
Supplementary materials

A On the Definition of LOTr,c

Let (X , dX ) and (Y, dY) two nonempty compact Polish spaces, µ 2 M
+
1 (X ), ⌫ 2 M

+
1 (Y) two

probability measures on these spaces and c : X ⇥ Y ! R+ a nonnegative and continuous function.
We define the generalized low-rank optimal transport between µ and ⌫ as

LOTr,c(µ, ⌫) , inf
⇡2⇧r(µ,⌫)

Z

X⇥Y
c(x, y)d⇡(x, y) .

where

⇧r(µ, ⌫) , {⇡ 2 ⇧(µ, ⌫) : 9(µi)
r
i=1 2 M

+
1 (X )

r, (⌫i)
r
i=1 2 M

+
1 (Y)

r, � 2 �
⇤
r s.t. ⇡ =

rX

i=1

�iµi⌦⌫i} .

As X and Y are compact, ⇧r(µ, ⌫) is tight, then Prokhorov’s theorem applies and the closure of
⇧r(µ, ⌫) is sequentially compact. Let us now show that ⇧r(µ, ⌫) is closed. Indeed, Let (⇡n)n�0

a sequence of ⇧r(µ, ⌫) converging towards ⇡⇤. Then by definition there exists for all k 2 [|1, r|],
(µ(k)

n )n�0, (⌫(k)n )n�0 and (�(k)
n )n�0 such that for all n � 0

⇡n =

rX

i=1

�(k)
n µ(k)

n ⌦ ⌫(k)n .

However, (µ(k)
n )n�0 and (⌫(k)n )n�0 are also tight, and Prokhorov’s theorem applies, therefore we can

extract a common subsequence such that for all k,

µ(k)
n ! µ(k)

⇤ and ⌫(k)n ! ⌫(k)⇤

In addition as (�n)n�0 live in the simplex �r, we can also extract a sub-sequence, such that
�n ! �⇤ 2 �r. Finally by unicity of the limit we obtain that

⇡⇤ =

rX

k=1

�(k)
⇤ µ(k)

⇤ ⌦ ⌫(k)⇤ .

Finally, by denoting I , {k : �(k)
⇤ > 0}, and by considering i⇤ 2 I , we obtain that

⇡⇤ =

rX

i2I\{i⇤}

�(i)
⇤ µ(i)

⇤ ⌦ ⌫(i)⇤ +

r�|I|+1X

j=1

�(i⇤)
⇤

r � |I|+ 1
µ(i⇤)
⇤ ⌦ ⌫(i

⇤)
⇤ .

from which follows that ⇡⇤ 2 ⇧r(µ, ⌫).

B Proofs

B.1 Proof of Proposition 1

Proposition. Let n,m � 2, X , {x1, . . . , xn} ⇢ X , Y , {y1, . . . , ym} ⇢ Y and a 2 �
⇤
n and

b 2 �
⇤
m. Then for 2  r  min(n,m), we have that

|LOTr,c(µa,X, ⌫b,Y)�OTc(µa,X, ⌫b,Y)|  kCk1 ln(min(n,m)/(r � 1))

Proof. Let P 2 argminP2⇧a,b
hC,P i. As P is a nonnegative matrix, its nonnegative rank cannot

exceed min(n,m). Assume for simplicity, that n = m, then there exists (Ri)
n
i=1 nonnegative

matrices of rank 1 such that

P =

nX

i=1

Ri .
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As for all i 2 [|1, n|], Ri is a rank 1 matrix, there exist q̃i, r̃i 2 Rn
+ such that Ri = q̃ir̃Ti . Then by

denoting qi = q̃i/|q̃i|, ri = r̃i/|r̃i| and �i = |q̃i||r̃i| where for any h 2 Rn
|h| , Pn

i=1 hi, we obtain
that

P =

nX

i=1

�iqir
T
i .

Without loss of generality, we can consider the case where �1 � · · · � �n. Let us now denote
� := (�1, . . . ,�n), and by using the fact the P is a coupling we obtain that � 2 �n. Also, by
definition of �, we have that for all k 2 [|1, n|], �k  1/k. Let us now define

P̃ ,
r�1X

i=1

�iqir
T
i +

 
nX

i=r

�i

!
↵r�

T
r

where

↵r ,
Pn

i=r �iqiPn
i=r �i

�r ,
Pn

i=r �iriPn
i=r �i

Remark that P̃ 2 ⇧a,b(r), therefore we obtain that

|LOTr,c(µa,X, ⌫b,Y)� OTc(µa,X, ⌫b,Y)| = LOTr,c(µa,X, ⌫b,Y)� OTx(µa,X, ⌫b,Y)

 hC, P̃ i � hC,P i

 hC,

 
nX

i=r

�i

!
↵r�

T
r i � hC,

nX

i=r

�iqir
T
i i

 hC,

 
nX

i=r

�i

!
↵r�

T
r i

 kCk1

nX

i=r

�i  kCk1

nX

i=r

1

i
 kCk1 ln(n/(r � 1))

B.2 Proof of Proposition 2

Proposition 10. Let µ 2 M
+
1 (X ), ⌫ 2 M

+
1 (Y) and let us assume that c is L-Lipschitz w.r.t. x and

y . Then for any r � 1, we have

|LOTr,c(µ, ⌫)� OTc(µ, ⌫)|  2Lmax(Nblog2(b
p
rc)c(X , dX ),Nblog2(b

p
rc)c(Y, dY))

Proof. As X and Y are compact, Nblog2(b
p
rc)c(X , d),Nblog2(b

p
rc)c(Y, d) < +1 and then by de-

noting "X , Nblog2(b
p
rc)c(X , dX ), there exists x1, . . . , xb

p
rc 2 X , such that X ⇢

Sr
i=1 BX (xi, ")

from which we can extract a partition (Si,X )
b
p
rc

i=1 of X such that for all i 2 [|1, b
p
rc|], and

x, y 2 Si,X , dX (x, y)  "X . Similarly we can build a partition (Si,Y)
b
p
rc

i=1 of Y . Let us now
define for all k 2 [|1, b

p
rc|],

µk , µ|Sk,X

µ(Sk,X )
and ⌫k , ⌫|Sk,Y

⌫(Sk,Y)

with the convention that 0
0 = 0, we can define

⇡r ,
b
p
rcX

i,j=1

⇡⇤
(Si,X ⇥ Sj,Y)⌫j ⌦ µi .
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First remarks that ⇡r 2 ⇧r(µ, ⌫). Indeed we have for any measurable set B

⇡r(X ⇥B) =

b
p
rc2X

j=1

⌫j(B)

rX

i=1

⇡⇤
(Si,X ⇥ Sj,Y)

=

b
p
rcX

j=1

⌫j(B)⌫(Sj,Y)

=

b
p
rcX

j=1

⌫|Sj,X (B)

= ⌫(B) ,

similarly ⇡r(A⇥ Y) = µ(A) and we have that b
p
rc2  r. Therefore we obtain that

|LOTr,c(µ, ⌫)� OTc(µ, ⌫)| = LOTr,c(µ, ⌫)� OTc(µ, ⌫)



Z

X⇥Y
c(x, y)d⇡r(x, y)�

Z

X⇥Y
c(x, y)d⇡⇤

(x, y)



b
p
rcX

i,j=1

Z

Si,X⇥Sj,Y

c(x, y)d[⇡r(x, y)� ⇡⇤
(x, y)]



b
p
rcX

i,j=1

⇡⇤
(Si,X ⇥ Sj,Y)

⇥ [ sup

(x,y)2Si,X⇥Sj,Y

c(x, y)� inf
(x,y)2Si,X⇥Sj,Y

c(x, y)]

 L["X + "Y ]

from which the result follows.

Corollary. Under the same assumptions of Proposition 2 and by assuming in addition that there

exists a Monge map solving OTc(µ, ⌫), we obtain that for any r � 1,

|LOTr,c(µ, ⌫)�OTc(µ, ⌫)|  LNblog2(r)c(Y, dY)

Proof. Let us denote T a Monge map solution of OTc(µ, ⌫) and as in the proof above, let us consider
a partition of (Si,Y)

r
i=1 of Y such that for all i 2 [|1, r|], and x, y 2 Si,Y , dY(x, y)  "Y with

"Y , Nblog2(r)c(Y, dY). Let us now define for all k 2 [|1, b
p
rc|],

µk ,
µ|T�1(Sk,Y)

µ(T�1(Sk,Y))
and ⌫k , ⌫|Sk,Y

⌫(Sk,Y)

with the convention that 0
0 = 0, we can define

⇡r ,
rX

k=1

⇡⇤
(T�1

(Sk,Y)⇥ Sk,Y)⌫k ⌦ µk .
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Again we have that ⇡r 2 ⇧r(µ, ⌫), and we obtain that
|LOTr,c(µ, ⌫)� OTc(µ, ⌫)| = LOTr,c(µ, ⌫)� OTc(µ, ⌫)



Z

X⇥Y
c(x, y)d⇡r(x, y)�

Z

X⇥Y
c(x, y)d⇡⇤

(x, y)



rX

k=1

⇡⇤
(T�1

(Sk,Y)⇥ Sk,Y)

Z

T�1(Sk,Y)⇥Sk,Y

c(x, y)dµk(y)⌦ ⌫k(y)

�

rX

k=1

Z

T�1(Sk,Y)
c(x, T (x))dµ(x)



rX

k=1

⇡⇤
(T�1

(Sk,Y)⇥ Sk,Y)

Z

T�1(Sk,Y)⇥Sk,Y

c(x, y)dµk(y)⌦ ⌫k(y)

�

rX

k=1

⇡⇤
(T�1

(Sk,Y)⇥ Sk,Y)

Z

T�1(Sk,Y)⇥Sk,Y

c(x, T (x))dµk(x)⌦ ⌫k(y)



rX

k=1

⇡⇤
(T�1

(Sk,Y)⇥ Sk,Y)

Z

T�1(Sk,Y)⇥Sk,Y

[c(x, y)� c(x, T (x))]dµk(x)⌦ ⌫k(x)

 L"Y
from which the result follows. Note that to obtain the above inequalities, we use the fact that ⇡⇤ is
supported on the graph of T , and therefore we have have for all k 2 [|1, r|],

⇡⇤
(T�1

(Sk,Y)⇥ Sk,Y) = µ(T�1
(Sk,Y)) = ⌫(Sk,Y).

B.3 Proof of Proposition 3

Proposition. Let r � 1 and µ, ⌫ 2 M
+
1 (X ), then LOTr,c(µ̂n, ⌫̂n) �����!

n!+1
LOTr,c(µ, ⌫) a.s.

Proof. Let ⇡⇤ solution of LOTr,c(µ, ⌫). Then there exists �⇤
2 �

⇤
r , (µ⇤

i )
r
i=1, (⌫

⇤
i )

r
i=1 2 M

+
1 (X )

r

such that

⇡⇤
=

rX

i=1

�⇤
iµ

⇤
i ⌦ ⌫⇤i .

Note that by definition, we have that

µ =

rX

i=1

�⇤
iµ

⇤
i and ⌫ =

rX

i=1

�⇤
i ⌫

⇤
i .

Let us now define ⇡µ and ⇡µ both elements of M+
1 (X ⇥ [|1, r|]) as follows:

⇡µ(A⇥ {k}) , �kµk(A) and ⇡⌫(A⇥ {k}) , �k⌫k(A) for any measurable set A and k 2 [|1, r|] .

Observe that the right marginals of ⇡µ and ⇡⌫ is the same and we will denote it ⇢. We can now
define for all x, y 2 X the family of kernels (kµ(·, x))x2X 2 M

+
1 ([|1, r|])

X and (k⌫(·, y))y2X 2

M
+
1 ([|1, r|])

X corresponding to the disintegration with respect to the projection of respectively µ
and ⌫. Let us now consider n independent samples (Zµ

i )
n
i=1 and (Z⌫

i )
n
i=1 such that for all i 2 [|1, n|],

Zµ
i ⇠ kµ(·, Xi) and Z⌫

i ⇠ k⌫(·, Yi) and let us define for all k 2 [|1, r|]

µ̃k , 1

n

nX

i=1

1Zµ
i =k�Xi and ⌫̃k , 1

n

nX

i=1

1Z⌫
i =k�Yi .

Let us now define

⇡̃ ,
r�1X

k=1

min(|µ̃k|, |⌫̃k|)

|µ̃k||⌫̃k|
µ̃k ⌦ ⌫̃k

+
1

1�
Pr�1

k=1 min(|µ̃k|, |⌫̃k|)

"
µ̂�

r�1X

k=1

min(|µ̃k|, |⌫̃k|)

|µ̃k|
µ̃k

#
⌦

"
⌫̂ �

r�1X

k=1

min(|µ̃k|, |⌫̃k|)

|⌫̃k|
⌫̃k

#
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with the convention that 0
0 = 0. Now it is easy to check that ⇡̃ 2 ⇧r(µ̂, ⌫̂), indeed we have that

⇡̃(A⇥ X ) =

r�1X

k=1

min(|µ̃k|, |⌫̃k|)

|µ̃k|
µ̃k(A)

+
1

1�
Pr�1

k=1 min(|µ̃k|, |⌫̃k|)

"
µ̂(A)�

r�1X

k=1

min(|µ̃k|, |⌫̃k|)

|µ̃k|
µ̃k(A)

#"
1�

r�1X

k=1

min(|µ̃k|, |⌫̃k|)

#

= µ̂(A)

in addition by construction we have that
�����µ̂�

r�1X

k=1

min(|µ̃k|, |⌫̃k|)

|µ̃k|
µ̃k

����� =

�����⌫̂ �

r�1X

k=1

min(|µ̃k|, |⌫̃k|)

|⌫̃k|
⌫̃k

����� = 1�

r�1X

k=1

min(|µ̃k|, |⌫̃k|)

and both µ̂�
Pr�1

k=1
min(|µ̃k|,|⌫̃k|)

|µ̃k| µ̃k and ⌫̂ �
Pr�1

k=1
min(|µ̃k|,|⌫̃k|)

|⌫̃k| ⌫̃k are positive measures. Therefore
we obtain that

LOTr,c(µ̂, ⌫̂) 

Z

X 2

c(x, y)d⇡̃(x, y)

Now we aim at showing at
R
X 2 c(x, y)d⇡̃(x, y) ! LOTr,c(µ, ⌫) a.s.. Indeed first observe that from

the law of large numbers we have that for all k 2 [|1, r|], |µ̃k| ! �⇤
k and similarly |⌫̃k| ! �⇤

k. In
addition, for all k, q we have that almost surely, µ̃k ⌦ ⌫̃q converges weakly towards �⇤

k�
⇤
qµk ⌦ ⌫q.

Indeed one can consider the following algebra F ,
�
(x, y) 2 X

2
! f(x)g(y) f, g 2 C(X )

 
, and

then by Stone-Weierstrass, one obtains by density the desired result. Now remark that
Z

X 2

c(x, y)d⇡̃(x, y) =
r�1X

k=1

min(|µ̃k|, |⌫̃k|)

|µ̃k||⌫̃k|

Z

X 2

c(x, y)dµ̃k ⌦ ⌫̃k

+
1

�̃r

Z

Z2

c(x, y)dµ̃r ⌦ ⌫̃r

+
1

�̃r

r�1X

k=1

✓
1�

min(|µ̃k|, |⌫̃k|)

|⌫̃k|

◆Z

X 2

c(x, y)dµ̃r ⌦ ⌫̃k

+
1

�̃r

r�1X

k=1

✓
1�

min(|µ̃k|, |⌫̃k|)

|µ̃k|

◆Z

X 2

c(x, y)dµ̃k ⌦ ⌫̃r

+
1

�̃r

r�1X

k,q=1

Z

X 2

✓
1�

min(|µ̃k|, |⌫̃k|)

|µ̃k|

◆✓
1�

min(|µ̃q|, |⌫̃q|)

|⌫̃q|

◆
c(x, y)dµ̃k(x)d⌫̃q(y)

from which follows directly that
R
X 2 c(x, y)d⇡̃(x, y) ! LOTr,c(µ, ⌫) a.s. Let us now denote for all

n � 1, ⇡n a solution of LOTr,c(µ̂, ⌫̂). Let ! 2 ⌦ an element of the probability space where live the
random variables (Xi)i�0 and (Yi)i�0 such that

R
X 2 c(x, y)d⇡̃(!)

(x, y) ! LOTr,c(µ, ⌫). As X is
compact Thanks to Prokhorov’s Theorem, we can extract a sequence such that (⇡(!)

n )n�0 converge
weakly towards ⇡(!)

2 ⇧r(µ, ⌫). In addition we have that for all n � 1
Z

X 2

c(x, y)d⇡(!)
n (x, y) 

Z

X 2

c(x, y)d⇡̃(!)
(x, y)

And by considering the limit we obtain that
Z

c(x, y)d⇡(!)
(x, y)  LOTr,c(µ, ⌫)

However ⇡(!)
2 ⇧r(µ, ⌫) and by optimality we obtain that

Z
c(x, y)d⇡(!)

(x, y) = LOTr,c(µ, ⌫)

This holds for an arbitrary subsequence of (⇡(!)
n )n�0, from which follows thatR

c(x, y)d⇡(!)
n (x, y) ! LOTr,c(µ, ⌫). Finally this holds almost surely and the result follows.
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B.4 Proof of Proposition 4

Proposition. Let r � 1 and µ, ⌫ 2 M
+
1 (X ). Then, there exists a constant Kr such that for any

� > 0 and n � 1, we have, with a probability of at least 1� 2�, that

LOTr,c(µ̂n, ⌫̂n)� LOTr,c(µ, ⌫)  11kck1

r
r

n
+Krkck1

"r
log(40/�)

n
+

p
r log(40/�)

n

#

Proof. We reintroduce the same notation as in the proof of Proposition 3. Let ⇡⇤ solution of
LOTr,c(µ, ⌫). Then there exists �⇤

2 �
⇤
r , (µ⇤

i )
r
i=1, (⌫

⇤
i )

r
i=1 2 M

+
1 (Z)

r such that

⇡⇤
=

rX

i=1

�⇤
iµ

⇤
i ⌦ ⌫⇤i .

As before let us also consider ⇡µ and ⇡µ defined as ⇡µ(A⇥ {k}) , �kµk(A) and ⇡⌫(A⇥ {k}) ,
�k⌫k(A) for any measurable set A and k 2 [|1, r|] and denote ⇢ their common right marginal. We
also consider n independent samples (Zµ

i )
n
i=1 and (Z⌫

i )
n
i=1 such that for all i 2 [|1, n|], Zµ

i ⇠

kµ(·, Xi) and Z⌫
i ⇠ k⌫(·, Yi) and we denote for all k 2 [|1, r|]

µ̃k , 1

n

nX

i=1

1Zµ
i =k�Xi and ⌫̃k , 1

n

nX

i=1

1Z⌫
i =k�Yi

Let us now define

⇡̂ ,
rX

i=1

1

�⇤
k

µ̃k ⌦ ⌫̃k .

Our goal is to control the following quantity:
����LOTr,c(µ, ⌫)�

Z

Z2

c(x, y)d⇡̂(x, y)

���� ,

First observe that

E
Z

Z2

c(x, y)d⇡̂(x, y)

�
=

rX

i=1

1

�⇤
k

E
Z

Z2

c(x, y)dµ̃k(x)d⌫̃k(y)

�

=

rX

i=1

1

�⇤
kn

2
⇥

X

i,j

E
h
c(Xi, Yj)1Zµ

i =k1Z⌫
j =k

i

Moreover, we have that

E
h
c(Xi, Yj)1Zµ

i =k1Z⌫
j =k

i
=

Z

(Z⇥[|1,r|])2
c(x, y)1z=k1z0=kd⇡µ(x, z)d⇡⌫(y, z

0
)

=

Z

(Z⇥[|1,r|])2
c(x, y)1z=k1z0=kdµz(x)d⌫z0(y)d⇢(z)d⇢(z0)

= �2
k

Z

Z2

c(x, y)dµk(x)d⌫k(y)

from which follows that

E
Z

Z2

c(x, y)d⇡̂(x, y)

�
=

rX

i=1

�⇤
k

Z

Z2

c(x, y)dµk(x)d⌫k(y) = LOTr,c(µ, ⌫)

Now let us define for all (xi, zi)ni=1, (yi, z
0
i) 2 (Z ⇥ [|1, r|])n,

g((x1, z1), . . . , (xn, zn), (y1, z
0
1), . . . , (yn, z

0
n)) ,

rX

q=1

1

�⇤
qn

2

X

i,j

c(xi, yj)1zi=q1z0
j=q ,
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since Z is compact and c is continuous, we have that

|g(. . . , (xk, zk), . . . )� g(. . . , (x̃k, z̃k), . . . )| =

������

rX

q=1

1

�⇤
qn

2

X

j

[c(xk, yj)1zk=q � c(x̃k, yj)1z̃k=q]1z0
j=q

������

=

������
1

�⇤
zkn

2

nX

j=1

c(xk, yj)1z0
j=zk �

1

�⇤
z̃k
n2

nX

j=1

c(x̃k, yj)1z0
j=z̃k

������


kck1
n2

"Pn
j=1 1z0

j=zk

�⇤
zk

+

Pn
j=1 1z0

j=z̃k

�⇤
z̃k

#


2kck1
min

1qr
�⇤
q

1

n

Then by applying the McDiarmid’s inequality we obtain that for � > 0, with a probability at least of
1� �, we have

����LOTr,c(µ, ⌫)�

Z

Z2

c(x, y)d⇡̂(x, y)

���� 
2kck1
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Now we aim at building a coupling ⇡̃ 2 ⇧r(µ̂, ⌫̂) from ⇡̂. Let us consider the same as the one
introduce in the proof of Proposition B.3, that is
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with the convention that 0
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Now we aim at controlling the following quantity
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we observe that
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Let us now control each term of the RHS of the above equality. Let us first consider the term in
Eq. 11, remark that we have
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Let us now consider the term in Eq. 12, we have that
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In addition we have that E(k�⇤
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For the term in Eq. 13 and 14, we obtain that
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Finally the last term in Eq. 15 can be controlled as the following:
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and we obtain that with a probability of at least 1� �,
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Then by applying a union bound we obtain that with a probability of at least 1� �
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B.5 Proof Proposition 5

Proposition. Let r � 1, � > 0 and µ, ⌫ 2 M
+
1 (X ). Then there exists a constant Nr,� such that if
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Proof. We consider the same notations as in the proof of Proposition 4. In particular let us define for
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In fact if we have a control in probability of the bounded difference we can use an extension of the
McDiarmid’s Inequality. For that purpose let us first introduce the following definition.
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Definition 4. Let (Xi)
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Let us now introduce an extension of McDiarmid’s Inequality [Kutin, 2002].
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Given the above Theroem we can obtain an asymptotic control of the deviation of g from its mean.
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Recall also from the proof of Proposition 4, that we have with a probability of at least 1� �
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Finally by imposing in addition that
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and satysfing the above inequalities, we have with a probability of at least 1� 2� that
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B.6 Proof Proposition 6

Proposition. Let µ, ⌫ 2 M
+
1 (X ). Let us assume that c is symmetric, then we have
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The limit is a direct consequence of Proposition 2.

B.7 Proof of Proposition 8

Proposition. Let r � 1 and (µn)n�0 and (⌫n)n�0 two sequences of probability measures such that
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which is the result. Let r � 2 and let us assume that the result holds for all 1  k  r. Let us now
consider a decomposition of µ such that µ =

Pr+1
i=1 �iµ(i). By denoting µ̃(1) ,

Pr
i=1 �iµ

(i)
Pr

i=1 �i
, we

obtain that

µ =

 
rX

i=1

�i

!
µ̃(1)

+ �r+1µ
(r+1) .

Then by recursion we have that there exists sequences of nonnegative measures (µ̃(1)
n ) and (µ(r+1)

n )

such that

µ̃(1)
n !

 
rX

i=1

�i

!
µ̃(1), µ(r+1)

n ! �r+1µ
(r+1) and µn = µ̃(1)

n + µ(r+1)
n for all n � 0

Now observe that µ̃(1)
n

|µ̃(1)
n |

! µ̃(1)
=

Pr
i=1

�iPr
i=1 �i

µ(i). Therefore applying the recursion on this

problem allows us to obtain a decomposition of µ̃(1)
n of the form

µ̃(1)
n

|µ̃(1)
n |

=

rX

i=1

µ(i)
n where

µ(i)
n � 0 and µ(i)

n !
�iPr
i=1 �i

µ(i) .

Therefore we obtain that

µn =

rX

i=1

|µ̃(1)
n |µ(i)

n + µ(r+1)
n where

µ(i)
n � 0, |µ̃(1)

n |µ(i)
n ! �iµ

(i) for all i 2 [|1, r|] and

µ(r+1)
n � 0, µ(r+1)

n ! �r+1µ
(r+1)

from which follows the result.

Let us now consider such decompositions of (µn)n�0 and (⌫n)n�0 such that each factor converges
toward the target decomposition of µ. Now let us build the following coupling:

⇡̃n ,
r�1X

k=1

min(|µ(k)
n |, |⌫(k)n |)

|µ(k)
n ||⌫(k)n |

µ(k)
n ⌦ µ(k)

n

+
1

1�
Pr�1

k=1 min(|µ(k)
n |, |⌫(kn |)

"
|µn|�

r�1X

k=1

min(|µ(k)
n |, |⌫(k)n |)

|µ(k)
n |

µ(k)
n

#
⌦

"
⌫n �

r�1X

k=1

min(|µ(k)
n |, |⌫(k)n |)

|⌫(k)n |

⌫(k)n

#

with the convention that 0
0 = 0. Now it is easy to check that ⇡̃n 2 ⇧r(µn, ⌫n), and we have that

LOTr,c(µn, ⌫n) 

Z

X 2

d(x, y)d⇡̃n(x, y) ! LOTr,c(µ, ⌫)

and by Prokhorov’s theorem and the optimality of the limit of (⇡̃n)n�0 (up to an extraction) we
obtain that LOTr,c(µn, ⌫n) ! LOTr,c(µ, ⌫).

B.8 Proof Proposition 7

Proposition. Let r � 1, and let us assume that c is a semimetric of negative type. Then for all

µ, ⌫ 2 M
+
1 (X ), we have that

DLOTr(µ, ⌫) � 0 .

In addition, if c has strong negative type then we have also that

DLOTr,c(µ, ⌫) = 0 () µ = ⌫ and

µn ! µ () DLOTr,c(µn, µ) ! 0 .

where the convergence of the sequence of probability measures considered is the convergence in law.
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Proof. Let ⇡⇤ solution of LOTr,c(µ, ⌫). Then there exists �⇤
2 �

⇤
r , (µ⇤

i )
r
i=1, (⌫

⇤
i )

r
i=1 2 M

+
1 (X )

r

such that

⇡⇤
=

rX

i=1

�⇤
iµ

⇤
i ⌦ ⌫⇤i .

Note that by definition, we have that

µ =

rX

i=1

�⇤
iµ

⇤
i and ⌫ =

rX

i=1

�⇤
i ⌫

⇤
i ,

By definition we have also that

LOTr,c(µ, µ) 
rX

k=1

�⇤
k

Z

X 2

c(x, y)dµ⇤
k ⌦ µ⇤

k

similarly for LOTr,c(⌫, ⌫) we have

LOTr,c(⌫, ⌫) 
rX

k=1

�⇤
k

Z

X 2

c(x, y)d⌫⇤k ⌦ ⌫⇤k

Therefore we have

DLOTr,c(µ, ⌫) �
rX

k=1

�⇤
k

✓Z

X 2

c(x, y)dµ⇤
k ⌦ ⌫⇤k �

1

2

Z

X 2

c(x, y)dµ⇤
k ⌦ µ⇤

k +

Z

X 2

c(x, y)d⌫⇤k ⌦ ⌫⇤k

�◆

�

rX

k=1

�⇤
k

Z

X 2

�c(x, y)d[µ⇤
k � ⌫⇤k ]⌦ [µ⇤

k � ⌫⇤k ]

�

rX

k=1

�⇤
k

2
Dc(µ

⇤
k, ⌫

⇤
k)

where for any any probability measures ↵,� on X we define

Dc(↵,�) , 2

Z

X 2

c(x, y)d↵⌦ � �

Z

X 2

c(x, y)d↵⌦ ↵�

Z

X 2

c(x, y)d� ⌦ �

However, as c is assumed to have a negative type, we have that

Dc(µ
⇤
k, ⌫

⇤
k) � 0 8k

In addition if we assume that c has a strong negative type, then we obtain directly that

DLOTr,c(µ, ⌫) = 0 =) µ⇤
k = ⌫⇤k 8k .

Let us now show that DLOTr,c metrize the convergence in law. The direct implication is a direct
consequence of the Proposition 8. Conversely, if DLOTr,c(µn, µ) ! 0, then by compacity of X
and thanks to the Prokhorov’s theorem we can extract a subsequence of µn ! µ⇤, and thanks to
Proposition 8, we also obtain that DLOTr,c(µn, µ) ! DLOTr,c(µ⇤, µ). Finally we deduce that
DLOTr,c(µ⇤, µ) = 0 and µ⇤

= µ.

B.9 Proof Proposition 9

Proposition. Let n � k � 1, X , {x1, . . . , xn} ⇢ X and a 2 �
⇤
n. If c is a semimetric of negative

type, then by denoting C = (c(xi, xj))i,j , we have that

LOTk,c(µa,X, µa,X) = min
Q

hC,Qdiag(1/QT1n)Q
T
i s.t. Q 2 Rn⇥k

+ , Q1k = a . (16)

Proof. First remarks that one can reformulate the LOTk,c problem as

LOTk,c(µ, µ) , min
g2�⇤

k

min
(x,y)2K2

a,g

kX

i=1

xT
i Cyi

gi
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where
Ka,g , {x 2 Rnk s.t. Ax = [a, g]T , x � 0}

A ,
✓
1T
n ⌦ Ik

ITn ⌦ 1k

◆
and

xi , [x(i�1)⇥n+1, . . . , xi⇥n]
T , yi , [y(i�1)⇥n+1, . . . , yi⇥n]

T for all i 2 [|1, k|]

Indeed the above optimization problem is just a reformulation of LOTk,c(µ, µ) where we have
vectorized the couplings in a column-wise order. Let us now show the following lemma from which
the result will follow.

Lemma 2. Under the same assumption of Proposition 9 we have that for all g 2 �
⇤
k

min
(x,y)2K2

a,g

kX

i=1

xT
i Cyi

gi
= min

x2Ka,g

kX

i=1

xT
i Cxi

gi

Proof. Let (x⇤,y⇤
) solution of the LHS optimization problem. Then we have that

kX

i=1

(x⇤
i )

TCx⇤
i

gi
�

kX

i=1

(x⇤
i )

TCy⇤
i

gi

kX

i=1

(y⇤
i )

TCy⇤
i

gi
�

kX

i=1

(x⇤
i )

TCy⇤
i

gi

Therefore we obtain that

0 

kX

i=1

(x⇤
i )

TCx⇤
i

gi
�

kX

i=1

(x⇤
i )

TCy⇤
i

gi
=

kX

i=1

(x⇤
i )

TC(x⇤
i � y⇤

i )

gi

0 

kX

i=1

(y⇤
i )

TCy⇤
i

gi
�

kX

i=1

(x⇤
i )

TCy⇤
i

gi
=

kX

i=1

(y⇤
i � x⇤

i )
TCy⇤

i

gi

Then by symmetry of C, we obtain by adding the two terms that
kX

i=1

(x⇤
i � y⇤

i )
TC(x⇤

i � y⇤
i )

gi
� 0

However, thanks to the linear constraints, we have that for all i 2 [|1, k|],
n�1X

q=0

x⇤
(i�1)⇥n+1+q =

n�1X

q=0

y⇤(i�1)⇥n+1+q = gi

Therefore (x⇤
i � y⇤

i )
T1n = 0 and thanks to the negativity of the cost function c we obtain that

(x⇤
i � y⇤

i )
TC(x⇤

i � y⇤
i )  0

Therefore we have that
(xi � yi)

TC(xi � yi) = 0

from which follows that
kX

i=1

(x⇤
i )

TCx⇤
i

gi
=

kX

i=1

(x⇤
i )

TCy⇤
i

gi
=

kX

i=1

(y⇤
i )

TCy⇤
i

gi

and the result follows.

As the above result holds for any g 2 �
⇤
k, we obtain that

LOTk,c(µ, µ) = min
g2�⇤

k

min
x2Ka,g

kX

i=1

(x⇤
i )

TCx⇤
i

gi

Then by formulating back this problem in term of matrices, we obtain that
LOTk,c(µ, µ) = min

g2�⇤
k

min
Q2⇧a,g

hC,Qdiag(1/g)QT
i

from which the result follows.
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C Additional Experiments

C.1 Comparison of the � schedules

Figure 5: In this experiment, we compare two strategies for the choice of the step-size in the MD
scheme proposed by Scetbon et al. [2021] on two different problems. More precisely, we compare
the constant � schedule with the proposed adaptive one and compare them when the distributions
are sampled from either uniform distributions (left) or mixtures of anisotropic Gaussians (right). We
show that the range of admissible � when considering a constant schedule varies from one problem
to another. Indeed, in the right plot, we observe that the algorithm converges only when �  1,
while in the left plot, the algorithm manages to converge for �  100. We also observe that our
adaptive strategy allows to have a consistent choice of admissible values for � whatever the problem
considered. It is worth noticing that whatever the � chosen, the algorithm converges towards the same
value, however the larger � is chosen in its admissible range, the faster the algorithm converges.

C.2 Gradient Flows between two Moons

Figure 6: We compare the gradient flows (µt)t�0 (in red) starting from a moon shape distribution, µ0,
to another moon shape distribution (in blue), ⌫, in 2D when minimizing either L(µ) , DLOTr,c(µ, ⌫)
or L(µ) , LOTr,c(µ, ⌫). The ground cost is the squared Euclidean distance and we fix r = 100.
We consider 1000 samples from each distribution and and we plot the evolution of the probability
measure obtained along the iterations of a gradient descent scheme. We also display in green the
vector field in the descent direction. We show that the debiased version allows to recover the target
distribution while LOTr,c is learning a biased version with a low-rank structure.
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