A More Implementation Details on Backdoor Attacks

In this part, we provide more implementation details on several state-of-the-art backdoor attacks. The
backdoor triggers applied in our experiments are shown in Figure[6|and Figure[7]
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Figure 6: Examples of poisoned CIFAR-10 images at the training time (Left) and the test time (Right).
Given the target label (class 0, “plane”), Badnets, Blend, and IAB always attach a predefined trigger
to some samples from other classes and relabel them as the target label at the training time.
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Figure 7: Examples of poisoned CIFAR-10 images at the training time (Left) and the test time (Right).
Given the target label (class 0, “plane”’), CLB and SIG instead attach a predefined trigger to some
training samples belonging to target label to avoid incorrect labels at the training time.

We always set the target label as class 0 (“plane”). The detailed implementation on several state-of-
the-art backdoor attacks are as follows,

* Badnets [14]: The trigger is a 3 x 3 checkerboard at the bottom right corner of images as
shown in Figure Given the target label, we attach the trigger to 5% of training samples
from other classes and relabel them as the target label. After training for 200 epochs, we
achieve the attack success rate (ASR) of 99.97% and the natural accuracy on clean data
(ACC) of 93.73%.

* Blend attack [6]: We first generate a trigger pattern where each pixel value is sampled
from a uniform distribution in [0, 255] as shown in Figure [6(c)] Given the target class, we
randomly select 5% of training samples from other classes for poisoning. We attach the
trigger t to the sample x using a blended injection strategy, i.e., at + (1 — o)x. Here, we
set the blend ratio o = 0.2. Next, we relabel them as the target label. After training for 200
epochs, we achieve ASR of 100.00% and ACC of 94.82%.

¢ Input-aware Attack (IAB) [30]: The dynamic trigger varies across samples as shown
in Figure |6(d)} Based on the open-source codﬂ we train the classifier and the trigger

"Ohttps://github.com/VinAlResearch/input-aware-backdoor-attack-release
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generator concurrently. We apply two types of target label selection. For all-to-one, we
always set the class O as the target label, attach the dynamic trigger to the samples from
other classes and relabel them as the target label. For all-to-all, after attaching the trigger, we
relabel samples from class i as class (i + 1]} Finally, we achieve ASR of 98.49%/92.88%
and ACC of 93.89%/94.10% for IAB with the all-to-one target label or the all-to-all target
label respectively.

* Sinusoidal signal attack (SIG) [1]: We superimpose a sinusoidal signal over the inputs as
the trigger following Barni et al. [[1]. Given the target label, we attach the trigger to 80% of
samples from the target class. After training for 200 epochs, we achieve ASR of 94.26%
and ACC of 93.64%.

* Clean-label Attack (CLB) [42]: The trigger is a 3 x 3 checkerboard at the four corners
of images as shown in Figure Given the target label, we attach the trigger to 80%
of samples from the target class. To make the backdoored DNN rely more on the trigger
pattern rather than the salient features from the class, we apply adversarial perturbations to
render these poisoned samples harder to classify during training following Turner et al. [42].
Specifically, we use Projected Gradient Descent (PGD) to generate adversarial perturbations
with the /.,-norm maximum perturbation size ¢ = 16 based on the open-source cod
After training for 200 epochs, we achieve ASR of 99.94% and ACC of 93.78%.

B More Results on Adversarial Neuron Perturbations

In Section [3.2] we have demonstrated that the backdoored models are much easier to collapse and
tend to predict the target label on clean samples when their neurons are adversarially perturbed. Here,
we further explain that such sensitivity is from the backdoor itself rather than the unbalanced dataset
caused by some attacks. For example, on CIFAR-10 training set (5000 samples for every class),
Badnets relabel 5% of samples from other classes. As a result, the target class has 7250 samples,
while each of the other classes only has 4750 samples.

First, we create an unbalanced dataset by replacing the > ~ Beni
enign

incorrectly-labeled samples in Badnets training set with ex- - Unbalanced
tra samples from target class from open-source labeled dat -+~ BadNets
We train another benign model on the unbalanced dataset using = SIG
the same training settings as the backdoored model by Badnets.
Besides, we also illustrate the results of a backdoored model by
SIG, which is also based on a balanced dataset since SIG only
attaches the trigger to the samples from the target class.
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Following Section[3.2] we generate adversarial neuron pertur- 0075 oio o015 030 035 o%o
bations for these models. Figure [§] shows the benign model Perturbation Budget
based on the unbalanced dataset almost has a similar error rate
compared to the original benign one, and the backdoored mod-
els by Badnets and SIG always have larger error rates with the
same perturbation budget compared to the benign models. We
also illustrate the proportion of different classes in predictions in Figure[9] For the backdoored model
by SIG, the majority of misclassified samples have already been predicted as the target label. For the
backdoored model by Badnets, much more samples are classified as the target class compared to the
benign one on an unbalanced dataset. In conclusion, the injected backdoor itself results in sensitivity
under adversarial neuron perturbation rather than an unbalanced dataset.

Figure 8: The error rate (£ std over
5 random runs) of different models
under neuron perturbations.

C More Results on Adversarial Neuron Pruning (ANP)

C.1 Performance Trends across Different Backdoor Attacks

"For class 9, the target label is class 0.
Phttps://github.com/MadryLab/label-consistent-backdoor-code
Phttps://github.com/yaircarmon/semisup-adv
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Figure 9: The proportion (+ std over 5 random runs) of different classes in predictions by a benign
model, another benign one trained on an unbalanced training set, and two backdoored models. The
first benign model and the SIG model are based on a balanced training set, while the second benign
model and the Badnets model are based on an unbalanced training set.

In practical scenarios, the adversary may ex- 100 100
ploit any possible backdoor attacks. While the ol T oranete ol T
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the defender. Here, we conduct experiments to —— Badnets

illustrate the performance trends across differ- 1 i

ent backdoor attacks, including Badnets, Blend, e
and CLB. The experimenta] Settings are the Trade-off Coefficient a Trade-off Coefficient a

same as Section [d.I] We evaluate the perfor-

mance of ANP against three backdoor attacks Figure 10: P erf_ormanc_e of the pruned model by a
with varying trade-off coefficient « and the re- threshold 0.2 with varying trade-off coefficient .
sults are shown in Figure[I0] As « increases,

we find that ASR remains low until a common threshold (o = 0.5) is exceeded. Besides, ACC always
keeps high with different . Thus, with varying hyperparameters, the performance trends are very
consistent across different backdoor attacks. Besides, we also find the hyperparameters are insensitive
and ANP performs well across a wide range of hyperparameters in Figure [ of Section4.3]

Therefore, for simplicity, we always set the same hyperparameters (e.g., o = 0.2 as shown in Section
[.T) in this paper against various backdoor attacks unless otherwise specified. In practical scenarios,
the defender could tune the hyperparameters in a straightforward way: assuming the unknown attack
is Blend attack, the defender could tune against a known attack (e.g., Badnets) and find the 0.2 is a
good choice. ANP with also achieves satisfactory performance against Blend attack.

C.2 Pruning on Different Components

In this part, we explore the performance when applying ANP to different components inside DNNGs.
We conduct a toy experiment based on a 5-layer fully-connected (FC) neural network to show the
effectiveness of the proposed ANP. We train the Badnets model on a poisoned MNIST training set
whose backdoor trigger is a square at the bottom right and the injection rate is 10%. After training,
the ACC is 98.08%, and the ASR is 100.00%. We apply ANP (o = 0.5, ¢ = 0.3) to the whole model,
we obtain a repaired model with 93.86% of ACC and 1.93% of ASR after pruning 560 neurons (2000
in total).

Table 5: Results on MNIST based on a 5-layer FC neural network. “Neurons]” indicates the number
of neurons pruned by ANP, and “Total” indicates the number of all neurons.

| Before ANP

Neurons 0 560
Total 2000 2000

ASR (%) | 100.00 1.93

ACC (%) | 98.08 93.86
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Table 6: Results on MNIST of different components based on a 4-layer CNN. “Neurons/” indicates
the number of neurons pruned by ANP, and “Total” indicates the number of all neurons.

\ Before ANPonall ANPonConv ANPonFC

Neurons| 0 8 2 150
Total 560 560 48 512
ASR (%) | 99.99 0.32 0.43 442
Acc (%) | 99.34 99.22 99.04 92.48

Next, we conduct a similar experiment on the same poisoned MNIST training set based on a 4-layer
CNN (2 conv layers + 1 FC layer + output layer) to compare the performance between the conv layers
and the FC layer. After training, the backdoored model has 99.34% of ACC and 99.99% of ASR.
We apply ANP on conv layers and the FC layer respectively. In particular, If we only apply ANP
on conv layers, we achieve 99.04% of ACC and 0.43% of ASR just after pruning 2 neurons in the
second conv layer. If only applying ANP on the FC layer, we achieve 92.48% of ACC and 4.42%
of ASR even after pruning 150 neurons (512 in total). We conjecture this is because, for a simple
trigger pattern, the neurons most related to the backdoor tend to locate in the shallow layers (i.e., conv
layers), which makes pruning on the conv layers has better performance. Therefore, the performance
of a component is dependent on its structure.

C.3 Benchmarking Results Based on Varying Fraction of Clean Data

In this part, we provide more experimental results based on varying fraction of CIFAR-10 clean data,
including 10% (5000 images), 1% (500 images), and 0.1% (50 images), in Tables[7}9]

We find all baselines suffer from difficulty in defense with a limited amount of data, i.e., ASR
significantly increases when the number of clean samples decreases. However, the proposed ANP
always degrades ASR lower than 5% even with 0.1% of clean data (50 images), which indicates
that ANP provides satisfactory robustness against backdoor attacks. Besides, when we have enough
amount of data (e.g., 10% of clean data), the ACC drop in ANP is negligible (< 1%).

Note that Fine-tuning (FT) and Fine-pruning (FP) have better natural accuracy (ACC) based on 1%
of clean data than 10% of clean data. We conjecture this is because it is much easy to overfit to a
small number of samples (e.g., 500 images) and keep the original natural ACC better. However, we
always achieve higher ASR based on less amount of data.

Table 7: Performance (£ std over 5 random runs) of 4 defense methods against 6 backdoor attacks on
10% (5000 images) of clean data on CIFAR-10 training set using ResNet-18.

Metric | Defense | Badnets Blend IAB-one IAB-all CLB SIG

Before 93.73 94.82 93.89 94.10 93.78 93.64
FT (0.01) | 87.74%1.14 88.39£0.96 85.59+1.11 86.54+0.57 87.12+1.53 86.95+1.12
FT (0.02) | 85.56£0.89 86.25+£0.94 83.75+1.15 85.62+1.59 84.70+0.88 85.80+1.36

ACC | FP 86.95+1.03 88.26+0.57 85.64+£0.97 85.26+2.53 86.89+£1.21 87.47+1.41
MCR(0.3) | 89.17£0.33 89.45+0.53 87.01+0.10 88.53+1.12 89.78+0.21 85.88+0.56
ANP 93.01+0.22 93.86+2.13 93.40+0.11 93.56+0.09 93.37+0.20 93.65+0.17
Before 99.97 100.0 98.49 92.88 99.94 94.26

FT (0.01) | 2.60+£0.98 0.86+1.29 4.74+1.74 191£0.26 1.56£0.19 0.86+1.29

ASR FT (0.02) | 2.13+1.23  0.27£0.22 2.67+0.54 2.15+0.21 2.27+0.75 0.924+0.29

FP 1.83+0.42 0.38+0.43 1.97£042 6.60£1.99 1.97+0.42 0.62+0.23
MCR(0.3) | 5.70£1.21 10.57£2.21 15.23+£1.43 17.17£2.71 3.77£1.12  0.5240.21
ANP 334+143 2.13+147 1.324+0.29 0.79£0.04 3.65+£1.48 0.28+0.14
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Table 8: Performance (+ std over 5 random runs) of 4 defense methods against 6 backdoor attacks on
1% (500 images) of clean data on CIFAR-10 training set using ResNet-18.

Metric | Defense | Badnets Blend IAB-one IAB-all CLB SIG
Before 93.73 94.82 93.89 94.10 93.78 93.64
FT (0.01) |90.484+0.36 92.12+0.33 88.68+0.26 89.064+0.22 91.264+0.24 91.19+0.12
FT (0.02) | 87.234+0.51 88.984+0.32 84.85+£0.57 83.7740.32 88.254+0.20 88.63+0.33

ACC | FP 92.184+0.09 92.404+0.04 91.5740.12 92.284+0.05 91.91+0.12 91.64+0.12
MCR(0.3) | 85.954+0.21 88.264+0.35 86.30+£0.10 84.53+1.12 86.874+0.33 85.88+0.56
ANP 90.20+0.41 93.44+0.43 92.62+0.32 92.79+0.16 92.67+0.16 93.4010.12
Before 99.97 100.0 98.49 92.88 99.94 94.26
FT (0.01) | 11.70£4.10 47.17419.51 0.9940.55 1.36+0.31 12.51+8.16 0.40+0.23

ASR FT (0.02) | 2.9540.72 10.204+20.64 1.70+0.19 1.83+0.38 1.174+0.10 0.39+0.04
FP 5.344+1.94 65.39+14.55 20.73+10.35 32.36+1.92 3.40+0.69 0.32+0.21
MCR(0.3) | 5.704+2.31 13.574£1.29 30.23+3.47 35.174£3.76 12.774+2.12 0.52+0.10
ANP 0.45+0.17 0.46+0.23 0.88+0.14 0.86+0.05 3.98+2.83 0.28+0.25

Table 9: Performance (+ std over 5 random runs) of 4 defense methods against 6 backdoor attacks on
0.1% (50 images) of clean data on CIFAR-10 training set using ResNet-18.

Metric | Defense |  Badnets Blend IAB-one IAB-all CLB SIG
Before 93.73 94.82 93.89 94.10 93.78 93.64
FT (0.01) | 88.9041.90 91.21+£0.74 88.174+2.15 84.21+2.89 91.10+0.40 90.00+0.79
FT (0.02) | 82.06+2.84 86.79+£6.81 75.28+4.92 60.45+9.36 88.11+1.76 84.374+2.94

ACC |FP 90.69+0.23 91.29+0.17 90.74+0.23 90.261+-0.24 89.274+0.66 89.96+0.90
MCR(0.3) | 80.214+5.19  81.35+£3.19 79.1043.15 82.534+1.12 77.33+4.33 85.884+0.56
ANP 86.62+0.64 88.12+0.38 88.54+1.25 85.66+1.27 86.73£0.99 89.54+0.28
Before 99.97 100.0 98.49 92.88 99.94 94.26
FT (0.01) | 82.584+24.42 100.00+0.00 1.2440.53 14.69+22.87 50.25+40.73 12.594+11.57

ASR FT (0.02) | 16.27+12.55 99.99+0.03 2.2940.85 3.78+1.01 22.71+43.19 0.074+0.07
FP 30.71+£16.72  99.95+0.02 30.82+51.57 42.38+2.25 1.35+£1.00 0.13+0.03
MCR(0.3) | 33.704+3.39 43.57+£1.29 52.234+3.67 53.17+5.21 12.77+3.77 1.101+0.01
ANP 0.454+0.17 5.70+8.87 1.841+0.76 1.431+0.28 0.23+0.10 2.85+1.19
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