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A Method

A.1 Algorithm

We provide a simple pseudo-code to describe our method in Algorithm 1. Please see Eq. 1-4 in the
main paper for reference. Note that there are typos in the main paper: in line 135, the output of g is f ,
f∗ = g(p;Θ∗), and F∗ is the collection of all estimated flows; in line 142, the optimal backward
flow should be defined as f∗bwd = g (p′;Θ∗), and F∗bwd is the collection of all estimated backward
flows. Note that we use f to denote the flow of a single point, and F to denote the collection of the
flows, which is the scene flow.

Algorithm 1: Neural scene flow prior
Input :S1 = point cloud at time t-1, S2 = point cloud at time t
Output :F∗ = predicted scene flow

1 begin
Initialize :Randomly initialize network parameters Θ, Θbwd

initial loss L0 = inf
2 for j ← 1 to Max_iters do
3 foreach p in S1 do
4 f = g (p;Θ)

5 p′ = p + f , S ′1 = {p′i}
|S1|
i=1

6 fbwd = g (p′;Θbwd)
7 end
8 Lj =

∑
p∈S1 D (p + g (p;Θ) ,S2) +

∑
p′∈S′

1
D (p′ + g (p′;Θbwd) ,S1)

9 if Lj < Lj-1 then
10 F∗ = {f∗}|S1|i=1
11 end
12 end
13 return F∗
14 end

A.2 Backward flow

In the main paper, we propose to use the backward flow to ensure the cycle consistency between
the two consecutive time frames. We find that the backward flow will further smooth the flow when
the point cloud is sparse. When the point cloud becomes denser and has plenty of correspondences
available, we might neglect the backward flow. Fig. 1 shows the effect of the backward flow in a
zoom-in scene from the Argoverse Scene Flow dataset.
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Table 1: Comparison of our method with or without backward flow on KITTI Scene Flow dataset.

E ↓
(m)

Acc5 ↑
(%)

Acc10 ↑
(%)

θε ↓
(rad)

Ours (w/o backward flow) 0.113 60.36 78.85 0.191
Ours (w/ backward flow) 0.052 80.70 92.09 0.133

Figure 1: Backward flow helps regularization. Here we show a zoom-in sample from the Argoverse
Scene Flow dataset. All figures show a subset of the scene. The left figure shows a subset point
cloud with all points included in the scene, while the middle and right figures show a subset point
cloud with randomly sampled 2k points. When the point cloud is sparse (b,c), there exist scant point
correspondences. Adding backward flow further helps regularization and smooths the flow. When
the point cloud becomes denser, the backward flow might be unnecessary. The green points denote
the point cloud at time t (S2), blue points denote the point cloud at time t-1 (S1). The red points
represent the point cloud (S ′1 = {p′i}

|S1|
i=1 ) perturbed by the estimated scene flow F∗ (denoted by

magenta arrows).

We also performed a small experiment (see Table 1) on the KITTI Scene Flow dataset to show the
importance of the backward flow to sparse points (2048 points).

B Experiments

B.1 Dataset

We provide additional preprocessing of the dataset we used in our main experiments.

Argoverse Scene Flow dataset Since there are no official ground truth annotations available in the
Argoverse [2] dataset or nuScenes [1] dataset, we followed the preprocessing method described in [8]
to create ground truth flows. For each of two consecutive point clouds S1 and S2, we first used the
object information provided by Argoverse to separate rigid and non-rigid segments. Then we extracted
the ground truth translation of rigid parts using the self-centered poses of autonomous vehicles and
non-rigid parts using object poses, respectively. Thus we could combine these translational vectors
to generate the ground truth scene flow. While given the situation that the object information and
provided poses may be inaccurate, the computed scene flow can be imperfect. Moreover, we removed
the ground points using the information provided by the ground height map. The same strategies
were applied to the nuScenes dataset.

Removal of ground points We removed the ground points for the autonomous driving scenes. The
ground is a large piece of flat geometry with little cue to predict motion. Imagine trying to find
correspondences in a large flat white wall to compute optical flow. It is intractable without a very
large context. We observe the same aperture problem during scene flow estimation. Also, lidar point
clouds from driving scenes have a specific ground sampling pattern that resembles an arch of points
every other meter. If not removed during scene flow prediction, those points will be snapped/stitched
to the closest arch of points and thus biasing too much the end-point-error metric.

Scale of the dataset The four datasets we used contain various number of points. nuScenes [1],
KITTI [5, 6], and Argoverse [2] are real-world data that contain large-scale scenes while
FlyingThings3D [4] is a synthetic dataset with smaller point clouds. We summarize the statistics
of the number of points in each dataset in Table 2. The result showed here and the performance
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Table 2: Number of points in each dataset

FlyingThings3D nuScenes Scene Flow KITTI Scene Flow Argoverse Scene Flow

Average No. of points 6,971 7,069 32,033 57,526
Minimum No. of points 2,188 2,186 14,004 31,665
Maximum No. of points 8,062 15,316 68,084 78,088

Figure 2: Performance with different network architectures. We choose EPE and Accuracy
(Acc10 metric) to test the effect of using different number of hidden layers, different hidden units size,
and different activation functions. The top row shows networks with ReLU activation, the bottom
row shows networks with Sigmoid activation function.

we showed in the main paper clearly indicate the capability of our method to deal with large-scale
real-world scenes that have a large number of points.

B.2 Network architecture

To further study the effect of using different network architectures, we tested our method on the
KITTI Scene Flow dataset (all points included) with different metrics. Results are shown in Fig. 2,
which is compatible with what we found in the main paper. Generally, the performance improved
with deeper layers and larger hidden units. While we found that using a simple fully connected
network with 8 hidden layers, each of which has 128 hidden units and a ReLU activation in the end,
has relatively better performance and maintains a relatively small structure.

When the network is shallow, the Sigmoid activation function may have good performance, while with
the network architecture going deeper, the Sigmoid function easily fails to maintain high accuracy.
Here, we only show results of Sigmoid activation function with at most 8 hidden layers. We found
that with 4 hidden layers, the performance was already saturated. With 8 or more hidden layers,
the performance drops due to limitations of the Sigmoid functions, such as vanishing gradients.
Instead, ReLU activation function is more suitable for deeper networks because it provides a sparse
representation, prevents possible vanishing gradients, and leads to efficient computation. We only use
ReLU activation function for our main experiments. The Sigmoid function is not needed in the last
output layer, since we do not require an extra constraint for the output scene flow.

Note that the input to the network is purely 3D point cloud, we do not map the input to a higher
dimensional space using any positional encoding [7] or random Fourier features [9]. We performed
an ablation study, comparing experiments with positional encoding to those without, and found that
positional encoding was not helpful in our case. The possible explanation lies in the property of the
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Table 3: Memory consumption of our neural prior with all points available in the KITTI Scene Flow
dataset [5, 6], and variable network architectures. For example, 4 MLP: 64 means network with 4
hidden layers and each layer has 64 hidden units.

1 MLP: 8 1 MLP: 16 1 MLP: 32 1 MLP: 64 1 MLP: 128 1 MLP: 256

GPU memory (GiB) 0.58 0.58 0.62 0.63 0.82 1.06

2 MLP: 8 2 MLP: 16 2 MLP: 32 2 MLP: 64 2 MLP: 128 2 MLP: 256

GPU memory (GiB) 0.58 0.60 0.64 0.76 1.03 1.45

4 MLP: 8 4 MLP: 16 4 MLP: 32 4 MLP: 64 4 MLP: 128 4 MLP: 256

GPU memory (GiB) 0.60 0.64 0.72 0.93 1.42 2.21

8 MLP: 8 8 MLP: 16 8 MLP: 32 8 MLP: 64 8 MLP: 128 8 MLP: 256

GPU memory (GiB) 0.67 0.71 0.85 1.29 2.21 3.75

specific problem that we want to solve. Since the neural prior acts as a regularizer to smooth the
scene flow prediction and the scene flow is rigid within a certain range, we do not expect to learn 3D
space representations with high-frequency variations.

B.3 Implementation details

Here we provide more implementation details. In our experiments, we employed a larger learning
rate for networks with fewer hidden units and decreased the learning rate for networks with larger
hidden units. It is also practical to decrease the learning rate when the network goes deeper. For
example, for 1 MLP with 8 layers, lr=0.02 may be deployed; for 8 MLP with 256 layers, lr=0.001
is ideal.

In the main paper Eq. 3, we defined the distance function to be the point distance between a single
point to a point set. As we claimed in the main paper, we employed this loss function to both point
sets, which is equivalent to the Chamfer distance [3]. In practice, we use the truncated Chamfer loss
function to eliminate the extremely large point distance. We found that it is good enough to use an
empirical value 2m as the maximum tolerance distance. Thus, we forced D>2=0.

B.4 Performance and memory consumption trade-offs

Figure 3: Accuracy and time comparison. We
show a complete accuracy and time comparison
with our neural prior and the graph prior.

We provide the memory consumption of
different network architectures in Table 3.
Although deeper and larger network
architectures consume more GPU memory,
they are still relatively small compared to
state-of-the-art learning-based methods which
need large number of GPUs to process point
clouds with large number of points. Note that
the memory consumption is largely affected by
the number of points in a point cloud. In this
experiment, the average number of points is 32k
in the KITTI Scene Flow dataset.

We also compared the accuracy and the
computation time of our method with
different network architectures and graph
prior method [8] with different number of
neighbors. The result is shown in Fig. 3. For
this experiment, we fix the number of iterations
for our neural prior method to be 1k, since in
most cases, our method will converge in 1k
iterations. We allow the graph prior method to optimize for larger iterations (5k) since it cannot
converge in 1k iterations. With a deeper network and an increasing number of hidden layers, the
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Table 4: Comparison of our method with full-supervised PointPWC-Net on the KITTI dataset
preprocessed by the original PointPWC-Net authors. Note that there were 200 scenes in the dataset.
Each point cloud only contains points within 35 meters depth.

E ↓
(m)

Acc5 ↑
(%)

Acc10 ↑
(%)

θε ↓
(rad)

1. PointPWC-Net [10] (reported in their paper, 8,192 points) 0.0694 72.81 88.84 -
2. PointPWC-Net [10] (their pretrained model, 8,192 points) 0.0778 82.24 90.96 0.1127
3. Ours (8,192 points) 0.0493 90.38 95.27 0.1099
4. PointPWC-Net [10] (their pretrained model, 2,048 points) 0.1298 58.14 79.85 0.1562
5. Ours (2,048 points) 0.0504 85.27 94.66 0.1209

Figure 4: Qualitative example of a scene flow estimation using our proposed method on Argoverse
Scene Flow. The scene flow color encodes the magnitude (color intensity) and direction (angle) of
the flow vectors.

performance of our neural prior improves with only a little time compromising. The result we found
here is compatible with what we found in the main paper—the neural prior with simple MLPs can
produce high-fidelity flows, and is capable to deal with large-scale data in a fast manner.

B.5 Performance gap between our reported results and the original PointPWC-Net paper

There was a performance gap between our reported results to the original PointPWC-Net paper [10]
in the main paper Table 1 due to two reasons: 1. our data contains point clouds with full range while
they cropped point clouds to only include points within 35 meters of depth; 2. we used sparse point
cloud that only contains 2,048 points while they used 8,192 points.

We performed a new experiment with the hope that it would help clarify the performance gap. We
show the results in Table 4. We first tried to use a pretrained PointPWC-Net model (pretrained on
FlyingThings3D) released by the authors to directly test on our KITTI dataset. However, this model
is pretrained on a dataset that only has points within 35 meters of depth, when tested on our full-range
point cloud data, it completely failed (we did not report the result in the table). To further test the
influence of the point density, we then tested this full-supervised PointPWC-Net using the authors’
pretrained model (https://github.com/DylanWusee/PointPWC/tree/master/pretrain_weights) and their
preprocessed KITTI data with points only within 35 meters of depth (Table 4, line 2, 4). To make a
fair comparison, we also compared the results with our method on their preprocessed dataset (Table 4,
line 3, 5). Line 1 in Table 4 were shown for a complete comparison. Note that the pretrained model
provided by the PointPWC-Net’s authors was fine-tuned after the paper submission as mentioned in
the official PointPWC-Net GitHub repository (https://github.com/DylanWusee/PointPWC.

5

https://github.com/DylanWusee/PointPWC/tree/master/pretrain_weights
https://github.com/DylanWusee/PointPWC


These results reveal three facts: 1. the point density does greatly affect the performance of PointPWC-
Net; 2. our method, although simple and tested on sparse point clouds, achieves better accuracy; 3.
our dataset (following original FlowNet3D, Graph Prior, and other papers) contains large-range raw
point clouds that are more challenging than the dataset used in the PointPWC-Net paper.

B.6 Visual results

Figs. 4, 5, 6 show additional visual results for our method on different datasets.

Figure 5: Qualitative example of a scene flow estimation using our method on KITTI Scene Flow.
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