, o (1, v) — OTc(p, v)

< /X el () - /X el )

<Zﬂ (k) x 1) [ (@, y)dun(y) & v (y)

Tfl(Sk,y)XSk,y

- / elar, T(2))dp(z)

k=1 7T (Sk,»)

<Zﬂ (Se) x Si) [ el y)dpa () © e (y)

T=1(Sk,y) xSk,

fzw (k) x Si) [ elar, T(2))dpe(x) @ va(v)

Tﬁl(Sk’y)XSkyy

<Z7r (k)  Sy) [ el ) — clar, () dpe(x) © vi(x)

T=1(Sk,y) X Sk,y
< LEy

from which the result follows. Note that to obtain the above inequalities, we use the fact that 7* is
supported on the graph of 7', and therefore we have have for all k € [|1,7]],

(T~ (Sky) X Sky) = (T (Sky)) = v(Sk,y)-

B.3  Proof of Proposition 3]

Proposition. Letr > 1 and ji,v € M (X), then LOT,. o(fin, 0n) ——— LOT,..(11,v) a

n—+o00

Proof. Let 7* solution of LOT,. .(u, v). Then there exists \* € A*, (uf)i_,, (vF)i_, € M7 (X)"
such that

T = zr:)\*ul Qv
i=1

Note that by definition, we have that

u:zr:)\fuf and V:i/\fz@‘.
i=1 i=1

Let us now define 7, and 7, both elements of M (X x [|1,7]]) as follows:
(A x {k}) & Xgpr(A) and 7, (A x {k}) £ A\ (A) for any measurable set A and k € [|1,7]] .
Observe that the right marginals of 7, and 7, is the same and we will denote it p. We can now
define for all z,y € X the family of kernels (k, (-, z))zex € M7 ([|1,7]])™ and (k, (-, y))yex €
M ([|1,7]])¥ corresponding to the disintegration with respect to the projection of respectively

and v. Let us now consider n independent samples (Z!*)!"_; and (Z})?_, such that for all i € [|1,n[],

Z!' ~ k(- X)) and ZY ~ ky (-, Y)andletusdeﬁneforallke [11,7]

1 — 1

~ A ~ A

= — 1,0_,0x, and 7 = — 15—y, .

P = E Z'=k0X; k= E zv=k90Y;
1=1 i=1

Let us now define

-1
N Z min((fiel, (7)o o
1 ||| 7k |
1 —1
n 1 TZ min |/, |Vk| Tz min (||, [Vk|) _ 5
L= 305 min(ae, ) —~ Il i
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with the convention that % = 0. Now it is easy to check that 7 € II,.(fi, ), indeed we have that

r—1

min( u U
=1

r—1
1
. [ _ 5 minAel 7D g

e
1= 32—y min(|7ik], |7]) prt ||
= i(A)
in addition by construction we have that

r—1
1= min(|jix], [7])
k=1

r—1

Z mln |:U/k| |Vk|) ‘ =1 —me |/~Lk| |Vk|)

— |7k |

r—1

. min(|fg!, |Pk
s (| k], |7 |

— 7y

and both /1 — Y74} min(AsLI7x)) 5 and o — St wuk are positive measures. Therefore

[k
we obtain that
LOT, (i1, 7) < / c(z,y)dr(z,y)
X2

Now we aim at showing at [, ¢(x, y)d@(x,y) — LOT, (p, ) a.s.. Indeed first observe that from
the law of large numbers we have that for all k € | |, | & and similarly |7] — Af. In
addition, for all k, ¢ we have that almost surely, ji; @ U, converges weakly towards AL A7y @ vy
Indeed one can consider the following algebra F £ {(z,y) € X2 — f(z)g(y) f,g € C(X)}, and
then by Stone-Weierstrass, one obtains by density the desired result. Now remark that

r—1 . ~ ~
- min |7 - -
/ (o, ), y) = 3 el 174]) / el ) 7
X2 X

|k |7k |

k=1
1
5 / c(@, y)dfir © vy
r—1
1
S < min(|/ix|, |V’f|))/ (@, y)dfir ® Uy
A 174 o
'I 1
1
1 ( min(]| x|, |Vk|))/ c(z,y)dii; Q@ Uy
)\r =1 |/’Lk| v
r—1 1 (1 % i L %
1 min ) |V i Al L y
PR S [ (o) (o S
Ar kyq=1" X2 |k | 7]

from which follows directly that [, ¢(x,y)d7(z,y) — LOT,..(u1, ) a.s. Let us now denote for all
n > 1, m, a solution of LOT,. (1, 7). Let w € € an element of the probability space where live the
random variables (X;);>o and (Y;);>o such that [, ¢(z,y)d7w @) (2,y) = LOT,.o(, v). As X is

compact Thanks to Prokhorov’s Theorem, we can extract a sequence such that (7T£L )>n20 converge

weakly towards 7(“) € TI,.(u, v). In addition we have that for all n > 1

/ (e, y)dm () < / (. y)d7 (2, )
XZ XZ

And by considering the limit we obtain that
/C(x, y)dr) (z,y) < LOT,c(u,v)

However 7(“) € II,.(u, v) and by optimality we obtain that
/c(m,y)dﬂ(“)(m,y) =LOT, (i, v)

This holds for an arbitrary subsequence of (m&w))nzo, from which follows that
[ e(, y)dﬂ',(f) (x,y) — LOT, ¢(u, v). Finally this holds almost surely and the result follows. [
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B.4 Proof of Proposition[d]

Proposition. Let r > 1 and p,v € Mf(X ). Then, there exists a constant K, such that for any
0 > 0 and n > 1, we have, with a probability of at least 1 — 26, that

log(40/9) , ﬁlog(40/5)]

n

LOT, c(fin, on) — LOTT,C(%V) < 11”0”00\/:+K7’C”oo [

Proof. We reintroduce the same notation as in the proof of Proposition [3. Let 7* solution of
LOT,..(, ). Then there exists \* € A¥, (uf)7_y, (vf)_; € M7 (Z)" such that

T = Zr:)\*uz Qv
i=1

As before let us also consider 7, and 7, defined as 7, (A x {k}) £ Appx(A) and 7, (A x {k}) £
Aivi(A) for any measurable set A and k € [|1, r|] and denote p their common right marginal. We

also consider n independent samples (Z!"), and (ZY)", such that for all i € [|1,n|], Z!

ku(-,X;) and Z¥ ~ k,(-,Y;) and we denote for all k € [|1,7|]

I I
fur £ - Z 1z0_y0x, and 7, £ - Z 1zv =0y,

i=1 i=1

Let us now define .
R
™= Z L Hi Q@ Vg .
i=1
Our goal is to control the following quantity:

]Lon,cw,u) - / e, y)di (2, )]
z2

First observe that

E [/22 c(z,y)dn(x y} Z N [/ c(x, y)diu(x )dﬂk(y)}
—Z MQ X ZE[ s s P

Moreover, we have that

E (Xuyg)lzg:klzj? —k / z,y) Ll —pdr, (2, 2)dm, (y, 2')
x[|11,7(])2

/ )Lt Leridis (2)dvs () dp(2)dp(')
x|

=3¢ [ el )d(a)nily)

from which follows that

E [/22 c(z,y)dr(x y} Z/\k/ c(z,y)dpr(z)dvy(y) = LOT,c(p,v)

Now let us define for all (z;, 2;)1_¢, (vi, 2;) € (2 x [|1,7]])",

g((xlvzl)a-~-7($nvzn)7(ylvz£)a yn7 n éz)\*ng Z xzvy] Zi= qlz’—qa
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since Z is compact and c is continuous, we have that

mcu7uhzmpu>—gcn,@mzwwun=:}j s Sl 95 Ly — el ) L=
q=1 J

n
1
= Z -leyj z =zi )\* TL2 Z xkvyj)lz =Z
=1 Jj=1

ll¢ll oo Zy‘:l Loj=zy N i1 L=z,
n? AL AL

IN

2flelloo 1

IN

min \*n
1<qg<r

Then by applying the McDiarmid’s inequality we obtain that for 6 > 0, with a probability at least of
1 — 4, we have

2||efloc . [log(2/6)

min \* n
1<q<r 14

’LOTM(;L, V) — /32 c(m,y)dfr(m,y)‘ <

Now we aim at building a coupling & € II,.(ji, ?) from 7. Let us consider the same as the one
introduce in the proof of Proposition[B.3] that is

r—1

~ — 1% ~
Wéz n(|fxl, | k|)Mk®Vk
= ok
—1 —1
+ ! P g L2 P g P S U7 P
L= min(lil, [2el) | f 1] L i

with the convention that % = 0. Let us now expand the above expression, and by denoting A =

1 — 77— min(|fig], |7%|) we obtain that

r—1

L % .
P Z n(|fil, | k‘),uk@l/k

h1|wwu
n 1 7
= Uy
)\TM
r—1
1 < min(|fig|, |Vk|))
— [ l———— |
TR kZ:l |7k |
r—1
1 min (||, |k -
1 B ||u ||| >>Mk o
)‘T k=1 Hk
r—1 r—1 . ~ ~
1 min 17 min(| |, |V .
¢ L[S (1 mih ) g, | [ (- mindiskionh ),
DY et || = 7y
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Now we aim at controlling the following quantity | [, c(z, y)d# (z,y) — [5. c(2,y)d7(x,y)| and
we observe that

| i) - @) =3 [ o) [1 - il 15D | e oy an

- — A || [ |
# [ eten) |5 - 5| i@t 12)
c(x, v r\T)Vr
e PTEEW es
1 min(| k|, |7k |)

L 1— k k > clx d - dl/ 13
Akz_:l/z< A ) "
1= min(|fig], 7))

+ = / (1_ c(z,y)dig(z)dD, (14)
)\T’; . ir] k (y)

r—1
1 / ( min(|fg|, |1/k|)) ( min(|fig|, |Vq|)> ~ 5

L L 1- —— T oz, y)dfu (2)dig (y (15)

Ar k,qzzl 22 |k | 7] (o)

Let us now control each term of the RHS of the above equality. Let us first consider the term in
Eq.[IT} remark that we have

[t [)\1 il ) dﬂm)ﬂk(y)’

||| 7k |
1 mln(|Mk|7|Dk>H (||
v T — ¢ Fk1Vk
[A;’; I
Az (il 15
< [ 2] i )] 1
k
o | max (||, [Px])
< min(|jix|, |7k ‘—1 llell

Ak

min (||, |7k |) T .
— I max(|f], [7k]) = Axlllefloo
max( Ay = A*Jlos, 1A = A*[loo)lle]loo

A
e 3]

where we have denoted \,, 2 (|fix|)i_, and A, £ (|7])5_,. Now observe that

Ay

IN

OO) max([[ A, = A oo, A = A*[|oo)

P (mas(% = X floon A0 = M) 2 ¢) < 2P (1% = X oc 2 1)

P (dK(/\*, Au) > ;)
< 4exp(—nt?/2)

where d is the Kolmogorov distance. In addition we have

Ml (A 1 . .
3 v < - ) )
max (HA L5 OO) S max (113 = Alloes [ = Xloc)

Combining the two above controls, we obtain that for all § > 0, with a probability of at least 1 — ¢,

1 min(laxl, |7x])] - . /21118/5 leloo 2In8/6
7 <
/zz e.y) L\Z ||| WD) = el K nomin A

1<i<r
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Let us now consider the term in Eq.[I2] we have that

/22 c(x,y) L\lr ~ 1] dﬁ,.(x),;r(y)‘ Iur |yr|

Ar
<max(uif:

A
< ZH
< max (H»

A
< 2||¢]| oo max ( -+

Ar | llelloo

me || |Px]) —

5\ r—1

o Oo) > I — min| x|, [7e])] |l o
k=1

oo> lelloo (1A = Aulle + X" = X [l)

A

S\V * Y * 3
> OO) max([|A" = Aull1, [[A" = A1)

However we have that

P (max(IA* = Xl I = Alla) > ¢) < 2P (I = Kl > ¢)

In addition we have that E(]|\* — X wllh) \/> and by applying the McDiarmid’s Inequality, we
obtain that for all 6 > 0, with a probab111ty of 1 —

. 21n(2/9)
I = Rl < \f \/ /o)

Therefore we obtain that with a probability of at least 1 —

117, [21n( 8/5 . 2In(8/6) + /2 ln(8/)
- — = <
/Zz c(@y) L\* /\r] dfir (@) (y ‘ 2lelloe \/> n X mlg ¥

For the term in Eq.[T3]and[I4] we obtain that

1= min(|jix, 7)) o
iy /Z 2 <1 _ ) e, y)djiy (2)d7 ()

|7k |
| =
< XT (17| = min(| k], [7x])) llelloo
T k=1
|/1r| 3 ~
< =— 1A = |7]]]l€]| o
< B0, = 1 el

< [ = A2+ 1A = Zellflefloo
< 3lelloo max([IA" = Aufl1, [IA" = Aull1)
Therefore we obtain that with a probability of at least 1 — 6,

LS (1 B DY e

v = |7k |

< 3lcl [\f \/m]

Finally the last term in Eq.[T3|can be controlled as the following:

L Z [ (1m0 () R P iy )

A i %]

||c||oo min(|jie], 7)) min([figl, 7)) | |

S (1- 1 - AL DY 1y,
M i 7]

< llellos - Z (|fi] — min(|fi], |7x])) 2_: (17| = min([ k], [7x]))

/\T k=1 k=1
< 3l elloo max([A" = Aull1s A" = Auflr)
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and we obtain that with a probability of at least 1 — 9,
r—1

> /Z (1 - HM) (1 - mm(’”"”q')) c(a,y)dji(x)diy (1)

1
A e ] 7]

< 3l l\/; " \/@]

Then by applying a union bound we obtain that with a probability of at least 1 — ¢

/21n40/5 61n(40/3) + 2+/2r In(40/5)
/22 c(z,y)d[7(z,y) — 7(z, y)]‘ < Il o 11\/>+ 12

n X min Af
1<ilr

Now observe that

LOTnc(,&a 19) - LOTnc(,U/v 1/) S /
Z2

C(LL', y)dﬁ(xa y) - L2 c(x,y)dw*(aj,y)
< /Z el y)dli ~ #l(ay) + /Z el y)dli ~ 7))

and by combining the two control we obtain that with a probability of at least 1 — 27,

LOT, (. 5) — LOT,..(1.) < [l lll\[+l2 /21n40/6 1( 1og(2/5) 61n(40/5) +2,/2r1n (40/0) )]
(0%

< 11l \[ 14HCH°° 10g40/5 . 2llelloc max(6, f)log(40/5)

where o = 1nng A; and the result follows. O

B.5 Proof Proposition 5]

Proposition. Letr > 1,6 > 0 and p,v € M{ (X). Then there exists a constant N, s such that if
n > N, 5 then with a probability of at least 1 — 20, we have

log(4
LOT,. o (fin, Pn) — LOT o1, v) < 11c||oc\/Z+ 77ll¢llo M _

Proof. We consider the same notations as in the proof of Proposition[d] In particular let us define for
all (3, z:)i2y, (i, ;) € (2 x [|1,r[]))",

g((gjhzl)a"'7(xnvzn)7(ylvz£)a yn7 n Z)\*n2 Z xlvy] z2i= q]-z’._q )

Recall that we have

n2

lelloo [Z?zl Ljma  Tjo 1Z;_gk]

9+ @ 21), ) = g (B B) )| < = -

2l maX<HA“ g )
n )\* e’} [ee]

2|lcllo 2||c/l oo kY 3
A _>\* 0y )\V_)\* oo)
n +n>< min \! max (H " oo I
1<i<r

<

In fact if we have a control in probability of the bounded difference we can use an extension of the
McDiarmid’s Inequality. For that purpose let us first introduce the following definition.
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Definition 4. Ler (X;)",, m independent random variables and g a measurable function. We say
that g is weakly difference-bounded with respect to (X;)™ by (b, 3,0) if

P('Q(X17~~'7Xm) —g(X{,,X;n” < 6) >1-94
with X = X; except for one coordinate k where X, is an independent copy of Xy. Furthermore for
any (z;)i2, and (x});2, where for all coordinate except on x; = x';

|g(a:1,...,xm) _g(xllaa'rin)‘ < b.

Let us now introduce an extension of McDiarmid’s Inequality [Kutin, 2002].

Theorem 1. Ler (X;)™,, m independent random variables and g a measurable function which
is weakly difference-bounded with respect to (X;)7™, by (b, 8/m,exp(—Km)), then if 0 < 7 <
T(,8,K)andm > M(b, 8, K, T), then

2m
P(lg(X1,..., Xm) —E(g(X1,...,Xm))| > 7) < dexp 7R
where

T(b, 8, K) 2 min (1;“,4/3@, 5?)
M(b, 8, K, ) £ max (g BV40,3 (2; + 3) log G? + 3> , i)

Given the above Theroem we can obtain an asymptotic control of the deviation of g from its mean.
Let 6’ > 0 and let us denote

m 2 2n
po 2l
n X min AY
1<i<r *
o los(1/8)
2n
1 2log(4/¢’
TR pp— LD
min \; n
1<:i<r

Observe now that with a probability of at least 1 — exp(—Km)

- 2|l¢]| 0o 1 21og(4/4")
o) —g(. .. L <
‘g( ,(zk,Zk,), ) g( 7(xk721€)7 )| = n 1+ min )\:: n
1<i<r

Let us now fix § > 0 and let us choose ¢’ such that &' £ 4/n and 7 £ 3/ 41%54/5), then we obtain

that for n sufficiently large (such that n > M (b, 5, K, 7)/2 and 7 < T'(b, 8, K)), we have that with
a probability of at least 1 —

‘LOTT,C(M,V)/Zzzc(a:7y)d7%(x7y)‘§4||c”oo 14t \/21og(n) \/410g(4/5)

min A} n n
1<i<r

< 4] 41og(4/9) . 161/5]/c| 00 \/10g(n) log(4/6)

n X min Af
1<i<r

Recall also from the proof of Proposition |4} that we have with a probability of at least 1 — §

. . T 21040/  61n(40/6) + 21/2r In(40/5)
/Z 2c<x,y>d[w<x,y>w(x,yn\wnm 11\/;+12\/T +

n X min Af
1<i<lr
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Finally by imposing in addition that

n > '1 s v/ log 40/5 and 7 > \f
log(n) nin A min A} 1121121

we obtain that for n is large enough (such that (such that n > M (b, 8, K,7)/2 and 7 < T'(b, 8, K))
and satysfing the above inequalities, we have with a probability of at least 1 — 24 that

[log(40/6
LOTT,C([)‘?ﬁ) - LOTT,C(/Jwy) < 11|c||06\/:+ 77||CHOO #

B.6 Proof Proposition [6]

Proposition. Let ji,v € M (X). Let us assume that c is symmetric, then we have

1
DLOTclp) = 5 [ =claydl — ) dlu—v)(a.y)
x
If in addition we assume the c is Lipschitz w.r.t to x and vy, then we have

DLOT, .(u,v) P OT.(p,v) .

Proof. When r = 1, it is clear that for any y, v € M{ (X), II,.(u, v) = {p ® v} and thanks to the
symmetry of ¢, we have directly that

1 1
DLOT () = 5 | ~elay)dlp o] & e~ v, ) = SMMD_ (1)
x
The limit is a direct consequence of Proposition 2] O

B.7 Proof of Proposition ]
Proposition. Let r > 1 and () n>0 and (vn)n>0 two sequences of probability measures such that

o, — W and v, — v with respect to the convergence in law. Then we have that

LOT,.(tin, V) — LOT, c(p1,v) .

Proof. Let us denote 7 an optimal solution of LOT,..(u, v) and let us denote (1()7_,, (v®)i_,

and (/\(i))f:1 the decomposition associated. In the following Lemma, we aim at building specific
decompositions of the sequences (g, )n>0 and (Vy,)n>0.

Lemma 1. Lerr > 1, u € MJ(X) and (uM)i_, € M (X) and (A\D)_, € A¥ such that
= 22:1 \ipD). Then for any sequence of probability measures (ttn)>0 such that pr, — p, there
(@)

exist for all i € [|1,r|] a sequence ofnonnegative measures ({tn’ )pn>0 Such that

1 = XD foralli € [|1,r|] and

Z,ugf) = Wy foralln >0
i=1

Proof. For r = 1 the result is clear. Let us now show the result for » = 2. Let us denote (i T ))

sequence converging weakly towards A1 ;(!). Then by denoting u( )2 = i — (o — % ))+ where

(+)+ correspond to the non-negative part of the measure, we have that

,u,( ) >0, :U‘n — /\1,U,
w2 iy — i >0, un) — Aop®) and
W = ,ugll) + ,ug) forall n >0
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which is the result. Let » > 2 and let us assume that the result holds for all 1 < k£ < r. Let us now

T @
consider a decomposition of i such that y = ZTH A\ipD. By denoting (1) £ Zfrlil\bﬁf, we

obtain that -
p= (Z Ai) A 4 A
i=1

Then by recursion we have that there exists sequences of nonnegative measures ( u; )) and (,u(rﬂ))
such that

i (Z)‘> W0 u D = A qu and py, = ) + p(+Y forall n>0

plh ;
Now observe that \é?i)l — M =3 ZT i p(’) Therefore applying the recursion on this
*1

~(1)

problem allows us to obtain a decomposmon of iy, of the form

,Un Z gy ) where

. , Ai ,
st) >0 and ) — mﬂm :

Therefore we obtain that

= S 1 e

p® >0, |aPpd — \p® forall i € [|1,7|] and
p Y >0, pt = A pr
from which follows the result. O

Let us now consider such decompositions of (p,)r>0 and (v, ),>0 such that each factor converges
toward the target decomposition of x. Now let us build the following coupling:

-1 k)
|Nn B |Vn ) (B) g 1, (k)
Z I ® p

k=1 |,Un
r—1 . k k r—1 k k
. ! l“ =y minden D) o] 5 min(|; >| 2y
k k n k n n k n
1— S5t min(|ut? |, (1) p | = |

with the convention that 2 5 = 0. Now it is easy to check that 7,, € IL,.(f4n, v), and we have that

LOTT,C(Nna Vn) < / d((E, y)dﬁ—n (1'7 y) — LOTRC(NH V)
XQ

and by Prokhorov’s theorem and the optimality of the limit of (7,,),>0 (up to an extraction) we
obtain that LOT, ¢ (ftn, vn) — LOT, (1, V). O

B.8 Proof Proposition 7]

Proposition. Let 7 > 1, and let us assume that c is a semimetric of negative type. Then for all
w,v € M7 (X), we have that
DLOT,(u,v) > 0.

In addition, if c has strong negative type then we have also that

DLOT, (pt,v) =0 < pu=v and
fn — 1 <= DLOT, .(ttn, ) = 0.

where the convergence of the sequence of probability measures considered is the convergence in law.
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Proof. Let 7* solution of LOT,. .(u, v). Then there exists \* € A*, (u)i_,, (vF)i_; € MT(X)"

such that
= Z DT

Note that by definition, we have that

u:i)\f;ﬁ and I/—Z)\l v,
i=1

By definition we have also that

LOT, () < SN [ clonddi @ v
k=1

similarly for LOT,. (v, v) we have

.
LOT, .(v,v) < Z /\Z/ c(z,y)dvy @ vy,
k=1

X2

Therefore we have

1 * * * *
DLOT, .(p,v) > Z)\k (/ oz, y)duy, @ vy — 3 [/X? c(x, y)duy, @ py, + /){2 c(z,y)dvi ® Vk:|)

> Z M /X el )l — o] © [uf ]

)\*
>Z s Vi)

where for any any probability measures «, 3 on X we define

DC(Oz,B)éQ/X2 c(:c,y)douXJB—//“(2 c(:c,y)douXJOzf/X2 c(z,y)dB ® B

However, as c is assumed to have a negative type, we have that
De(pp, vi) 2 0 vk
In addition if we assume that c has a strong negative type, then we obtain directly that
DLOT, c(p,v) =0 = uj =v;, k.

Let us now show that DLOT,. . metrize the convergence in law. The direct implication is a direct
consequence of the Proposition E Conversely, if DLOT, (g, 1) — 0, then by compacity of X
and thanks to the Prokhorov’s theorem we can extract a subsequence of p,, — ©*, and thanks to
Proposition |§, we also obtain that DLOT, (py,, 1) — DLOT, .(u*, ). Finally we deduce that
DLOT, .(*, 1) = 0 and p* = p.

O

B.9 Proof Proposition [9]

Proposition. Letn >k >1, X 2 {z,...,z,} CXanda € AY. If cis a semimetric of negative
type, then by denoting C = (c(x;, x;))i,j, we have that

LOTy c(fta, x5 pa,x) = mén(C, Qdiag(1/Q71,,)Q") s.t. Q € RiXk , Qly=a. (16)
Proof. First remarks that one can reformulate the LOT}, . problem as

A b XTCYi
LOT = min min =
k ('(/"L :u“) geAz (x7y)€K2 ; gl
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where
K

a,g

A

2 Ix cR™ st Ax = [a,g]", x > 0}
17T
(I[T®1:> and
Xi 2 [T 1)xnt1s - Tixnl s Yi = Wi-1)xnt1s- - Yixn) forall i € [|1,k]]
Indeed the above optimization problem is just a reformulation of LOTy, .(, i) where we have

vectorized the couplings in a column-wise order. Let us now show the following lemma from which
the result will follow.

[I>

Lemma 2. Under the same assumption of Proposition @]we have that for all g € A},

k k

x] Cy; . x!I'Ox;

min E ——— = min E =
ey)eKsd, = 9 x€Kag =/  Gi

Proof. Let (x*,y™) solution of the LHS optimization problem. Then we have that

Z( TCX1 > Z TCYZ

i=1

Z (vi) TCyZ >Z )TCyz
=1

9i

Therefore we obtain that

DTCx; N~ D70y ()T O~ i)
Y =S
i=1 ' i=1 ’
k k
(y;")TCYE‘ x)TCyi N~ i —x)TCyp
) prieii it o i il
i=1 ' i=1 ¢ i=1 ¢
Then by symmetry of C', we obtain by adding the two terms that
Foxr —yOTO(xF — vt
Z (Xi yz) C(Xz y1) >0
i=1 gi
However, thanks to the linear constraints, we have that for all 7 € [|1, k|],
n—1 n—1
Z Tli-1)xn+l+g = Z Yi-1)xnt1+q = Ji
q=0 q=0

Therefore (x; — y;)?'1,, = 0 and thanks to the negativity of the cost function ¢ we obtain that
(x; —y)TCHx —y;) <0
Therefore we have that
(Xi - Yi)TC(Xi - Yi) =0
from which follows that
k k
3 (xp)TCx; 3 (x;)"Cy; 3 (yi)"Cy;
i=1 i i=1 gi i=1 gi
and the result follows. O

k

As the above result holds for any g € A}, we obtain that

~ (<)) Cx;
i=1 gi
Then by formulating back this problem in term of matrices, we obtain that

LOTy,c(p, pt) = grgiAr;; Qrélrif,gw’ Qdiag(1/9)Q")

from which the result follows. O

LOT =
relit 1) = S0
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C Additional Experiments

C.1 Comparison of the v schedules

Uniform Distributions Mixture of Gaussians
0.65
i 6
O 0.60
O
5055 \ 4
— 050 =
0.45 2
10° 107 108 10° 10° 106 107 108 10° 10%°
Operations Operations
—— Adaptive:y =1 ——— Adaptive:y = 100 —=- Constant: y = 10 ==+ Constant: y = 0.1 —~ = Constant: y = 10
—— Adaptive:y = 10 == Constant: y =1 Constant: y = 100 —=- Constant: y =1

Figure 5: In this experiment, we compare two strategies for the choice of the step-size in the MD
scheme proposed by [Scetbon et al.| [2021] on two different problems. More precisely, we compare
the constant v schedule with the proposed adaptive one and compare them when the distributions
are sampled from either uniform distributions (/eft) or mixtures of anisotropic Gaussians (right). We
show that the range of admissible v when considering a constant schedule varies from one problem
to another. Indeed, in the right plot, we observe that the algorithm converges only when v < 1,
while in the left plot, the algorithm manages to converge for v < 100. We also observe that our
adaptive strategy allows to have a consistent choice of admissible values for v whatever the problem
considered. It is worth noticing that whatever the - chosen, the algorithm converges towards the same
value, however the larger v is chosen in its admissible range, the faster the algorithm converges.

C.2 Gradient Flows between two Moons

=100

DLOT, r

=100

LOT, r

Figure 6: We compare the gradient flows (11;);>0 (in red) starting from a moon shape distribution, po,
to another moon shape distribution (in blue), v/, in 2D when minimizing either L(z) £ DLOT,. .(u, v)
or L(p) = LOT,. (i, v). The ground cost is the squared Euclidean distance and we fix 7 = 100.
We consider 1000 samples from each distribution and and we plot the evolution of the probability
measure obtained along the iterations of a gradient descent scheme. We also display in green the
vector field in the descent direction. We show that the debiased version allows to recover the target
distribution while LOT,. .. is learning a biased version with a low-rank structure.
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