SAPG: Split and Aggregate Policy Gradients

Jayesh Singla“! Ananye Agarwal "' Deepak Pathak '

Abstract

Despite extreme sample inefficiency, on-policy re-
inforcement learning, aka policy gradients, has be-
come a fundamental tool in decision-making prob-
lems. With the recent advances in GPU-driven
simulation, the ability to collect large amounts
of data for RL training has scaled exponentially.
However, we show that current RL methods, e.g.
PPO, fail to ingest the benefit of parallelized envi-
ronments beyond a certain point and their perfor-
mance saturates. To address this, we propose
a new on-policy RL algorithm that can effec-
tively leverage large-scale environments by split-
ting them into chunks and fusing them back to-
gether via importance sampling. Our algorithm,
termed SAPG, shows significantly higher perfor-
mance across a variety of challenging environ-
ments where vanilla PPO and other strong base-
lines fail to achieve high performance. Webpage
athttps://sapg-rl.github.io.

1. Introduction

Broadly, there are two main categories in reinforcement
learning (RL): off-policy RL, e.g., Q-learning (Watkins &
Dayan, 1992), and on-policy RL, e.g., policy gradients (Sut-
ton et al., 1999). On-policy methods are relatively more
sample inefficient than off-policy but often tend to con-
verge to higher asymptotic performance. Due to this reason,
on-policy RL methods, especially PPO (Schulman et al.,
2017), are usually the preferred RL paradigm for almost all
sim2real robotic applications (Miki et al., 2022; Agarwal
et al., 2022; Chen et al., 2021) to games such as StarCraft
(Vinyals et al., 2019), where one could simulate years of
real-world experience in minutes to hours.

RL is fundamentally a trial-n-error-based framework and
hence is sample inefficient in nature. Due to this, one needs
to have large batch sizes for each policy update, especially in

“Equal contribution 'Carnegie Mellon University. Correspon-
dence to: Ananye Agarwal <ananyea@andrew.cmu.edu>, Jayesh
Singla <jsingla@andrew.cmu.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Regular On-policy RL

Parallel
Envs

Split and Aggregate Policy Gradients (SAPG)

Followers

Figure 1. We introduce a new class of on-policy RL algorithms that
can scale to tens of thousands of parallel environments. In contrast
to regular on-policy RL, such as PPO, which learns a single policy
across environments leading to wasted environment capacity, our
method learns diverse followers and combines data from them to
learn a more optimal leader in a continuous online manner.

the case of on-policy methods because they can only use data
from current experience. Fortunately, in recent years, the
ability to simulate a large number of environments in parallel
has become exponentially larger due to GPU-driven physics
engines, such as IsaacGym (Makoviychuk et al., 2021),
PhysX, Mujoco-3.0, etc. This means that each RL update
can easily scale to batches of size hundreds of thousands
to millions, which are over two orders of magnitude higher
than what most RL benchmarks typically have.

In this paper, we highlight an issue with typical on-policy
RL methods, e.g. PPO, that they are not able to ingest the
benefits with increasingly larger sample sizes for each up-

https://sapg-rl.github.io

SAPG: Split and Aggregate Policy Gradients

Shadow Hand Allegro Kuka Throw

8 (0]
< 12000 9
© g 5 © 20 .
€ 10000 . IS
S S . .
£ 8000 v £ 15
[(]
[oR [oR
o 6000 010
= E=
2 4000 2
£ £ s
S, 2000 >
wn ()]
< 0 ® < o
0 25000 50000 75000100000 0 25000 50000 75000100000
Batch size Batch size

Figure 2. Performance vs batch size plot for PPO runs (blue curve)
across two environments. The curve shows how PPO training runs
can not take benefit of large batch size resulting from massively
parallelized environments and their asymptotic performance satu-
rates after a certain point. The dashed red line is the performance
of our method, SAPG, with more details in the results section.
It serves as evidence that higher performance is achievable with
larger batch sizes.

date. In Figure 2, we show that PPO performance saturates
after a certain batch size despite the ceiling being higher.
This is due to the issue in data sampling mechanisms. In
particular, at each timestep actions are sampled from a Gaus-
sian with some mean and variance. This implies that most
sampled actions are near the mean and with large number of
environments, many environments are executing the same
actions leading to duplicated data. This implies that the
performance of PPO saturates at some point as we increase
the number of environments.

We propose a simple fix to this problem. Instead of running
a single PPO policy for all environments, we divide environ-
ments into blocks. Each block optimizes a separate policy,
allowing for more data diversity than just i.i.d. sampling
from the same Gaussian. Next, we do an off-policy update
to combine data from all these policies to keep the update
consistent with the objective of on-policy RL. This allows
us to use the PPO’s clipped surrogate objective, maintaining
the stability benefits of PPO while latching onto high reward
trajectories even though they are off-policy. A schematic
of our approach, termed SAPG, is shown in Figure 1. We
evaluate SAPG across a variety of environments and show
significantly high asymptotic performance in environments
where vanilla PPO even fails to get any positive success.

2. Related Work

Policy gradients REINFORCE (Williams, 2004), one of
the earliest policy gradient algorithms uses an estimator of
the objective using simple Monte Carlo return values. Works
such as (Konda & Tsitsiklis, 1999) and (Schulman et al.,
2018) improve the stability of policy gradient algorithms
by employing a baseline to decrease the variance of the
estimator while not compromising on the bias. (Schulman
et al., 2015; 2017) incorporate conservative policy updates

into policy gradients to increase the robustness.

Distributed reinforcement learning Reinforcement
learning algorithms are highly sample inefficient, which
calls for some form of parallelization to increase the train-
ing speed. When training in simulation, this speed-up can be
achieved by distributing experience collection or different
parts of training across multiple processes.(Nair et al., 2015;
Mnih et al., 2016; Espeholt et al., 2018; Horgan et al., 2018)
However, through the introduction of GPU-based simulators
such as IsaacGym (Makoviychuk et al., 2021), the capac-
ity of simulation has increased by two to three orders of
magnitude. Due to this, instead of focusing on how to paral-
lelize parts of the algorithm, the focus has shifted to finding
ways to efficiently utilize the large amount of simulation
data. Previous works such as (Chen et al., 2021; Fu et al.,
2022; Rudin et al., 2022; Handa et al., 2022; Agarwal et al.,
2022) use data from GPU-based simulation to learn policies
in complex manipulation and locomotion settings. How-
ever, most of these works still use reinforcement learning
algorithms to learn a single policy, while augmenting train-
ing with techniques like teacher-student-based training and
game-based curriculum. We find that using the increased
simulation capacity to naively increase the batch size is not
the best way to utilize massively parallel simulation.

(Petrenko et al., 2023) develop a population-based training
framework that divides the large number of environments
between multiple policies and using hyperparameter mu-
tation to find a set of hyperparameters that performs well.
However, even this does not utilize all the data completely
as each policy learns independently. We propose a way to
ensure most of the data from the environments contributes
to learning by using all collected transitions for each update.

Off-policy Policy Gradients Unlike on-policy algorithms,
off-policy algorithms can reuse all collected data or data
collected by any policy for their update. Most off-policy al-
gorithms (Mnih et al., 2013; Lillicrap et al., 2019; Haarnoja
et al., 2018) try to learn a value function which is then im-
plicitly/explicitly used to learn a policy. (Li et al., 2023)
developed a variant of Deep Deterministic Policy Gradi-
ent (DDPG) called PQL which splits data collection and
learning into multiple processes and shows impressive per-
formance on many benchmark tasks. We use PQL as one
of our baselines to compare our method to off-policy RL in
complex tasks. Although off-policy algorithms are much
more data-efficient, they usually get lower asymptotic per-
formance than on-policy policy gradients. This has inspired
works to develop techniques to use off-policy data in on-
policy methods. (Hastings, 1970) has been one of the major
techniques used to realize this. Previous works (Degris et al.,
2012; Wang et al., 2016; Espeholt et al., 2018; Fakoor et al.,
2020) develop techniques to use off-policy data in on-policy

SAPG: Split and Aggregate Policy Gradients

algorithms using importance sampling-based updates along
with features such as bias correction.

3. Preliminaries

In this paper, we propose a modification to on-policy RL to
achieve higher performance in the presence of large batch
sizes. We build upon PPO, although our proposed ideas are
generally applicable to any on-policy RL method.

On-policy RL Let (S, A, P,r, p,7) be an MDP where
S is the set of states, A the set of actions, P are transi-
tion probabilities, r the reward function, p the initial dis-
tribution of states and ~ the discount factor. The objec-
tive in reinforcement learning is to find a policy 7(als)
which maximises the long term discounted reward J (7) =

T-1
ESQNP,CLtNTF("St) [Zt:O ’Ytr(st7a't):|'

Policy-gradient algorithms (Williams, 2004; Konda & Tsit-
siklis, 1999; Schulman et al., 2015; Mnih et al., 2016) op-
timize the policy using gradient descent with Monte Carlo
estimates of the gradient

VoJ(mg) = E

s~pa,arr(-|s)

[Valog(mo(@)A™ (s,0)| (1)

where A™ (s,a) is an advantage function that estimates
the contribution of the transition to the gradient. A com-
mon choice is A™(s,a) = Q™ (s,a) — V™ (s), where
Q™ (s,a), V™ (s) are estimated @ and value functions.
This form of update is termed as an actor-critic update
(Konda & Tsitsiklis, 1999). Since we want the gradient
of the error with respect to the current policy, only data
from the current policy (on-policy) data can be utilized.

PPO Actor critic updates can be quite unstable because
gradient estimates are high variance and the loss landscape
is complex. An update step that is too large can destroy
policy performance. Proximal Policy Optimization (PPO)
modifies Eq. 1 to restrict updates to remain within an approx-
imate “trust region” where there is guaranteed improvement
(Schulman et al., 2015; Kakade & Langford, 2002).

Lon(mg) = 7TIE [min(r(mg), ®
clip (r¢(mp), 1 — €,1 4+ €)) A7~

Here, r(mg) = %, € is a clipping hyperparameter
and 7,4 is the policy collecting the on-policy data. The
clipping operation ensures that the updated 7 stays close
to m,;q. Empirically, given large numbers of samples, PPO
achieves high performance, is stable and robust to hyper-

parameters. However, it was developed for relatively small

batch sizes (= 100 parallel envs). We find that in the large-
scale setting (>10k envs), it is suboptimal because many
parallel envs are sampling nearly identical on-policy data.

4. Split and Aggregate Policy Gradients

Policy gradient methods are highly sensitive to the variance
in the estimate of gradient. Since CPU-based simulators
typically run only 100s of environments in parallel, conven-
tional wisdom is to simply sample on-policy data from a
Gaussian policy in all the environments since as the number
of datapoints increases, the Monte Carlo estimate becomes
more accurate. However, this intuition no longer holds in
the extremely large-scale data setting where we have hun-
dreds of thousands of environments on GPU-accelerated
simulators like IsaacGym. IID sampling from a Gaussian
policy will lead to most actions lying near the mean, and
most environments will execute similar actions, leading to
wasted data (fig. 2).

We propose to efficiently use large numbers of N environ-
ments using a divide-and-conquer setup. Our algorithm
trains a variety of M policies 71, . .., 7 s instead of having
just one policy. However, simply training multiple policies
by dividing environments between them is also inefficient.
This is equivalent to training an algorithm with different
seeds and choosing the best seed. One approach is to add
hyperparameter mutation (Petrenko et al., 2023) to the poli-
cies and choosing the hyperparameters that perform the
best among all of them. However, even in this case, all of
the data from the “worse” policies goes to waste, and the
only information gained is that some combinations of hy-
perparameters are bad, even though the policies themselves
may have discovered high reward trajectories. We need to
somehow aggregate data from multiple policies into a single
update. We propose to do this via off-policy updates.

4.1. Aggregating data using off-policy updates

One of the major drawbacks of on-policy RL is its inability
to use data from past versions of the policy. One solution is
to use importance sampling (Degris et al., 2012; Meng et al.,
2023) to weight updates using data from different policies.
In practice, this is not used since given limited compute it
is beneficial to sample on-policy experience that is more
directly relevant. However, this is no longer true in the large
batch setting where enough on-policy data is available. In
this case, it becomes advantageous to have multiple policies
m1,...,m and use them to sample diverse data, even if it
is off-policy. In particular, to update policy m; using data
from policy 7;, j € X we use (Meng et al., 2023)
Logy(mi; X) = o0 (min (rz, (s, a),
jex (5:0)~m; 3)

clip (rx; (s, a), p(1 — €), p(1 + €))) AT < (s,)]

SAPG: Split and Aggregate Policy Gradients

S¢ Massively parallel simulation

2 p, o G AT (2]
§ 6 gob é"b Importance

ﬂ-l ¢2 Sampling

I O l : L’ @@@ @@@

=~ O B $o @ (2]
©n 7T2 ¢ - -
5 O 3 (O (O
% @& n L g%@ g © Loss
s = g b Po o L
=T B ge g

Figure 3. We illustrate one particular variant of SAPG which performs well. There is one leader and M — 1 followers (M = 3 in figure).
Each policy has the same backbone with shared parameters By but is conditioned on local learned parameters ¢,. Each policy gets a
block of & environments to run. The leader is updated with its on-policy data as well as importance-sampled off-policy data from the

M

followers. Each of the followers only uses their own data for on-policy updates.

where ., (s,a) = :;Eizg

%S(Z)a) Note that when i = j, then 7; = 7; 014
and this reduces to the on-policy update as expected. This

is then scaled and combined with the on-policy term (eq. 2)

and p is an off-policy correction

term py =
L(Tﬁ) :L071(7T1) +)\Loff(77uX) (4)

The update target for the critic is calculated using n-step
returns (here n = 3).

t+2
Von2et(se) = Z’Ykitﬁc + 9 Vo, ota(se13) (5
o

However, this is not possible for off-policy data. Instead, we
assume that an off-policy transition can be used to approx-
imate a 1-step return. The target equations are as follows

Vot;;g;:(sli) =7 +YVr, 01d(5111) (6)
The critic loss is then
Lgte(m) = E [(Ve(s) = Vord(s))’] (D
(s,a)~;
LE7fe(mis & W > (Vi (5) = Vot (s))?]
jex (s,a NTI'J
®
Lcrztzc(7r) Lcrmc(z) + - LZ}Z;ZC(z) (9)

Given this update scheme, we must now choose a suitable
X C{1,..., M} and the set of is to update, along with the
correct ratio A\. We explore several variants below.

4.2. Symmetric aggregation

A simple choice is to update all i’s with the data from all
policies. In this case, we choose to update each policy
i €41,2,..., M} and for each i use off-policy data from
all other policies X = {1,2,¢ — 1,i + 1,..., M}. Since
gradients from off-policy data are typically noisier than
gradients from on-policy data, we choose A = 1, but sub-
sample the off-policy data such that we use equal amounts
of on-policy and off-policy data.

4.3. Leader-follower aggregation

While the above choice prevents data wastage, since all
the policies are updated with the same data, it can lead
to policies converging in behavior, reducing data diversity
and defeating the purpose of having separate policies. To
resolve this, we break symmetry by designating a “leader”
policy ¢ = 1 which gets data from all other policies X =
{2,3,..., M} while the rest are “followers” and only use
their own on-policy data for updates X = ¢. As before,
we choose A = 1, but subsample the off-policy data for
the leader such that we use equal amounts of on-policy and
off-policy data in a mini-batch update.

4.4. Encouraging diversity via latent conditioning

What is the right parameterization for this set of policies?
One simple choice is to have a disjoint set of parameters
for each with no sharing at all. However, this implies that
each follower policy has no knowledge of any other pol-
icy whatsoever and may get stuck in a bad local optimum.
We mitigate this by having a shared backbone By for each
policy conditioned on hanging parameters ¢; local to each

SAPG: Split and Aggregate Policy Gradients

O O O O
ovo OVO o o ovo
~ N ~ Y
O O
& &))
7\ N\ N\ N\

Leader-follower Symmetric

Figure 4. Two data aggregation schemes we consider in this paper.
(Left) one policy is a leader and uses data from each of the follow-
ers (Right) a symmetric scheme where each policy uses data from
all others. In each case, the policy also uses its own on-policy data.

policy. Similarly, the critic consists of a shared backbone
Cy conditioned on parameters ¢;. The parameters v, 0
are shared across the leader and all followers and updated
with gradients from each objective, while the parameters
¢, are only updated with the objective for that particular
policy. We choose ¢; € R3? for complex environments
while ¢; € R1® for the relatively simpler ones.

4.5. Enforcing diversity through entropy regularization

To further encourage diversity between different policies,
in addition to the PPO update loss L,,, we add an entropy
loss to each of the followers with different coefficients. In
particular, the entropy loss is H(w(a | s)). The overall
loss for the policy 7 (or the (¢ — 1)th) follower is L(m;) =
Lon(m;) +0(i—1) - H(m(a | s)). The leader doesn’t have
any entropy loss. Different scales of coefficients produce
policies with different explore-exploit tradeoffs. Followers
with large entropy losses tend to explore more actions even
if they are suboptimal, while those with small coefficients
stay close to optimal trajectories and refine them. This leads
to a large data coverage with a good mix of optimal as well
as diverse trajectories. We treat ¢ as a hyperparameter.

4.6. Algorithm: SAPG

We roll out M different policies and collect data
D, ..., Dy for each. Follower policies 2, ..., M are up-
dated using the usual PPO objective with minibatch gradient
descent on their respective datasets. However, we augment
the dataset of the leader D; with data from Ds, ..., Dy,
weighed by the importance weight p. The leader is then
updated by minibatch gradient descent as well.

5. Experimental Setup

We conduct experiments on 5 manipulation tasks (3 hard and
2 easy) and compare them against SOTA methods for the
large-scale parallelized setting. We use a GPU-accelerated
simulator, IsaacGym (Makoviychuk et al., 2021) which al-
lows simulating tens of thousands of environments in par-

Algorithm 1 SAPG
Initialize shared parameters 6, ¢
Fori € {1,..., M} initialize parameters ¢;
Initialize N environments 1, ..., En.

Initialize data buffers for each policy Dy, ..., Dyy.
for:=1,2,...,do
forj =1,2,...,M do
D; < COLLECTDATA(E; ~ ;1) x,0,9;)
end for
L<+0

Sample |D; | transitions from LJJ»M:2 D; to get Dj.

L + L + OrrPoLICYLOSS(D))
L < L+ ONPoLICYLOSS(D1)

forj =2,....M do
L < L + ONPoOLICYLOSS(D;)
end for

Update 6 < 0 —nVoL
Update ¢ < 9 —nVy L
end for=0

allel on a single GPU. In our experiments, we focus on the
large-scale setting and simulate 24576 parallel environments
unless otherwise specified. Note that this is two orders of
magnitude larger than the number of environments PPO
was developed on (Schulman et al., 2017), and we indeed
find that vanilla PPO does not scale to this setting.

For testing, we choose a suite of manipulation environments
that are challenging and require large-scale data to learn
effective policies (Petrenko et al., 2023). In particular, these
consist of dexterous hands mounted on arms leading to high
numbers of degrees of freedom (up to 23). This is challeng-
ing because sample complexity scales exponentially with
degrees of freedom. They are under-actuated and involve
manipulating free objects in certain ways while under the
influence of gravity. This leads to complex, non-linear in-
teractions between the agent and the environment such as
contacts between robot and object, object and table, and
robot and table. Overall, this implies that to learn effective
policies an agent must collect a large amount of relevant
experience and also use it efficiently for learning.

5.1. Tasks

We consider a total of 5 tasks grouped into two parts: Three
hard tasks and two easy tasks. Hard and easy is defined
by the success reward achieved by off-policy (in particular,
PQL) methods in these environments. In easy environments,
even Q-learning-based off-policy methods can obtain non-
zero performance but not in hard tasks. See appendix sec. A.

Hard Difficulty Tasks All three hard tasks are based on
the Allegro—Kuka environments(Petrenko et al., 2023).
These consist of an Allegro Hand (16 DoF) mounted on

SAPG: Split and Aggregate Policy Gradients

a Kuka arm (7 dof). The performance of the agent in the
above three tasks is measured by the successes metric which
is defined as the number of successes in a single episode.
Three tasks include:

» Regrasping: The object must be lifted from the table
and held near a goal position g; € R? for K = 30 steps.
This is called a “success”. The target position and object
position are reset to a random location after every success.

* Throw: The object must be lifted from the table and
thrown into a bucket at g; € R placed out of reach of
the arm. The bucket and the object position are reset
randomly after every successful attempt.

* Reorientation: Pick up the object and reorient it to a par-
ticular target pose g € R (position + orientation). The
target pose is reset once the agent succeeds. This means
that the agents needs to reorient the object in different
poses in succession, which may sometimes entail placing
the objects on the table and lifting it up in a different way.

Easy Difficulty Tasks: In addition, we test on the follow-
ing dexterous hand tasks. As before, the observation space
consists of the joint angles and velocities q;, ¢, object pose
x; and velocities vy, wy.

* Shadow Hand: We test in-hand reorientation task of a
cube using the 24-DoF Shadow Hand.

* Allegro Hand: This is the same as the previous in-hand
reorientation task but with the 16-DoF Allegro Hand.

5.2. Baselines

We test against state-of-the-art RL methods designed for
the GPU-accelerated large-scale setting we consider in this
paper. We compare against both on-policy (Petrenko et al.,
2023) and off-policy (Li et al., 2023) variants as well as
vanilla PPO (Schulman et al., 2017).

* PPO (Proximal Policy Optimization) (Schulman et al.,
2017): In our setting, we just increase the data throughput
for PPO by increasing the batch size proportionately to the
number of environments. In particular, we see over two or-
ders of magnitude increase in the number of environments
(from 128 to 24576).

* Parallel Q-Learning (Li et al., 2023) A parallelized ver-
sion of DDPG with different mixed exploration i.e. vary-
ing exploration noise across environments to further aid
exploration. We use this baseline to compare if off-policy
methods can outperform on-policy methods when the data
collection capacity is high.

¢ DexPBT (Petrenko et al., 2023) A framework that com-
bines population-based training with PPO. N Environ-
ments are divided into M groups, each containing %
environments. M separate policies are trained using PPO
in each group of environments with different hyperparam-
eters. At regular intervals, the worst-performing policies

are replaced with the weights of best-performing policies
and their hyperparameters are mutated randomly.

Due to the complexity of these tasks, experiments take about
48-60 hours on a single GPU, collecting ~ 2e10 transitions.
Since we run experiments on different machines, the wall
clock time is not directly comparable and we compare runs
against the number of samples collected. We run 5 seeds for
each experiment and report the mean and standard error in
the plots. In each plot, the solid line is y(t) = = >, y;(¢)

while the width of the shaded region is determined by stan-
dard error % > (y(t) — yi(t))2

For each task, we use M = 6 policies for our method
and DexPBT in a total of N = 24576 environments for
each method. We use the dimension of learned parameter
¢; € R32 for the AllegroKuka tasks while we use ¢; € R'¢
for the ShadowHand and AllegroHand tasks since they are
relatively simpler. We use a recurrent policy for the Alle-
groKuka tasks and an MLP policy for the Shadow Hand
and Allegro Hand tasks and use PPO to train them. We
collect 16 steps of experience per instance of the environ-
ment before every PPO update step. For SAPG, we tune the
entropy coefficient o by choosing the best from a small set
{0,0.003,0.005} for each environment. We find that o = 0
works best for all ShadowHand, AllegroHand, Regrasping,
and Throw while o = 0.005 works better for Reorientation.

6. Results and Analysis

In the large-scale data setting, we are primarily concerned
with optimality while sample-efficiency and wall-clock time
are secondary concerns. This is because data is readily
available—one only needs to spin up more GPUs, what
is really important is how well our agent performs in the
downstream tasks. Indeed, this aligns with how practitioners
use RL algorithms in practice (Agarwal et al., 2022; Cheng
et al., 2023; OpenAl et al., 2018), where agents are trained
with lots of domain randomization in large simulations and
the primary concern is how well the agent can adapt and
learn in these environments since this directly translates to
real-world performance.

6.1. AllegroKuka tasks

The AllegroKuka tasks (Throw, Regrasping, and Reorienta-
tion) are hard due to large degrees of freedom. The environ-
ment also offers the possibility of many emergent strategies
such as using the table to reorient the cube, or using gravity
to reorient the cube. Therefore, a large amount of data is re-
quired to attain good performance on these tasks. Following
Petrenko et al. (2023) we use the number of successes as a
performance metric on these tasks. Note that the DexPBT
baseline directly optimizes for success by mutating the re-

SAPG: Split and Aggregate Policy Gradients

Allegro Kuka Regrasping

IS
o

] @ 25
b 0
&30 @ 20
) Iy
15
?20 2
0] @10
© kel
o 10]
K @ 5
Q. o
w o F w o &
0.0 0.5 1.0 1.5 2.0 0.0 0.5
Number of envsteps lel0
Allegro Hand
»n 12500 //N(’*
]
°
© 10000
=
v 7500
J]
T 5000
2
‘3 2500
w
0
0.0 0.5 1.0 15 2.0

Number of envsteps lel0

—— SAPG (Ours)

Allegro Kuka Throw

Number of envsteps

Allegro Kuka Reorientation

Episode successes
= N w
o o o

o

1.0 15 2.0

lel0
Shadow Hand

0.0 0.5 1.0 15

Number of envsteps

2.0
lel0

»n 12500 ————
°
© 10000
=
Y 7500
g 5000
b
‘5 2500
L
0
0.0 0.5 1.0 15 2.0
Number of envsteps lel0
PPO —— PBT PQL |

Figure 5. Performance curves of SAPG with respect to PPO, PBT and PQL baselines. On AllegroKuka tasks, PPO and PQL barely make
progress and SAPG beats PBT. On Shadow Hand and Allegro Kuka Reorientation, SAPG performs best with an entropy coefficient of
0.005 while the coefficient is O for other environments. On ShadowHand and AllegroHand, while PQL is initially more sample efficient,
SAPG is more performant in the longer run. AllegroKuka environments use successes as a performance metric while AllegroHand and

ShadowHand use episode rewards.

ALGORITHM ALLEGROHAND SHADOWHAND REGRASPING THROW REORIENTATION
PPO (SCHULMAN ET AL., 2017) 1.0le4£6.31e2 1.07e4+4.90e2 1.25+£1.15 16.8 £0.48 2.85+£0.05
PBT (PETRENKO ET AL., 2023) 7.28e3%1.24e3 1.01e441.80e2 31.9+£2.26 19.2 £1.07 23.2 +4.86
PQL (LIET AL., 2023) 1.01e4+5.28¢2 1.28e4+1.25e2 2.73+£0.02 2.62 +£0.08 1.66 £0.11
SAPG (OURS, COEF=0) 1.23e4 + 3.29e2 1.17e4+2.64e2 35.7 £ 1.46 23.7+0.74 33.24+4.20
SAPG (OURS, COEF=0.005) 9.14e3+£8.38¢2 1.28e4 + 2.80e2 33.4£2.25 18.7£0.43 38.6 £0.63

Table 1. Performance after 2e10 samples for different methods with standard error. This is measured by successes for the AllegroKuka
tasks and by episode rewards for in-hand reorientation tasks. Across environments, we find that our method performs better than baselines.

ward scales to achieve higher success rate, whereas our
method can only optimize a fixed reward function. Despite
this, we see that SAPG achieves a 12 — 66% higher success
rate than DexPBT on regrasping, throw and reorientation.
SAPG performs 66% better than PBT on the challenging re-
orientation task. Note that vanilla PPO and PQL are unable
to learn any useful behaviors on these hard tasks.

6.2. In-hand reorientation

The AllegroHand and ShadowHand reorientation tasks from
Li et al. (2023) are comparatively easier since they have
lower degrees of freedom and the object doesn’t move
around much and remains inside the hand. On these tasks,
we observe that PQL and PPO are able to make significant
progress. In particular, we find that PQL is very sample-
efficient because it is off-policy and utilizes past data for up-
dates. However, we find that SAPG achieves higher asymp-

totic performance. This is because on-policy methods are
better at latching onto high reward trajectories and do not
have to wait several iterations for the Bellman backup to
propagate back to initial states. As discussed previously,
in large-scale settings in simulation, we are primarily con-
cerned with asymptotic performance since we want to maxi-
mize the downstream performance of our agents (within a
reasonable training time budget). We see that on Allegro-
Hand, SAPG beats PQL by a 21% margin, while on the
ShadowHand task it achieves comparable performance. On
these tasks, both PBT and PPO generally perform worse.
This is because PPO is not able to efficiently leverage the
large batch size. PBT loses the benefit of its hyperparameter
mutation because the environment is simpler and the default
hyperparameters work well, so it roughly reduces to simple

PPO in % environments.

SAPG: Split and Aggregate Policy Gradients

Allegro Kuka Regrasping

I
o

D 3 25
& N’“:&'t"w &
o 30 N = | @ 20
o /-/ 9
1
320 al
() [}
v g10
o 10 5]
0 o5
o o
w o w o
0.0 0.5 1.0 15 2.0 0.0 0.5
Number of envsteps lel0
Allegro Hand
» 12500
©
S
@ 10000
2
L 7500
(]
S 5000
a
‘5. 2500
w
0
0.0 0.5 1.0 1.5 2.0
Number of envsteps lel0
—— Ours

—— Ours (with entropy coef = 0.005)

Allegro Kuka Throw

Number of envsteps lel0

Episode rewards

Ours (with entropy coef = 0.003)
Ours (high off policy ratio)

Allegro Kuka Reorientation

,»4”’7¥7”T."~
’,L_‘—--—*TJN'T

N
o

w
o

Episode successes
= N
o o

o

1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Number of envsteps lel0

15000 Shadow Hand

S ————

10000

5000

0.0 0.5 1.0 15 2.0
Number of envsteps lel0

—— Ours (w/o off-policy)
—— Ours (symmetric off-policy)

Figure 6. Performance curves for ablations of our method. The variants of our method with a symmetric aggregation scheme or without
an off-policy combination perform significantly worse. Entropy regularization affects performance across environments, giving a benefit
in reorientation. Using a high off-policy ratio without subsampling data leads to worse performance on ShadowHand and AllegroHand.

6.3. Ablations

The core idea behind SAPG is to combine data from differ-
ent policies instead of optimizing a single policy with an
extremely large batch. In this section, we will analyze our
specific design choices for how we combine data (choice
of ¢ and X and \) and for how we enforce diversity among
the data collected by the policies. In particular, we have the
following variants

* SAPG (with entropy coef) As discussed in sec. 5.2 , here
we add an entropy loss to the followers to encourage data
diversity. We explore different choices for the scaling
coefficient of this loss o € {0,0.005,0.003}.

* SAPG (high off-policy ratio) In SAPG, when updating
the leader, we subsample the off-policy data from the
followers such that the off-policy dataset size matches
the on-policy data. This is done because off-policy data
is typically noisier and we do not want to drown out the
gradient from on-policy data. In SAPG with a high off-
policy ratio, we remove the subsampling step and instead
see the impact of computing the gradient on the entire
combined off-policy + on-policy dataset.

e Ours (symmetric) In SAPG, we choose ¢ = 1 to be the
“leader” and the rest are “followers”. Only the leader re-
ceives off-policy data while the followers use the standard
on-policy loss. A natural alternative is where there are
no privileged policies and each policy is updated with
oft-policy data from all others as discussed in sec. 4.2.

We observe that SAPG outperforms or achieves comparable

performance to the entropy-regularized variant except in the
Reorientation environment where the variant with coeffi-
cient 5e — 3 performs up to 16.5% better. Reorientation is
the hardest task out of the three AllegroKuka tasks and has
a lot of scope for learning emergent strategies such as using
the table to move the object around, etc. Explicit exploration
might be useful in discovering these behaviors.

The variant of ours which uses all the off-policy data is sig-
nificantly worse on the AllegroHand and ShadowHand tasks
and marginally worse on Regrasping and Throw environ-
ments. It is more sample efficient than SAPG on Reorienta-
tion but achieves lower asymptotic performance. This could
be because in the simple environments, additional data has
marginal utility. In the harder AllegroKuka environments, it
is beneficial to use all the data initially since it may contain
optimal trajectories that would otherwise be missed. How-
ever, once an appreciable level of performance is achieved,
it becomes better to subsample to prevent the noise in the
off-policy update from drowning out the on-policy gradient.

Finally, the symmetric variant of our method performs sig-
nificantly worse across the board. This is possibly because
using all the data to update each policy leads to them con-
verging in behavior. If all the policies start executing the
same actions, the benefit of data diversity is lost and SAPG
reduces to vanilla PPO. Of course, there is a rich space of
possible algorithms depending on particular choices of how
data is aggregated and diversity is encouraged of which we
have explored a small fraction.

SAPG: Split and Aggregate Policy Gradients

Allegro Kuka Reorientation Allegro Kuka Regrasping Allegro Kuka Throw

w
o]
IS

S sS4
= =
w3 [}
f= f=
S s3
=] =]
s} s}
>2 >
= =2
A A
f= f=
S1 S \
Q 1 N
< =2 NN
._‘\.\\
o o e,
1 6 11 16 21 26 31 36 41 46 51 56 61 66 1 6 11 16 21 26 31 36 41 46 51 56 1 6 11 16 21 26 31 36 41 46 51 56
Number of Components Number of Components Number of Components

—— PPO Ours —— Random policy

Figure 7. Curves comparing reconstruction error for states visited during training using top-k PCA components for SAPG (Ours), PPO
and a randomly initialized policy

Allegro Kuka Reorientation Allegro Kuka Regrasping Allegro Kuka Throw
100
100 120
80

80 100

60 80

60

60
40

40
40

\ \
\\ \, \ V\‘ Y
20 \ \
% k\\ N\ 20 ‘»‘\

—r o

Training error
Training error
Training error

o i A S — (o]

8 16 24 32 48 64 8 16 24 32 48 64 8 16 24 32 48 64
Hidden layer size Hidden layer size Hidden layer size
—— PPO Ours —~— Random policy

Figure 8. Curves comparing reconstruction error for states visited during training using MLPs with varying hidden layer dimensions for
SAPG (Ours), PPO and a randomly initialized policy

6.4. Diversity in exploration high training error on a batch of states is a strong in-
dicator of diversity in the batch. As can be observed
from the plots in Figure-8, we find that training error is
consistently higher for our method compared to PPO
across different hidden layer sizes.

To analyze why our method outperforms the baseline
method, we conduct experiments comparing the diversity of
states visited by each algorithm during training. We devise
two metrics to measure the diversity of the state space and

find that our method beats PPO in both metrics. .
7. Conclusion

* PCA - We compute the reconstruction error of a batch
of states using k most significant components of PCA
and plot this error as a function of k. In general, a set
that has variation along fewer dimensions of space can
be compressed with fewer principal vectors and will
have lower reconstruction error. This metric therefore
measures the extent to which the policy explores dif-
ferent dimensions of state space. Figure-7 contains the
plots for this metric. We find that the rate of decrease
in reconstruction error with an increase in components
is the slowest for our method.

In this work, we present a method to scale reinforcement
learning to utilize large simulation capacity. We show how
current algorithms obtain diminishing returns if we perform
naive scaling by batch size and do not use the increased
volume of data efficiently. Our method achieves state-of-
the-art performance on hard simulation benchmarks.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

¢ MLP - We train feedforward networks with small consequences of our work, none of which we feel must be
hidden layers on the task of input reconstruction on specifically highlighted here.
batches of environment states visited by our algorithm
and PPO during training. The idea behind this is that
if a batch of states has a more diverse data distribution
then it should be harder to reconstruct the distribution We thank Alex Li and Russell Mendonca for fruitful discus-
using small hidden layers because high diversity im- sions regarding the method and insightful feedback. We
plies that the distribution is less compressible. Thus, = would also like to thank Mihir Prabhudesai and Kevin

Acknowledgements

SAPG: Split and Aggregate Policy Gradients

Gmelin for proofreading an earlier draft. This project was
supported in part by ONR N00014-22-1-2096 and NSF NRI
11S-2024594.

References

Agarwal, A., Kumar, A., Malik, J., and Pathak, D.
Legged locomotion in challenging terrains using ego-
centric vision. In Conference on Robot Learning,
2022.
org/CorpusID:252733339.

Chen, T., Xu, J., and Agrawal, P. A system for general
in-hand object re-orientation, 2021.

Cheng, X., Shi, K., Agarwal, A., and Pathak, D. Extreme
parkour with legged robots. ArXiv, abs/2309.14341,
2023.
org/CorpusID:262826068.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast
and accurate deep network learning by exponential linear
units (elus), 2016.

Degris, T., White, M., and Sutton, R. S. Off-policy actor-
critic. CoRR, abs/1205.4839, 2012. URL http://
arxiv.org/abs/1205.4839.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dun-
ning, L., Legg, S., and Kavukcuoglu, K. IMPALA: scal-
able distributed deep-rl with importance weighted actor-
learner architectures. CoRR, abs/1802.01561, 2018. URL
http://arxiv.org/abs/1802.01561.

Fakoor, R., Chaudhari, P, and Smola, A. J. P3o:
Policy-on policy-off policy optimization. In Adams,
R. P. and Gogate, V. (eds.), Proceedings of The
35th Uncertainty in Artificial Intelligence Confer-
ence, volume 115 of Proceedings of Machine Learn-
ing Research, pp. 1017-1027. PMLR, 22-25 Jul
2020. URL https://proceedings.mlr.press/
v11l5/fakoor20a.html.

Fu, Z., Cheng, X., and Pathak, D. Deep whole-
body control: Learning a unified policy for ma-
nipulation and locomotion. ArXiv, abs/2210.10044,
2022.
org/CorpusID:252968218.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. ArXiv, abs/1801.01290,
2018.
org/CorpusID:28202810.

URL https://api.semanticscholar.

URL https://api.semanticscholar.

URL https://api.semanticscholar.

URL https://api.semanticscholar.

10

Handa, A., Allshire, A., Makoviychuk, V., Petrenko,
A., Singh, R., Liu, J., Makoviichuk, D., Wyk, K. V,,
Zhurkevich, A., Sundaralingam, B., Narang, Y. S.,
Lafleche, J.-F., Fox, D., and State, G. Dextreme:
Transfer of agile in-hand manipulation from simula-
tion to reality. 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 5977-5984,
2022. URL https://api.semanticscholar.
org/CorpusID:253107794.

Hastings, W. K. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 57(1):
97-109, 04 1970. ISSN 0006-3444.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., van Hasselt, H., and Silver, D. Distributed prioritized
experience replay. CoRR, abs/1803.00933, 2018. URL
http://arxiv.org/abs/1803.00933.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In Proceedings of the
Nineteenth International Conference on Machine Learn-
ing, pp. 267-274, 2002.

Konda, V. and Tsitsiklis, J. Actor-critic algorithms. In Solla,
S., Leen, T., and Miiller, K. (eds.), Advances in Neural
Information Processing Systems, volume 12. MIT Press,
1999. URL https://proceedings.neurips.
cc/paper_files/paper/1999/file/
6449f44a102fde848669bdd9%ebbb76fa-Paper.
pdf.

Li, Z., Chen, T., Hong, Z.-W., Ajay, A., and Agrawal, P. Par-
allel g-learning: Scaling off-policy reinforcement learn-
ing under massively parallel simulation, 2023.

Lillicrap, T. P,, Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning, 2019.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey,
K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A.,
Handa, A., et al. Isaac gym: High performance gpu-based
physics simulation for robot learning. arXiv preprint
arXiv:2108.10470, 2021.

Meng, W., Zheng, Q., Pan, G., and Yin, Y. Off-
policy proximal policy optimization. Proceedings of
the AAAI Conference on Artificial Intelligence, 37(8):
9162-9170, June 2023. ISSN 2159-5399. doi: 10.1609/
aaai.v37i8.26099. URL http://dx.doi.org/10.
1609/aaai.v3718.26099.

Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V.,
and Hutter, M. Learning robust perceptive locomotion
for quadrupedal robots in the wild. Science Robotics, 7
(62):eabk2822, 2022.

https://api.semanticscholar.org/CorpusID:252733339
https://api.semanticscholar.org/CorpusID:252733339
https://api.semanticscholar.org/CorpusID:262826068
https://api.semanticscholar.org/CorpusID:262826068
http://arxiv.org/abs/1205.4839
http://arxiv.org/abs/1205.4839
http://arxiv.org/abs/1802.01561
https://proceedings.mlr.press/v115/fakoor20a.html
https://proceedings.mlr.press/v115/fakoor20a.html
https://api.semanticscholar.org/CorpusID:252968218
https://api.semanticscholar.org/CorpusID:252968218
https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:253107794
https://api.semanticscholar.org/CorpusID:253107794
http://arxiv.org/abs/1803.00933
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
http://dx.doi.org/10.1609/aaai.v37i8.26099
http://dx.doi.org/10.1609/aaai.v37i8.26099

SAPG: Split and Aggregate Policy Gradients

Mnih, V., Kavukcuoglu, K., Silver, D., Graves,
A., Antonoglou, I, Wierstra, D., and Riedmiller,
M. A. Playing atari with deep reinforcement learn-

ing. ArXiv, abs/1312.5602, 2013. URL https://api.

semanticscholar.org/CorpusID:15238391.

Mnih, V., Badia, A. P, Mirza, M., Graves, A., Lilli-
crap, T. P, Harley, T., Silver, D., and Kavukcuoglu, K.
Asynchronous methods for deep reinforcement learning.

CoRR, abs/1602.01783, 2016. URL http://arxiv.

org/abs/1602.01783.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon,
R., Maria, A. D., Panneershelvam, V., Suleyman, M.,
Beattie, C., Petersen, S., Legg, S., Mnih, V., Kavukcuoglu,
K., and Silver, D. Massively parallel methods for deep
reinforcement learning. CoRR, abs/1507.04296, 2015.
URL http://arxiv.org/abs/1507.04296.

OpenAl, Andrychowicz, M., Baker, B., Chociej, M.,
Jozefowicz, R., McGrew, B., Pachocki, J., Petron, A.,
Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor,
S., Tobin, J., Welinder, P., Weng, L., and Zaremba,
W. Learning dexterous in-hand manipulation. CoRR,
abs/1808.00177, 2018. URL http://arxiv.org/
abs/1808.00177.

Petrenko, A., Allshire, A., State, G., Handa, A., and
Makoviychuk, V. Dexpbt: Scaling up dexterous ma-
nipulation for hand-arm systems with population based
training. In Bekris, K. E., Hauser, K., Herbert, S. L.,
and Yu, J. (eds.), Robotics: Science and Systems XIX,
Daegu, Republic of Korea, July 10-14, 2023, 2023. doi:
10.15607/RSS.2023.XI1X.037. URL https://doi.
org/10.15607/RSS.2023.XIX.037.

Rudin, N., Hoeller, D., Reist, P, and Hutter, M. Learning to
walk in minutes using massively parallel deep reinforce-
ment learning, 2022.

Schulman, J., Levine, S., Abbeel, P, Jordan, M., and
Moritz, P. Trust region policy optimization. In
Bach, F. and Blei, D. (eds.), Proceedings of the 32nd
International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research,
pp. 1889-1897, Lille, France, 07-09 Jul 2015. PMLR.
URL https://proceedings.mlr.press/v37/
schulmanl5.html.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation, 2018.

11

Sutton, R. S., McAllester, D., Singh, S., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Solla, S., Leen,
T., and Miiller, K. (eds.), Advances in Neural Infor-
mation Processing Systems, volume 12. MIT Press,
1999. URL https://proceedings.neurips.
cc/paper_files/paper/1999/file/
464d828b85b0bed98e80adelabc43b0f-Paper.
pdf.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, L.,
Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama, D.,
Wiinsch, D., McKinney, K., Smith, O., Schaul, T., Lilli-
crap, T. P., Kavukcuoglu, K., Hassabis, D., Apps, C., and
Silver, D. Grandmaster level in starcraft ii using multi-
agent reinforcement learning. Nature, 575:350 — 354,
2019. URL https://api.semanticscholar.
org/CorpusID:204972004.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos,
R., Kavukcuoglu, K., and de Freitas, N. Sample
efficient actor-critic with experience replay. CoRR,
abs/1611.01224, 2016. URL http://arxiv.org/
abs/1611.01224.

Watkins, C. and Dayan, P. Q-learning. = Machine
Learning, 8:279-292, 1992. URL https:
//api.semanticscholar.org/CorpusID:
208910339.

Williams, R. J. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Ma-
chine Learning, 8:229-256, 2004. URL https://api.
semanticscholar.org/CorpusID:19115634.

https://api.semanticscholar.org/CorpusID:15238391
https://api.semanticscholar.org/CorpusID:15238391
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1507.04296
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
https://doi.org/10.15607/RSS.2023.XIX.037
https://doi.org/10.15607/RSS.2023.XIX.037
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://api.semanticscholar.org/CorpusID:204972004
https://api.semanticscholar.org/CorpusID:204972004
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1611.01224
https://api.semanticscholar.org/CorpusID:208910339
https://api.semanticscholar.org/CorpusID:208910339
https://api.semanticscholar.org/CorpusID:208910339
https://api.semanticscholar.org/CorpusID:19115634
https://api.semanticscholar.org/CorpusID:19115634

SAPG: Split and Aggregate Policy Gradients

A. Task and Environment Details

Hard Difficulty Tasks All three hard tasks are based on the A11egro—Kuka environments(Petrenko et al., 2023). These
consist of an Allegro Hand (16 dof) mounted on a Kuka arm (7 dof). In each case, the robot must manipulate a cuboidal kept
on a fixed table. The observation space is 0; = [q, ¢, X¢, V¢, wy, 8¢, Z¢), where q, ¢ € R?3 are the joint angles and velocities
respectively of each joint of the robot, x;, € R is the pose of the object, v, is its linear velocity and wy is its angular velocity,
g; is a task-dependent goal observation and z; is auxiliary information pertinent to solving the task such as if the object has
been lifted. These tasks consist of a complex environment but a simple reward function allowing opportunities for emergent
strategies to be learnt such as in-hand reorientation under the influence of gravity, reorientation against the table, different
types of throws and grasps and so on. The performance of the agent in the above three tasks is measured by the successes
metric which is defined as the number of successes in a single episode. Three tasks include:

* Regrasping - The object must be lifted from the table and held near a goal position g; € R? for K = 30 steps. This
is called a “success”. The target position and object position are reset to a random location after every success. The
success tolerance § defines the maximum error between object pose and goal pose for a success ||g; — (x¢)o:3]| < 9.
This tolerance is decreased in a curriculum from 7.5cm to 1cm, decremented by 10% each time the the average number
of successes in an episode crosses 3. The reward function is a weighted combination of rewards encouraging the hand
to reach the object r'¢qcn , @ bonus 1y; f, rewards encouraging the hand to move to goal location after lifting 744, get
and a success bonus 7, ccess -

Throw - The object must be lifted from the table and thrown into a bucket at g, € R? placed out of reach of the arm.
The bucket and the object position are reset randomly after every successful attempt. The reward function is similar to
regrasping with the difference being that the target is now a bucket instead of a point.

L]

Reorientation - This task involves picking up the object and reorienting it to a particular target pose gz € R” (position
+ orientation). Similar to the regrasping task, there is a success tolerance § which is varied in a curriculum. The target
pose is reset once the agent succeeds. This means the agents needs to the object in different poses in succession, which
may sometimes entail placing the obxfject on the table and lifting it up in a different way. Here too, the reward function
is similar to regrasping, with the goal now being a pose in R” instead of R3

Easy Difficulty Tasks: In addition, we test on the following dexterous hand tasks. As before, the observation space
consists of the joint angles and velocities q;, q;, object pose x; and velocities v, w;. Following previous works (Li et al.,
2023), we use the net episode reward as a performance metric for the ShadowHand and AllegroHand tasks.

* Shadow Hand: We test on in-hand reorientation task of a cube using the 24-DoF Shadow Hand((OpenAl et al., 2018)).
The task is to attain a specified goal orientation (specified as a quaternion) for the cube g; € R*. The reward is a
combination of the orientation error and a success bonus.

* Allegro Hand: This is the same as the previous in-hand reorientation task but with the 16-DoF Allegro Hand instead.

B. Training hyperparameters

We use two different sets of default hyperparaeters for PPO in AllegroKuka and Shadow Hand tasks which are descibed
below.

B.1. AllegroKuka tasks

We use a Gaussian policy where the mean network is an LSTM with 1 layer containing 768 hidden units. The observation is
also passed through an MLP of with hidden layer dimensions 768 x 512 x 256 and an ELU activation (Clevert et al., 2016)
before being input to the LSTM. The sigma for the Gaussian is a fixed learnable vector independent of input observation.

12

SAPG: Split and Aggregate Policy Gradients

Hyperparameter Value
Discount factor, ~ 0.99
T 0.95
Learning rate le-4
KL threshold for LR update 0.016
Grad norm 1.0
Entropy coefficient 0
Clipping factor € 0.1
Mini-batch size num_envs - 4
Critic coefficient \’ 4.0
Horizon length 16
LSTM Sequence length 16
Bounds loss coefficient 0.0001
Mini epochs 2

Table 2. Training hyperparameters for AllegroKuka tasks

B.2. Shadow Hand

We use a Gaussian policy where the mean network is an MLP with hidden layers dimensions 512 x 512 x 256 x 128 and
an ELU activation (Clevert et al., 2016)

Hyperparameter Value
Discount factor, ~y 0.99
T 0.95
Learning rate Se-4
KL threshold for LR update 0.016
Grad norm 1.0
Entropy coefficient 0
Clipping factor € 0.1
Mini-batch size num_envs - 4
Critic coefficient \’ 4.0
Horizon length 8
Bounds loss coefficient 0.0001
Mini epochs 5

Table 3. Training hyperparameters for Shadow Hand

B.3. Allegro Hand

We use a Gaussian policy where the mean network is an MLP with hidden layers dimensions 512 x 256 x 128 and an ELU
activation.

13

SAPG: Split and Aggregate Policy Gradients

Hyperparameter Value
Discount factor, ~ 0.99
T 0.95
Learning rate Se-4
KL threshold for LR update 0.016
Grad norm 1.0
Entropy coefficient 0
Clipping factor € 0.2
Mini-batch size num_envs - 4
Critic coefficient \’ 4.0
Horizon length 8
Bounds loss coefficient 0.0001
Mini epochs 5

Table 4. Training hyperparameters for Shadow Hand

Note: In case of experiments with entropy based exploration, each block of environments has it’s own learnable vector
sigma which enable policies for different blocks to have different entropies.

14

