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ABSTRACT

In this paper, we tackle learning tasks on graphs with missing features, improv-
ing the applicability of graph neural networks to real-world graph-structured data.
Existing imputation methods based upon graph diffusion produce channels that
have nearly identical values within each channel, and these low-variance channels
contribute very little to performance in graph learning tasks. To prevent diffusion-
based imputation from producing low-variance channels, we introduce synthetic
features that address the cause of the production, thereby increasing variance in
low-variance channels. Since the synthetic features prevent diffusion-based impu-
tation models from generating meaningless feature values shared across all nodes,
our synthetic feature propagation design prevents significant performance degra-
dation, even under extreme missing rates. Extensive experiments demonstrate the
effectiveness of our scheme across various graph learning tasks with missing fea-
tures, ranging from low to extremely high missing rates. Moreover, we provide
empirical evidence and theoretical proof that validate the low-variance problem.

1 INTRODUCTION

Graph neural networks (GNNs) have achleved significant successes in graph learning tasks such as
node clasmﬁcatlon ( s ) and link prediction (

s ). Slnce a Wlde range of data contains entities with relations, these
data can be represented in graphs and many problems are formulated as graph learning tasks (

; , ). However, real-world graph-structured data often include missing
features for various reasons (e.g., private information in social networks and measurement failure),
which hinders GNNs from being directly applied to real-world data. Therefore, applying GNNs to
graphs with missing features has received great attention as a task termed graph learning task with
missing features ( s ; , ).

Recently, the diffusion-based imputation approaches ( ; , ), which
impute missing features by diffusing observed features along edges ina channel wise manner, have
shown promising results. The imputed features with the features diffused from observed features
can provide sufficient information for the downstream graph learning tasks ( , ). The
diffusion-based methods demonstrate the following two advantages against conventional neural-
network-based imputation methods ( , ; , ): 1) superior performance
and 2) fast imputation without learnable parameters.

In this paper, we unveil an inherent limitation of the diffusion-based methods: when all observed
features within a channel have almost the same values, the diffusion process fills all missing features
in the channel with nearly the same values. We refer to such channels having nearly the same values
across the nodes (i.e., low-variance) as low-variance channels. As illustrated in Flgure 1(a), we
observe that in outputs of state-of-the-art diffusion-based methods (

), the majority of channels tend to be low-variance channels. We further prov1de theoretlcal
proof that diffusion-based methods produce a zero-variance channel when observed features within
a channel have the same values. Having almost identical values across the nodes, the low-variance
channels contribute minimally to graph learning tasks that demand distinct representations of nodes
or node pairs as shown in Figure 1(b).

To address the aforementioned low-variance channel issue, we propose a novel diffusion-based im-
putation scheme called Feature Imputation with Synthetic Features (FISF). Specifically, FISF con-
sists of two diffusion stages. First, to identify low-variance channels, FISF imputes missing features
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Figure 1: (a) Distributions of variance for each feature channel. The distributions for imputation
methods are calculated from imputed matrices for the CiteSeer dataset with 99.5% missing features.
While existing diffusion-based imputation methods (FP and PCFI) produce outputs with many low-
variance channels (outlined in red), our FISF (Feature Imputation with Synthetic Feature) effectively
addresses the problem of low-variance channels. (b) Accuracy (%) on semi-supervised node classi-
fication tasks while progressively excluding channels from the original feature matrix. The accuracy
persists despite an increasing removal proportion when channels are excluded in ascending order of
variance, starting from the lowest (The blue line). However, removing channels starting from the
highest variance leads to significant performance degradation.

using ex1st1ng diffusion-based methods ( ; , ). In each identified
low-variance channel, FISF removes all the imputed features and generates a synthetic feature by
injecting random noise into a randomly chosen node. This random noise injection to low-variance
channels makes these channels deviate from low variances, which increases the distinctiveness of
the final imputed features. Lastly, FISF diffuses both observed and synthetic features, making the
final imputed features. Despite its simplicity, we verify that FISF provides surprisingly effective im-
puted features as shown in Figure 1(a), allowing GNN models to achieve remarkable performance
gains in downstream graph learning tasks.

Our key contributions are summarized as follows: 1) We discover a phenomenon wherein diffusion-
based imputation methods result in low-variance channels in their outputs, supported by both em-
pirical and theoretical evidence. 2) We propose FISF, a novel diffusion-based imputation method
that tackles the issue of low-variance channels by leveraging synthetic features. To the best of our
knowledge, this work is the first attempt to use synthetic features for imputation. 3) Through exten-
sive experiments, we demonstrate that our FISF effectively removes low-variance channels in output
matrices, contributing to significant performance gains on both semi-supervised node classification
and link prediction tasks under various missing feature settings.

2 RELATED WORK

2.1 LEARNING ON GRAPHS WITH MISSING FEATURES

Dealing with missing data has long been an active research field in machine learning ( , ;
, ). Methods for handling missing data in graph-structured data can be cate-
gorized into three groups.

(1) GNN Architecture. Several methods propose new GNN architectures to perform learning tasks on
graphs with missing features. GCN for missing features (GCNMF) ( , ) combines a
GCN ( , ) layer with a Gaussian mixture model that represents missing features.

( ) develops a message passing layer that aggregates only known features. Graph
feature neural network (GRAFENNE) ( , ) consists of three-phase message-passing
layers to address heterogeneous and dynamic features. However, these methods, with their specially
designed layers, cannot take advantage of the off-the-shelf GNN models.

(ii) Reconstruction. Reconstruction-based methods train models by minimizing the reconstruc-
tion error between observed features and their reconstructed values. Recurrent Multi-Graph CNN

(RMGCNN) leverages recurrent neural networks to complete a feature matrix ( ).
Structure-attribute-transformer (SAT) ( , ) models the joint distribution of graph struc-
tures and node features. Max-entropy graph autoencoder (MEGAE) ( , ) maximizes

the entropy of latent features in autoencoders to alleviate the spectral concentration problem. While
these methods aim to accurately reconstruct missing features, achieving accurate reconstructed fea-
tures does not necessarily guarantee high performance in downstream tasks ( , ).
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(iii) Diffusion. In this paper, diffusion-based imputation refers to an approach that imputes missing
features by diffusing known features without trainable parameters. Diffusion-based imputation is
based on feature homophily, the tendency that features of connected nodes are often similar on a
graph. While preserving observed features, missing features are updated by repeatably aggregating

features from neighboring nodes. Feature propagation (FP) ( , ) is pioneering work,
which iteratively propagates known features in a channel-wise manner and fills in missing features.
Pseudo-confidence-based feature imputation (PCFI) ( , ) calculates pseudo-confidence

of each feature value and leverages pseudo-confidence as the importance of feature values during
diffusion. These diffusion-based techniques have been favored due to their effectiveness at high
rates of missing. However, these techniques tend to make missing features very similar to each other
when a few observed features are highly similar, resulting in minimal feature differences between
nodes. Our approach encourages distinct features between nodes, which can further enhance the
performance of downstream GNNss in graph learning tasks.

2.2 DISTANCE ENCODING

To spread synthetic features widely, we assign different importance to each feature based on distance
encoding. Distance encoding is a technique that utilizes graph-distance measures (e.g., shortest path
distance, generalized PageRank scores ( , )) measured between a node and a desig-
nated node set. ( ) proposes an aggregation scheme using the computed distance of
a given node from sampled anchor node sets. ( ) and ( ) leverage
encoded distance as extra node features for link prediction. Position-aware graph neural network
(P-GNN) ( , ) unifies several techniques including distance encoding into a labeling
trick.

3 NOTATION AND PROBLEM DEFINITION

Notation. An undirected connected graph can be represented as G = (V, £, A) where V =
{v1,...,un} is the set of N nodes, & is the edge set, and A € {0, 1}*¥ is an adjacency ma-
trix. X = [z;,4] € RV* denotes a node feature matrix where F is the number of feature channels
and z; o represents the a-th channel feature value of v;.

Let d(v;, vj|A) be the shortest path distance between the i-th node and the j-th node on G with A.
Then, we define a function dge(-) as dge¢(vi|V', A) = min, ey d(vi, vj|A) where V' C V. That
is, we use dget(v;|V', A) to denote the shortest path distance between the i-th node and its nearest
node in a node set V' C V on G with A.

Partially known (observed) features mean that X has missing elements. V,ia) denotes a set of nodes

whose a-th channel feature values are known. V&a) denotes a set of nodes whose a-th channel feature
values are unknown (missing) (i.e., Vﬁa) =Y\ V,ia)). We refer to V]ia) and V&a) as source nodes and
missing nodes, respectively. By rearranging the whole nodes based on whether the feature value is
known or not for each channel, the whole features and the adjacency matrix for the a-th channel can

be written as
(a) (a) (a)
(@) — | X Al — [Akk Aku‘| (1)
X = =
(a) | (a) (a)| >
[ ] Ay A
where x(@), x,(ca), and x§f‘> are column vectors for the a-th channel. A(®) and A represent the same

graph structure although the node order of A (%) is rearranged from A. We use B. . to denote the
z-th column of a matrix B.

Problem definition. We tackle a problem of graph learning tasks containing missing features, where
our goal is to minimize performance degradation in downstream learning tasks despite high rates of
missing features. Formally, graph learning tasks containing missing features can be expressed as

Y = f({x" )0 A) @)
where Y denotes a prediction for desired output of a given task. Here, f is a function to find in the

problem. We decompose f into two steps as f = gg o h. Here, h is a feature imputation scheme and
gp 1s an off-the-shelf GNN model using a full feature matrix obtained via h.

3
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Figure 2: A brief overview of feature imputation with synthetic features (FISF). First, pre-diffusion
constructs a full feature matrix X by imputing missing features via channel-wise diffusion. Then,
for each low-variance channel in X, we inject one synthetic feature into a randomly chosen node
from nodes with missing features. Finally, diffusion with synthetic features produces X which is a
final output of FISF. X is fed to a downstream GNN which performs a given graph learning task.

4 PROPOSED METHOD

4.1 OVERVIEW OF FISF

We present an imputation scheme called feature imputation with synthetic features (FISF), which
minimizes performance degradation in graph learning tasks despite high rates of missing features.
Figure 2 shows a brief overview of FISF which consists of two diffusion stages: pre-diffusion and
diffusion with synthetic features. Using a pre-imputed feature matrix obtained via pre-diffusion (see
Section 4.2), we calculate the variance of features for each channel. We then create a synthetic
feature in each low-variance channel (see Section 4.3). The second diffusion stage updates the
features in low-variance channels by spreading the synthetic features widely (see Section 4.4). The
stage produces a final output feature matrix of FISF, which is fed to gy to perform downstream tasks.

4.2 PRE-DIFFUSION

We adopt channel-wise inter-node diffusion in PCFI ( , ) as pre-diffusion. It is note-
worthy that FP ( , ) can be also used for pre-diffusion (See Appendix C.4). For
notational convenience, we temporarily rearrange all nodes in a channel-wise manner as described

in Section 3. Specifically, for the a-th channel, we reorder the nodes in the order of V,ga) and V,(fl),
i.e., x(%) and A(%) are made by reordering A. After the diffusion is completed, we restore the node
ordering to the original one.

The channel-wise inter-node diffusion calculates and utilizes pseudo-confidence (PC) ( ,
), which acts as the importance of each feature value during the diffusion. We use S; , to denote
the shortest path distance between the i-th node and its nearest source node for the a-th channel, i.e.,

Sia = dset(viwlga), A9, We let X be a pre-imputed feature matrix via pre-diffusion. Then,
following ( ), PC (&;,4) of ;4 is assigned by & , = aSia(0 < a < 1) where
is a hyperparameter. Thereafter, the transition matrix for the pre-diffusion is built by a weighted
adjacency matrix W(®) € RV*N given by

w® — {fj,a/&,a if AZ(.Z.) -1

i 0 it A — 0 ®)
1,7 )

where Wga]) takes a role of message passing strength from the j-th node to the ¢-th node in the pre-

diffusion. For a row-stochastic transition matrix, we normalize W(®) to W(a) = (D)~ 1w
where D() is a diagonal matrix with diagonal entries Dl(-i-) =3 ; Wi ;. Then, to preserve the
known features x,(ca) during the pre-diffusion, we replace the first |V,£a)| rows in W with one-hot
vectors indicating V,ga). As a result of the replacement, we attain the pre-diffusion transition matrix
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W@ expressed by

~ Ik Ogu
W(a) = |:(a) (a):| , (4)
Wuk’ Wuu
where I, € RV XVl s an identity matrix and Oy, € RIVAVIXIVE s a zero matrix.
The pre-diffusion is implemented by iterative propagation steps using W (@) as
) =W@x@D @ —1), t=1,- K;
(a) (5)
g(a)(o) = {Xk ] ,
0,

where %(®) (t) is an imputed feature vector after ¢ propagation steps and 0, is a zero vector with

a length of |V,(f) |. After K propagation steps, we obtain x(*)(K). As K — oo, the recursion
converges and %X(*) (K') reaches a steady state (see the proof in Appendix A)). Based on the proof
that initial values for XSL“) do not affect the steady state, we initialize XSL“) with zeros (i.e., 0,). We

use x(@) (K) with large enough K to approximate the steady state.

We rearrange {%(®)(K)}¥_| in the original order to reorder the nodes considering synthetic features
in the second diffusion stage. Then, by stacking the originally ordered vectors in {X(%) (K)}F_,
along the channels, we obtain a pre-imputed feature matrix X which is an output of the pre-diffusion.

4.3 SYNTHETIC FEATURE GENERATION

When all given known features in the a-th channel (i.e., elements in x;a)) have the same value c,
tlim %(@) (t) becomes a vector where all elements are ¢ (see the proof in Appendix B)). We refer
— 00

to a channel with the same or nearly the same feature values as a low-variance channel. The low-
variance channel does not contribute to distinguishing nodes. In semi-supervised node classification,
distinctive node representations are crucial to classify nodes into multiple classes. In the case of link
prediction, the same representation across nodes also makes the representations of node pairs the
same. Therefore, we aim to make imputed features in that channel become distinctive across nodes
by injecting a synthetic feature that acts as a known feature.

We first identify low-variance channels to inject synthetic features. We calculate the variance of X ,
(i.e., pre-imputed feature values in the a-th channel) for all @ € {1,..., F'}. Then r% of channels
are selected in order of lowest to highest variance, where 7 is a hyperparameter between 0 and 100.
F; denotes the set of low-variance channel indices. For each channel in [F;, we randomly choose

one node with a missing feature to inject a synthetic feature. For a selected node vgb) in a channel

b € F;, we inject a synthetic feature with randomly sampled value xgb) from a uniform distribution
on [0, 1]. Consequently, |F;| number of synthetic feature values are injected and {(vgb), xgb))}be]yl

is combined with the result of pre-diffusion (X) for the second diffusion stage called diffusion with
synthetic features.

4.4 DIFFUSION WITH SYNTHETIC FEATURES

Diffusion with synthetic features (DSF) produces X = [#;,] € RV*F which is a final output

of FISE. DSF receives X from the pre-diffusion and {(vgb), xgb))}bepl. Then DSF updates X by
replacing features in the low-variance channels (i.e., X. ; for all b € I;). The purpose of DSF is to
increase the variance of low-variance channels by using synthetic features.

DSF treats a synthetic feature ng) as known features x;b) during diffusion. Then the updated known

node set becomes V,Eli) = V,ib) U {vgb)}. Thus the updated unknown node set becomes iji) =

v \ {vgb) }. That s, v is moved from V¥ to V,gl;). Similar to pre-diffusion, we first temporarily

reorder all the nodes in the order of V,gli) and iji). By reordering, features and the adjacency matrix

in the b-th channel in F; can be expressed as

(b) (b) (b)

() _ | Xp~ AD — Ayl Apas

X 1R (b) )" | - (6)
Xy A Ay



Under review as a conference paper at ICLR 2025

(b (®)

where x;, ) and x are column vectors and xgl) contains xgb). The length of X(b) and XS’*) are

|ka)| +1and \ u \ — 1, respectively.

The preparations above are the same as the pre-diffusion, except for assuming xgb) as a known

feature. However, simply diffusing features of Vkli as pre-diffusion results in xgb) influencing only

its surroundings. This is because not only X ) but also known features with nearly the same values
diffuse. For example, if a given graph has 10,000 nodes and 90% features are missing in the b-
th channel, there exist 1,000 known features with nearly the same feature values in the channel.
Known features spread to their surrounding features through diffusion and make the surrounding
features be similar to their own value. Thus, it is hard for xgb) to exert a wide influence across nodes.
This issue hinders the channel from deviating from a low variance since most of the features become

nearly the same value.

To overcome the issue, we design DSF to give more influence to synthetic features than that of

known features. For the wide diffusion of xgb), we leverage the shortest path distance from v( ),

We measure the shortest path distance from vg ) to all nodes in V. Formally, we use S?, to denote

d(v;, v |A®)) and measure Sg, forall v; € V.
Then the PC &7, of #; , is computed based on the shortest path distance from only the synthetic

node v, not from the whole known nodes. That is, §; o is defined by &7, = BSia(0 < B <1)

. . b .
where (3 is a hyperparameter. As v; is positioned closer to vg ), ;o increases. We also use usual

PC (& ) based on distances from the whole known nodes V,g* containing vg )

dwang, A®) and obtain PC calculated by £}, = a7+(0 < o < 1). While both &, and &7,
play a role as the importance of each feature value, &, ; is determined by the distance from only
synthetic node v‘gb) in contrast to £, considering the distances from whole known nodesV@. Using

the PCs, we define a weighted adjacency matrix M(?) € RV*N py

We calculate ST, =

b Sib A
ifA =1
M) =S &, &, g @)

7
0 if A" = 0.

M(-b? is the strength of a message passing from the j-th node to the ¢-th node in the DSF.

The term § b 23 ', strengthens a message passing from a high-PC feature to a low-PC feature as in

the pre-diffusion (see Eq. 3). However, different from the pre-diffusion, the synthetic feature of v( )

is considered as one of the nodes in Vk ®) Thus the influence of the synthetic feature is very weak
compared to that of the many observed similar features. To widely spread the synthetic feature, we
introduce the term 7, /& ,» which strengthens a message passing from a feature of a node near vgb)

to a feature of a node far from vgb). This term makes the synthetic feature spread widely compared

to observed features. The design goals of the two terms naturally combine through multiplication
in Eq. 7. & b is 1 for both v € V(b) and xg ) However, gsb is 1 for xgb) while it is at most (3 for

v E V,g ). Therefore, in the second stage diffusion, the synthetic feature has a greater influence than
observed features.

To construct a transition matrix, we prepare a row-stochastic matrix by normalizing M(®) to M(b) =
(D'®)=1W®) where D'(®) is a diagonal matrix with D/(b) >_; M; ;. Then, we replace the first

% *)| rows in M with one-hot vectors representing V *) to preserve xg’*) including xgb). By the

replacement, we obtain a DSF transition matrix M® as follows:

— Ik*k* Ok*u*
M® — | " o 8
Mib*)k* N ®)

u*ru*

b b
VR Ix v V211V is a zero matrix.

where I+ € Rl w | is an identity matrix and Qpx,» € Rl
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Figure 3: Accuracy (%) on semi-supervised node classification tasks under structural-missing and
uniform-missing settings with r,, € {0.3,0.5,0.9,0.995,0.999}. Figures highlighted in red indicate
performance improvements over the most competitive baseline across each setting. Cases where
accuracy cannot be measured due to out-of-memory errors are not included.

We define diffusion with synthetic features (DSF) by

) =MOxO (¢t —1), t=1,--  K;
(b)

00 =[]

(€))

where x(%) (t) denotes an imputed feature vector after ¢ propagation steps and 0,,~ denotes a zero

vector of the same length as |V1(fi) .As K — oo, % (K) converges (see the proof in Appendix A).

With sufficiently large K, we approximate the steady state tlim x®)(t) to ) (K). We perform
—00

DSF in the b-th channel for all b € F; and obtain {%®) (K)}yer,. Since vectors in {%®) (K)}per,
have different ordering from the original one, we restore ordering of all the vectors according to the

original order. To construct X e RV*F we prepare X € RV*F from the pre-diffusion and replace
X., for all b € F; with the corresponding vector in {X®)(K)},cp,. The feature matrix with the
replaced columns is X, a final output of FISE. X is fed to a GNN to perform a given task.

5 EXPERIMENTS

We perform comparative evaluation of FISF against state-of-the-art methods on two main graph
learning tasks: semi-supervised node classification and link prediction.
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Table 1: Performance on semi-supervised node classification tasks at r,,, = 0.995, measured by
accuracy (%). Standard deviation errors are given. OOM denotes an out-of-memory error.

Structural missing

Method CORA CITESEER PUBMED PHOTO COMPUTERS  OGBN-ARXIV
Full features 81.87£1.59 69.32 + 0.57 77.45 £ 2.17 91.69 £0.78 86.19 £0.78 72.30 £0.10
LP 74.54 £1.79 65.42 + 1.80 71.67 £4.94 82.27 £2.72 76.01 £1.84 67.56 = 0.00
GCNMF 31.33 £2.73 24.84 +2.44 40.48 £+ 0.53 25.60 £ 0.17 37.21 £0.08 9.00 + 6.27
GRAFENNE  20.2 +10.98 17.58 +2.94 33.12+2.43 21.10+17.39 16.31 +11.84 13.66 + 12.23
MEGAE 38.78 £4.76 32.94 +4.08 OOM 68.90 £+ 9.46 42.37 +5.03 OOM

FP 71.86 £ 2.82 58.61 £1.74 71.96 + 3.06 85.42 + 3.16 76.62 £1.94 68.03 £ 0.52
PCFI 74.62 £1.78 66.06 + 3.26 74.47 £+ 2.54 87.49 £ 1.50 79.02 £1.22 68.78 £ 0.25
FISF 79.29+1.72 69.68+247 76.90+1.50 8822+0.79 7940+1.11 69.92 +£0.17

Uniform missing

Method CORA CITESEER PUBMED PHOTO COMPUTERS  OGBN-ARXIV
Full features 81.87+1.59  69.32+0.57 77.45+217  91.69+0.78  86.19 £0.78 72.30 £0.10
LP 7454 +1.79  65.42+1.80 71.67+4.94 8227 +2.72  76.01 +£1.84 67.56 4+ 0.00
GCNMF 34.01 £8.08 29.71+£5.12  40.08 £0.45 25.59+0.16  37.20 £ 0.08 5.86 £+ 0.00
GRAFENNE  20.55 4+ 13.65 19.32+7.42  34.75+4.26 29.96 +£20.92 21.74+£15.94 1552+ 11.70
MEGAE 46.13 +£9.06  34.32 +7.65 OOM 55.31 £10.37  41.02 £+ 4.05 OOM

FP 7758 £1.98  68.55+£233 72.62+4.18 87.50+1.49  80.75+0.70 68.82 + 0.07
PCFI 78.82+£1.48 68.94+195 76.28+252 83.09+1.41 81.80+0.71 69.26 + 0.17
FISF 79.09+1.73 69.52+1.81 77.53+1.28 88.32+1.37 82.12+0.51 69.81+0.16

5.1 DATASETS AND BASELINES

Datasets. We conduct experiments on graph datasets from two different domains: citation networks

(Cora ( , ), CiteSeer ( , ), PubMed ( , ), and OGBN-
Arxiv ( s )) and recommendation networks (Photo and Computers) ( , )
from Amazon. Detailed information on the datasets is provided in Appendix E.1I.

Baselines. We compare FISF with LP ( , ) and five state-of-the-art meth-

ods for graph learning tasks with missing features. (1) LP that does not use any feature propagates
partially given labels for semi-supervised node classification. (2) GCNMF ( ,
and (3) GRAFENNE ( , ) are GNN architecture-based methods. (4) MEGAE (

s ) is a reconstruction-based method. (5) FP ( s ) and (6) PCFI ( s

) is diffusion-based methods. Since imputation methods (including MEGAE, FP, PCFI, and
FISF) combine with GNNs to perform downstream tasks, we commonly utilize vanilla GCN (

, ) models for semi-supervised node classification. In link prediction, we commonly

utilize graph auto-encoder (GAE) models for the imputation methods.

5.2 EXPERIMENTAL SETUP

We follow the missing setting in ( ). To evaluate models on graphs containing missing
features, we remove a fixed rate (e.g., 90%) of features in the datasets. A missing rate denoted as 7,
represents the rate of feature removal. We fill the positions where features are removed with NaN
values. We remove features in the following two ways: structural missing and uniform missing.
First, in the case of structural missing, we randomly select nodes at a ratio of r,, from entire nodes
and remove all the features of the selected nodes. Second, uniform missing removes randomly
selected feature values with a ratio of 7, from a feature matrix X. We report average performance
(e.g., accuracy, ROC AUC, and AP) after five runs of experiments under a fixed setting. Therefore,
for each missing way, we randomly generate five different binary masks with the same size of X for
each dataset. These masks indicate the locations in X where features are missing.

For semi-supervised node classification tasks, we randomly create five different train-
ing/validation/test node splits for all the datasets except for OGBN-Arxiv which has a fixed split
according to the specific criteria. For link prediction tasks, we also randomly create five different
training/validation/test edge splits of each dataset. OGBN-Arxiv is excluded from the link predic-
tion tasks due to out-of-memory errors. Grid search is employed to tune «, 3, and +, the three
hyperparameters of FISE. « and § are searched within {0.1,0.3,0.5,0.7,0.9}. ~ is chosen from
{10, 30, 50, 70,90}. For all the methods including FISF, we tune hyperparameters based on valida-
tion sets. We utilize the publicly released code for all the baselines. Further implementation details
including dataset splits, training details, and baseline implementations are provided in Appendix E.2.
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Table 2: Performance on link prediction tasks at r,,, = 0.995, measured by ROC AUC score (%).
Standard deviation errors are given. The best result is highlighted in bold and underlined, while the
second-best result is highlighted only in bold. OOM denotes an out-of-memory error.

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS
Full features 92.20 £ 0.96 90.55 + 1.36 96.41 + 0.25 95.70 £ 0.32 93.71 £ 0.65
GCNMF 67.44 £ 0.45 68.34+1.79 87.20+0.28 81.00+0.25 82.924+0.19
GRAFENNE  53.79 +£5.26  62.96 £13.82 60.11 +6.10 66.44 +1.74 67.23 £ 1.71
MEGAE 67.13 £0.75 69.34 + 2.46 OOM 86.53 + 1.97 84.80 + 1.77
Fp 83.85 +1.32 79.83 £2.18 78.54 +£1.13 94.25 +0.58 91.27+0.71
PCFI 86.75 + 0.84 79.38 £1.81 82.49+0.82 96.65+0.25 94.54 +0.37
FISF 87.26+1.44 84.12+1.17 83.19+0.78 95.86 +0.21 94.70 +£0.30

FISF+NIP 87.16 -1.46 84.20+1.70 83.28+0.42 96.35+0.18 95.29+0.32

Uniform missing

Method CORA CITESEER PUBMED PHOTO COMPUTERS
Full features 9220+ 0.96  90.55+1.36  96.41+0.25 95.70+0.32  93.71 4+ 0.65
GCNMF 63.46 £1.04  63.50+3.40 81.73+3.13 80.98+0.17 82.95+0.11
GRAFENNE  68.49+17.00 61.38+13.53 65.74+11.32 68.53+6.57  70.16 +4.12
MEGAE 65.86 +£1.22  62.21 +=3.18 OOM 84.25+£1.35  84.95+2.20
FpP 86.79+1.36  81.55+230 76.87+2.89 9596+0.17 94.10+0.33
PCFI 87.35+1.28 82.33+1.83 84.68+0.75 97.05+0.16 95.62+0.24
FISF 87.44+0.80 83.45+2.53 8533+047 96.64+0.18 95.13+£0.35

FISF+NIP 87.70+0.77 82.53+1.94 8532+048 96.67+0.21 96.09+0.24

5.3 SEMI-SUPERVISED NODE CLASSIFICATION RESULTS

To investigate how 7, affects semi-supervised node classification accuracy, we conduct experi-
ments by increasing 7, while keeping all other settings fixed. Figure 3 demonstrates accuracy un-
der structural-missing and uniform-missing settings with varying 7,,,. The accuracy of LP remains
consistent since LP does not utilize features. For all methods except for LP, the accuracy tends to
decrease as r,, increases. While diffusion-based imputation methods outperform the other meth-
ods, FP and PCFI suffer performance degradation as r,, increases. However, FISF shows robust
performance despite high r,,, regardless of the datasets. Note that FISF using only 0.1% of features
(i.e., 7, = 0.999) performs similarly to or even outperforms FISF with full features on Cora, Cite-
Seer, and PubMed. Furthermore, FISF consistently demonstrates superiority across various missing
rates (r,,), including low r,,, regardless of the missing patterns. The performance gain obtained
with FISF diminishes as the missing rate decreases. This is natural since a smaller r,,, means fewer
missing features to impute, making it difficult to achieve a significant improvement solely through
the superiority of the imputation method. Nevertheless, FISF consistently shows its effectiveness at
even low 7,,.

We then conduct experiments to investigate how semi-supervised node classification accuracy varies
depending on the missing ways (structural and uniform missing) at the same r,, = 0.995. Table |
summarizes the classification accuracy of FISF and the other methods. While most nodes have some
observed features in uniform-missing settings, (1 — ) of nodes do not have observed features at all
in structural-missing settings. Therefore, the performance of methods tends to be better in uniform-
missing settings than in structural-missing settings. For both missing ways, FISF outperforms the
state-of-the-art methods across all the datasets.

5.4 LINK PREDICTION RESULTS

Table 2 summarizes the ROC AUC score on link prediction tasks at r,,, = 0.995. (The AP com-
parison results are in Appendix F.1.) NIP denotes node-wise inter-channel propagation included in
PCFI ( s ), which refines an output matrix from channel-wise diffusion. Since NIP
is effective in link prediction tasks, we demonstrate the ROC AUC score of FISF and FISF+NIP
(FISF followed by NIP). FISF and FISF+NIP achieve state-of-the-art performance in three and
four settings, respectively, out of 10 settings. Even in the remaining three settings, FISF+NIP still
demonstrates the second-best scores which are comparable with the best scores. That is, FISF and
FISF+NIP achieve strong performance across all five datasets regardless of missing ways. As high-
lighted scores in Table 2 shows, FISF demonstrates its effectiveness on link prediction tasks with
missing features.
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Table 3: Classification results measured by Micro-F1 score (%). OOM denotes an out-of-memory
error.

Approach Method Echocardiogram ABIDE Duke Breast Cancer Diabetes
PP (rm = 2.59%)  (rm =52.52%)  (rm =11.94%)  (rm = 4.03%)
GAIN 68.67 £ 4.99 89.30 +1.81 76.31 £1.32 53.58 £0.59
Tubular Imputation MIWAE 69.43 £ 6.25 64.33 £ 0.93 OOM OOM
GRAPE 75.00 £ 0.81 91.61 £+ 0.89 OOM OOM
IGRM 69.33 £8.21 66.38 £ 1.85 OOM OOM
GCNMF 86.00 £+ 2.49 75.05 £2.94 74.86 £ 1.36 52.17 £0.85
Graph Imputation FP 85.67 £ 4.67 90.79 £+ 1.44 75.38 £2.82 53.03 £ 0.85
PCFI 86.33 £2.87 90.56 +1.21 75.85 £2.11 52.37 £1.36
FISF 86.67 + 2.36 90.94 £+ 1.45 76.58 £ 0.62 53.75 £1.01

5.5 APPLICABILITY TO MEDICAL TABULAR DATA

To demonstrate the wide applicability of FISF, we conduct experiments in medical classification us-
ing medical tabular datasets, which initially contain missing features. We utilize four medical tabular
datasets: Echocardiogram ( s ), ABIDE ( s ), Duke Breast
Cancer ( s ), and Diabetes ( s ). In addition to graph imputation
methods, since we address imputation on tabular data, we further compare FISF with four imputa-
tion methods developed for tabular datasets, including GAIN ( s ), MIWAE (

, ), GRAPE ( , ), and IGRM ( , ). For graph imputa-
tion methods, we select the three most competitive baselines: GCNMF, FP, and PCFI. We simply
construct k-nearest neighbor (kNN) graphs to apply graph imputation methods including our FISF
to tabular datasets. The goal of these experiments is to classify each patients, i.e., disease diagnosis.

Table 3 presents the results of medical classification on tabular datasets. As shown in the table,
FISF consistently exhibits the best classification performance among graph data imputation meth-
ods. Notably, FISF, developed for graph-structure data, also surpasses tabular imputation methods
on the Echocardiogram, Duke Breast Cancer, and Diabetes datasets, which do not have predefined
connectivity among samples. This indicates the potential for extending graph data imputation to the
tabular domain. Furthermore, while MIWAE, GRAPE, and IGRM, which are state-of-the-art tabular
imputation methods, suffer from scalability issues, graph imputation methods, including our FISF,
operate well across all datasets. Throughout these experiments, we confirm that FISF is effective
even in medical classification on tabular datasets initially containing missing values, which are not
graph-structured data.

We provide in-depth analyses in Appendix C, including an ablation study, the ‘missing not at ran-
dom’ setting, addressing both incomplete features and structure, time complexity, scalability, ev-
idence of little contribution of low-variance channels in downstream tasks, hyperparameter sensi-
tivity, smoothness analysis, and non-uniform-distribution-sampled synthetic features. Additionally,
we provide comprehensive discussions, including the justification for synthetic feature injection, in
Appendix D.

6 CONCLUSION

In this paper, we identify the low variance problem, which acts as a bottleneck in diffusion-based
imputation methods. Based on this important discovery, we propose a novel scheme called Feature
Imputation with Synthetic Features (FISF) for graph feature imputation. FISF effectively addresses
the problem of low-variance channels by injecting synthetic features, leading to significant perfor-
mance improvements in both semi-supervised node classification and link prediction tasks. We have
verified that FISF consistently demonstrates superiority across various missing rates 7., including
low r,,. We strongly believe that our work will be widely applied to diverse real-world scenarios
that handles graphs with missing features, as our synthetic feature scheme is simple to use and of-
fers significant performance gains. Given the considerable research interest in addressing extremely
high rates of missing data across various fields, we anticipate that our FISF will serve as an effective
solution for datasets with substantial missingness.

10
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A PROOF OF CONVERGENCE OF DIFFUSION STAGES

Our FISF consists of two diffusion stages: pre-diffusion and DSF. Both stages utilize row stochastic
transition matrices for diffusion. We prove the convergence of the two diffusion stages as follows.

Proposition 1. The pre-diffusion transition matrix for the a-th channel is defined by

< (a Ik Oku
W = {Wm) W(a)]
uk uu

where W@ is row-stochastic. Using W@, the pre-diffusion in the a-th channel is defined by
) =W@zx@O (¢ -1), t=1,- K;

Then, lim %*)(K) converges.
K—o0

The proof of Propostion 1 refers to ( ). After we establish the convergence of pre-
diffusion, we demonstrate that this proof extends to cover the convergence of DSF. To start, we
introduce two lemmas.

Lemma 1. W(a) is the row-stochastic matrix calculated by W(a) (D)W () where D) s
a diagonal matrix that has diagonal entities D =>; Wi, W is the |xq(f)\ X \5(1(;1 )| bottom-

uu

right submatrix of W and let p(+) denote spectral radius. Then, p(W( )) <1

uu

Proof. Consider Wi u)O € RV*N_ where the bottom right submatrix is denoted as Wfﬁj and all
other elements are zero. That is,
) [Okk O }

Ouk: W(a)

uuw

W

uul —

where 04, € {0} X571 0y, € [0YE7 X% and 0, € {0JXE X151 Given that W'
o (a)

wno < W(a) element-wise

represents the welghted adjacency matrix of the connected graph g %%

and W(a)) # w . Furthermore, considering that W( wt+ W @) constitutes the weighted ad-

uu
jacency matrix of a strongly connected graph, we can conclude that wa)o + W( 9 | is irreducible

based on Theorem 2.2.7 in ( ). Consequently, applying Corollary 2.1.5 in

( ), p(Wiu)O) < p(W(a)). Since the spectral radius of a stochastic matrix
is one according to Theorem 2. 5 3in ( ), we have p(W(a)) = 1. More-
over, since both wa)o and W, )

(W( ). Ultimately, this leads to the conclusion that p(W( )) = p(W( “)

uu uu uu0

share the same non-zero eigenvalues, it follows that p(wa)O)

) <pW)=1. O
(a) .

uuw

Lemma 2. I, — W, is invertible where L, is the |x \ X |xu | identity matrix.

Proof. Since 1 is not an eigenvalue of W( @) by Lemma I, O is not an eigenvlaue of I,,,, — W( @)

Thus I, — W(a)

w18 invertible. O

We now prove Propostion 1 as follows.

Proof. Unfolding the recurrence relation gives us:
s X0 [Tk Ok ] [%9@—1)] 1@ —1)
0= 10w | T W2 w9 ioe -1 | T [wege () 4 (@
u uk uk Xk (t - 1) + Wuuxu (t - 1)
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Since X\ (£) = %\ (¢ — 1) in the first [%\")| rows, it follows that X\ (K) = ... = %\*). That is,

%\ (K) retains the values of x\*). Therefore, dim %\ (K) converges to x\*).

Now, we focus solely on the convergence of Khm %\ (K). When we unroll the recursion for the
— 00

last |§cu | rows,
2 (K) = W x(® + W (@ (K — 1)
W W+ WO 2)

N :

= (3 (W)W + (W) <50 o)

t

Il
<

By Lemma I, lim (WL’L))K = 0. Therefore, lim (WEZ))K %{(0) = 0, regardless of the initial
—00
state for X\ )( ) (we replace % (@) (0) with a zero column vector for simplicity.) Hence, our focus

K-1 70\ e\vor (@) (a)
shifts to Klgnoo( eo (Woa ) HW ix,".

Given that Lemma 1 establishes p(WEZL)) < 1, and Lemma 2 affirms the invertibility of (I,
o (@) —1 . .
W,...)~*, the geometric series converges as follows

K-1

(a) o (@)t (a) (a) @\ -1g7(@) (a)
In conclusion, the recursion in the pre-diffusion converges. O

In the case of DSF, the DSF transition matrix M® in Eq. 8 is also row stochastic. The distinction

between W@ and M®) lies solely in the number of channels where diffusion is performed and the
sizes of each sub-matrix. Therefore, the convergence of the DSF can also be established through the
proof of Proposition 1.

B PROOF OF THE PROPOSITION IN SEC 4.3

We refer to the proposition in Sec. 4.3 as Proposition 2.

Proposition 2. In pre-diffusion (channel-wise inter-node diffusion ( , )), when all
given known features in the a-th channel (i.e., elements in x,(:) ) have the same value c, tlim (@) (1)
—00

becomes a vector where entire elements are equal to c.

Proof. In accordance with the given assumption, entire elements in x,(ca) have the value of c. Here,
we can initialize %()(0) with the same values as c. According to the proof of Proposition 1,
Jim %K) = (L - W IW D and 2% (K) = x\). This means that initializing
%(@)(0) with the values of ¢ does not affect the final output, Khm %(@)(K). Formally, pre-diffusion

—00

of which steady state is the same as that of Eq. 5 can be expressed as follows:

@) (t) = W(a)i(a)(t —1), t=1,---,K;

< - [2]

Cu

where ¢, and c,, are column vectors with lengths of |V,ia)\ and |V1(f) |, respectively, filled only with
the value c.
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Since W (@) is row stochastic, ZK ! W(a-) = 1foralli € {1,..., N}. Therefore, in Eq. 10, the i-
th element in X(®) (1) is calculated as ZK 5y W a) c=c- ZK 'w W a) =cforalli e {1,...,N}.
That is, %(*)(1) is filled only with the value c, Wthh is the same as X(“)(O). Thus, even if this

. - . c . e c
recursion repeats, X(*)(t) remains the same as { k}, which results in lim %(9)(¢) = | 7% | where
Cy t—o00 Cy

entire elements are equal to c.

C ADDITIONAL EXPERIMENTS
C.1 ABLATION STUDY

Table 4: Ablation study of FISF. SS node classification denotes semi-supervised node classification.
# denotes the number of synthetic features injected into a low-variance channel. * denotes the
optimal hyperparameter at the setting.

Task | SS node classification | Link prediction
Dataset | CORA | CITESEER
#18] v | ACC | AUC AP
111 0 74.62 £1.78 79.38 £ 1.81 82.98 £ 0.86
111100 78.50 £1.91 83.63 £ 1.69 85.42 +1.79
111 * 78.52+£1.94 83.46 £ 1.84 85.32 £1.59
1] * | 100 78.78 £ 1.51 58.67 £ 13.44 60.27 £ 14.40
2| * * 78.88 £1.91 82.11 £2.43 83.61 £ 2.50
1| * * 79.29 £1.72 84.12+1.17 85.85+1.38

We conduct an ablation study to investigate the effectiveness of the elements in FISF. We per-
form both semi-supervised node classification and link prediction. For ablation study on semi-
supervised node classification, we conduct experiments on Cora under a structural-missing setting
with 7,,, = 0.995. For link prediction, we utilize CiteSeer under a structural-missing setting with
rm = 0.995. ( takes a role in spreading synthetic features widely and -y implies the ratio of selected
low-variance channels to diffuse with synthetic features. Table 4 demonstrates the results of the
ablation study. The results show that the performance gain by introducing synthetic features (i.e.,
~ # 0) is significant. The optimal 5 and the optimal ~ synergistically enhance the performance,
resulting in considerable improvements. The bottom two rows in Table 4 demonstrate that injecting
two synthetic features into row-variance channels leads to degradation in performance. This shows
the validity of injecting a single synthetic feature into a low-variance channel.

C.2 MISSING NOT AT RANDOM SETTING

Table 5: Performance in semi-supervised node classification on OGBN-Arxiv at 7,,, = 0.995, mea-
sured by accuracy (%).

Missing setting | LP GCNMF GRAFFENE FP PCFI FISF
MNAR-I 67.56 £0.00 60.73+0.91 14.60£4.68 68.63£0.35 68.24+£0.67 69.02+0.57
MNAR-D 67.56 £0.00 60.89+0.52 14.47+4.54 68.08+£0.41 67.88+0.29 68.51+0.25

Our FISF is a generic method that is effective regardless of missing settings. To further validate
the effectiveness of FISF beyond the random missing setting, we conduct additional experiments
on ‘Missing Not At Random’ (MNAR) scenarios. In MNAR scenarios, the missing probability
depends on the unobserved values themselves. Thus, for the experiments, we establish two MNAR
settings: MNAR-I and MNAR-D. In MNAR-I, the missing probability of a feature increases as
the feature’s value increases; conversely, in MNAR-D, the missing probability decreases as the
feature’s value increases. For MNAR-I and MNAR-D, we set the missing probability of z; , to

e )), respectively. Table 5 shows

max(1, exp(m

)) and max(1, exp( —(max()Z)'?ﬁ]in(X))
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classification accuracy in semi-supervised node classification on the OGBN-Arxiv dataset under
MNAR settings. The results reveal that FISF consistently outperforms the baselines across both
MNAR settings, thereby demonstrating its effectiveness even in MNAR scenarios.

C.3 EFFECTIVENESS IN ADDRESSING BOTH INCOMPLETE FEATURES AND STRUCTURE

Table 6: Performance on semi-supervised node classification tasks at r,, = 0.995, measured by
accuracy (%).

T'm 0.3 0.8
Dataset T2-GNN FISF T2-GNN FISF
CORA 84.71+1.33 87.69+1.99 | 58.03 +£1.98 84.75+1.57
CITESEER | 74.72+2.96 76.89+1.08 | 54.48 +3.87 75.66 +1.22
PUBMED OOM 85.47 +0.59 OOM 82.51 +0.47

Although our FISF cannot reconstruct a missing structure, we verify its effectiveness in addressing
a downstream task where both features and structure are incomplete, which T2-GNN ( s

) targets. Moreover, FISF surpasses T2-GNN under the settings specified in ( ).
FISF does not make reconstructed features closely resemble their unknown original values, but
impute missing features with values that aid in downstream tasks. Thus, FISF is less impacted by
missing edges since it can still produce features beneficial for downstream tasks by using remaining
edges.

For T2-GNN ( , ), we use the officially released code by the authors and conduct
experiments using the label splits provided in huo2023t2. In each label split, nodes are allocated
into training, validation, and testing sets with proportions of 60%, 20%, and 20%, respectively. We
adhere to the missing settings used in huo2023t2. We apply uniform missing for feature missing, and
missing edges are selected at random. For each setting, we report average accuracy with standard
deviation across five independent runs.

Table 6 present semi-supervised node classification results under settings where 7,,% of both fea-
tures and structure are missing, with r,, set to 30% and 80%. The results clearly show that FISF
surpasses T2-GNN by a considerable margin across all the settings. Notably, at a higher missing
rate of 80%, the advantages of FISF over T2-GNN are especially pronounced. Additionally, FISF
shows better scalability compared to T2-GNN, which encounters an out-of-memory error on the
PubMed dataset.We leave the development of a diffusion-based imputation method that specifically
addresses both feature and structure missing for future research.

C.4 COMPLEXITY ANALYSIS

Table 7: Performance on semi-supervised node classification tasks at r,, = 0.995, measured by
accuracy (%). FastFISF denotes FISF using FP instead of PCFI for pre-diffusion.

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV \ Average
FISF 79.29 £1.72 69.68£247 76.90+1.50 88.22+0.79 79.40+1.11 69.92+0.17 77.24
FastFISF  78.944+1.92 69.424+1.44 77.144+0.94 88.10+1.38 79.09=+1.42 69.53 £0.21 77.04
Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV \ Average
FISF 79.09 +£1.73 69.52+£1.81 77.53+1.28 88.32+1.37 82.12+0.51 69.81 £0.16 7773
FastFISF  79.294+1.84 69.39+1.57 7741+1.77 88.03+146 81.70+0.54  69.45+0.18 77.55

Here we discuss the complexity of FISF which involves two diffusion stages: pre-diffusion and
diffusion with synthetic features. FISF takes O(|€| + (1 + vF)N?) time under structural-missing
settings. Under uniform-missing settings, FISF takes O(|€] + (1 + ) F N?) time.
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Table 8: Running time of methods. OOM denotes an out-of-memory error.

Missing way structural uniform
Method CORA PUBMED | CORA PUBMED
GCNMF 10.3s 19.4s 9.87s 28.3s
GRAFENNE | 47.9s 74.7s 51.1s 74.0s
MEGAE 1753s OOM 1801s OOM
FP 2.36s 3.12s 2.25s 2.90s
PCFI 2.45s 3.23s 11.1s 34.1s
FastFISF 13.4s 34.6s 11.8s 42.5s
FISF 13.4s 34.8s 17.6s 78.2s

We observe that the majority of the computation time in FISF is consumed by employing Dijkstra’s
algorithm to calculate the shortest path distance for each channel. The time complexity of Dijk-
stra’s algorithm is O(N?). In pre-diffusion under structural missing settings, Dijkstra’s algorithm is
once utilized since nodes with observed features are equal across all the channels. However, under
uniform-missing settings, the time complexity of pre-diffusion increases to O(N2F'), considering
the use of Dijkstra’s algorithm across all channels.

We can utilize not only channel-wise inter-node diffusion in PCFI but also FP for pre-diffusion.
We introduce a variant called FastFISF, which utilizes FP for pre-diffusion, offering efficiency by
bypassing the calculation of the shortest path distance. Table 7 demonstrates the results of FastFISF
compared to the original FISF on semi-supervised node classification tasks. For channels that are
not low-variance channels, features obtained via pre-diffusion are maintained until the end of dif-
fusion with synthetic features. Therefore, since PCFI outperforms FP in terms of performance in
downstream tasks, FISF shows slightly better performance than FastFISF in most cases. However,
since the performance of FastFISF is comparable to that of FISF, FastFISF can serve as a rapid
alternative to FISF without a significant loss in performance.

To address the increasing time complexity in uniform-missing settings, we can employ FastFISF
where the time complexity is O(|€| + vFN?) regardless of the missing way. Therefore, to ad-
dress the increasing time complexity of FISF in uniform-missing settings, we can employ FastFISF,
accompanied by only a slight performance loss.

Table 8 demonstrates the training time of methods. FP has the lowest training time among the
methods. However, FISF brings great performance improvement compared to FP. For instance, in
structural-missing setups with r,,, = 0.995, FISF achieves significant gains in node classification
accuracy over FP, showing improvements of 7.43% and 4.94% on Cora and PubMed, respectively.
We can further confirm that FastFISF significantly decreases the training time in uniform-missing
settings.

C.5 ScCALABILITY OF FISF

Table 9: Performance on semi-supervised node classification tasks at 7, = 0.995, measured by
accuracy (%).

Dataset FP ScalableFISF FISF

CORA 71.86 £2.82 78.25+1.38 79.29+1.72
CITESEER 58.61 +=1.74 68.52+1.82 69.68 +2.47
PUBMED 71.96 +3.06 74.40+2.64 76.90+ 1.50
PHOTO 85.42+3.16 86.98+1.80 88.22+0.79
COMPUTERS 76.62+1.94 78.08+1.18 7940+1.11
OGBN-ARXIV | 68.03+£0.52 68.55+£0.42 69.92+0.17

In FISF, the bottleneck in terms of computation and memory lies in distance encoding, which re-
quires O(N? - F) computation and O(N?) memory usage. However, the core concept of FISF,
adding synthetic features to low-variance channels and diffusing them, isn’t confined to specific
distance encoding methods, enabling the development of scalable yet effective algorithms with min-
imal modifications. Here, we introduce a lighter version of FISF named ScalableFISF that utilizes
FP instead of the distance encoding. FP decreases a computation complexity to O(|€]) and is vali-
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dated as a scalable algorithm in ( ) through an experiment on a graph with ~2.5M
nodes. Specifically, in ScalableFISF, we utilize FP for pre-diffusion and add synthetic features to
low-variance channels. Then, by treating the synthetic features as observed features, we simply
reapply FP in these low-variance channels, without distance encoding.

Table 9 demonstrates performance on semi-supervised node classification at r,, = 0.995 under
structural missing settings, measured in accuracy. The results show that ScalableFISF significantly
enhances the performance of FP by addressing the low-variance problem. ScalableFISF exhibits
decreases in performance compared to FISF, yet ScalableFISF shows reasonable performance and
offers advantages in terms of complexity. Therefore, if PCFI reaches its scalability limit on ex-
tremely large graphs with high-dimensional features, ScalableFISF can be a good alternative.

C.6 CONTRIBUTION OF LOW-VARIANCE CHANNELS IN DOWNSTREAM TASKS

Cora CiteSeer PubMed
83 72 78
79 66 70
75 60 62
71 54 54
0 0.1 02 03 04 05 06 0.7 0.8 0.9 0.99 0 01 02 03 04 05 06 0.7 0.8 0.9 0.9 0 01 02 03 04 05 0.6 0.7 0.8 0.9 0.99
O Channel removal from the lowest variance <> Channel removal from the highest variance

Figure 4: Accuracy (%) on semi-supervised node classification tasks while increasing the proportion
of excluded channels from the original feature matrix.

Cora CiteSeer PubMed
93 93 97
89 90 92
85 87 87
81
0 0.1 02 03 04 05 0.6 0.7 0.8 0.9 0.99 0 0.1 02 03 04 05 0.6 0.7 0.8 0.9 0.99 0 0.1 02 03 04 05 0.6 0.7 0.8 0.9 0.99
O Channel removal from the lowest variance <> Channel removal from the highest variance

Figure 5: ROC AUC score (%) on link prediction tasks while increasing the proportion of excluded
channels from the original feature matrix.

In order to experimentally confirm little contribution of low-variance channels in downstream tasks,
we compare performance by excluding partial channels from the original feature matrix using two
different ways. The first way (red lines in Figure 4 and Figure 5) is excluding channels in descending
order of variance, starting from the highest, based on a fixed proportion. Then, as the second way
(blue lines), we exclude channels from the lowest variance in ascending order, i.e., the low-variance
channels are removed first.

Figure 4 demonstrates the results on semi-supervised node classification tasks. Since a low-variance
channel contains nearly identical values that do not aid in distinguishing nodes, the classification
accuracy denoted by blue lines persists despite an increasing removal proportion of low-variance
channels. However, cases of channel removal from the highest variance suffer significant perfor-
mance degradation even with low proportion of channel removal.

As shown in Figure 5, little contribution of low-variance channels is also evident in link prediction
tasks. Since identical representations among nodes results in consistent representations across node
pairs, low-variance channels also contribute very little to performance in link prediction tasks.
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Figure 6: Semi-supervised node classification accuracy with different «, 5 and «y. The blue dashed
lines indicate existing state-of-the-art performance.

C.7 EFFECTS OF HYPERPARAMETERS

We further analyze the effects of FISF hyperparameters, («, 3, ), on Cora under structural missing
settings with r,, = 0.995. Figure 6 shows the accuracy of FISF models with different «, 5 and
v When varing each hyperparameter, the other hyperparameters are set to their optimal values.
Compared to existing state-of-the-art performance of 74.62%, all FISF models consistently exceed
it by a considerable margin regardless of the value of a. Furthermore, significant performance
improvement are observed with a small . A small 3 results in the performance degradation. This
is because too small § assigns excessive influence to synthetic features, which hinders the spread
of known features. This result validates the DSF stage, which enables the wide spread of synthetic
features, is properly designed.

C.8 EFFECTS OF THE MAGNITUDE OF SYNTHETIC FEATURE VALUES

Table 10: Accuracy (%) of FISF for different values of m, the scale factor for random noise, on
semi-supervised node classification.

m 0.01 0.1 1 (used) 10 100
Cora 76.83+1.38 78.72+£1.35 79.294+1.72 79.65+£1.11 71.09+8.03
CiteSeer 68.10 £2.02 68.69+2.86 69.68+247 68.95£3.38 66.68=E2.17
PubMed 75.09£2.12 76.78+£1.98 76.90+1.50 77.28+£0.71 69.19+12.55
Photo 87.95+1.20 88.49+1.04 88.22+0.79 88.01+£1.34 87.75£1.64

Computers 7886 £0.76 7893+1.23 79.40+1.11 80.01£0.20 80.16+0.79
OGBN-Arxiv | 68.48 £0.17 69.04£0.38 69.92+0.17 69.82£0.15 69.31 £0.18

To confirm the effects of the magnitude of synthetic feature values, we conduct additional exper-
iments by using a scale factor m. The values for the synthetic features are scaled by multiplying
them by m, after being sampled from a uniform distribution on [0, 1]. Table 10 shows the results. As
shown in the table, min{0.1,1, 10} generally shows similar performance, while there is a perfor-
mance decrease in the case of min{0.01, 100}. We believe that the performance drop for m = 0.01
is due to the fact that it barely increases the variance of the channel. For m = 100, after the imputa-
tion process, the low-variance channels with injected synthetic features will be on a different scale
compared to other channels without injected synthetic features, which disrupts the learning process
of the downstream GNN.

Table 11: Accuracy (%) of FISF for different values of m on semi-supervised node classification,
when normalized features are given.

m Cora CiteSeer PubMed Photo Computers ~ OGBN-Arxiv

0.1 | 78.68+1.78 69.42+231 76.93+1.11 87.55£1.64 79.24+£042 69.56=+0.30
1 79.03+£1.45 69.50£2.50 77.16£1.11 88.12+143 80.23+£0.65 69.88+0.21
10 | 77.994+£1.58 68.50+2.11 76.14+£2.05 88.21+£0.85 77.61+£1.62 69.75+0.22
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To generalize the sampling distribution against the magnitude of values in the feature channel, node-
wise normalization can be a good solution. We apply node-wise L2 normalization to pre-imputed
features where synthetic features will be injected. Table 11 shows the results. We can confirm that
m = 1 produces maintains robust performance across different datasets. These discussions and
experimental results demonstrate that the performance is significantly affected when the magnitude
of random noise is either too small or too large. They also suggest that node-wise normalization can
be a good solution to handle various scales of features effectively.

C.9 HYPERPARAMETER SEARCH FOR FISF

Table 12: Performance on semi-supervised node classification tasks at ,,, = 0.995, measured by
accuracy (%).

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV \ Average

FISF 79.29 £1.72 69.68+£2.47 76.90+1.50 88.22+£0.79 79.40=+1.11 69.92 +0.17 77.24
FISF* 78.68£1.72 69.684+2.47 76.74+£1.84 8822+0.79 79.40+1.11 69.92 +£0.17 77.11

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV \ Average
FISF 79.09£1.73 69.52+£1.81 77.53+£1.28 8832+£1.37 82.1240.51 69.81 +0.16 ‘ 77.73

FISF* 79.09+£1.73 69.52+1.81 76.89+£2.01 8832+137 81.56+£047 69.81+0.16 77.53

Table 13: Performance on link prediction tasks at r,, = 0.995, measured in ROC AUC score (%).

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS | Average

FISF 87.26 £1.44 84.12+£1.17 83.19£0.78 95.86+0.21 94.70 +£0.30 89.03
FISF* 86.80 £1.27 84.124+1.17 82.46+0.94 95.76 £0.33 94.39 £+ 0.82 88.70

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS | Average

FISF 87.44+0.80 83.45+£253 85.33£0.47 96.64+0.18 95.13+0.35 | 89.60
FISF* 87.56 £1.29 81.15+£1.17 82.46=+0.69 95.68+0.42 94.94+0.27 | 88.36

Despite the outperforming performance of FISF, conducting a hyperparameter search for FISF with
three hyperparameters (o, [, and ) can be burdensome in certain situations. However, both o and

B (0 <, < 1) play a shared role in a base of distance during calculating PC (i.e. £, = oSt and
ia=10 Si.a). Thus we can combine them into one, i.e., v = f3. By doing this, the search complexity

can be reduced from 52 to 52 without the performance degradation by setting five search points for
each hyperparameter. Table 12 and Table 13 show that the FISF* with the light search does not
degrade performance on semi-supervised node classification and link prediction. The version with
the light search requires from 20 minutes to 10 hours depending on the datasets, therefore this burden
is manageable for practical usage of FISF.

C.10 SMOOTHNESS ANALYSIS

We generate a synthetic feature in a low-variance channel in order to make features in that channel
distinctive across nodes. To investigate smoothness (feature homophily), we compare the smooth-
ness of output features obtained through imputation methods. For this comparison, we employ
Dirichlet energy, a representative criterion for measuring smoothness on a graph. As shown in Ta-
ble 14, FP displays the lowest Dirichlet energy among the imputation methods. In contrast, FISF
makes Dirichlet energy of the imputed features similar to that of the original features. Note that
our FISF shows the highest Dirichlet energy (distinctiveness) among the methods. Through the out-
performing performance of FISF over the existing methods, we can confirm that features with low
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Table 14: log(Ep) of imputed features under a structural-missing setting with r,, = 0.995, where
E'p is the Dirichlet energy. Original denotes original given features.

Missing way Structural Uniform

Method | CORA CITESEER PUBMED | CORA CITESEER PUBMED
Original 4.36 4.49 3.11 4.36 4.49 3.11
FP 1.90 1.94 0.798 1.89 1.91 0.805
PCFI 3.14 2.59 1.49 2.52 2.64 1.43
FISF (Ours) 3.25 2.92 4.15 2.69 2.70 4.34

dirichlet energy (high feature homophily) does not always ensure good performance in downstream
tasks while smoothness is an inductive bias of GNNs.

Table 15: Average cosine similarity of imputed features by FISF, under a structural-missing setting
with r,;, = 0.995.

Intra-class

Dataset ‘ Inter-class classT class2 class3 class4 class5 class6 class 7 | Average Ratio

CORA 0.760 0.858  0.902 0.902 0.844 0.691 0.826  0.870 0.842 1.11

CITESEER 0.279 0.267 0.341 0.636 0.282 0.513  0.380 - 0.403 1.45

PUBMED 0.871 0.893 0936  0.880 - - - - 0.903 1.04
Table 16: Average cosine similarity of original features.

Dataset Inter-class Intra-class Ratio

classT class2  class3  class4 class5 class6  class 7 | Average

CORA 0.0578 0.841 0.113 0.0896 0.683 0.0690 0.0853 0.109 0.0883 | 1.53

CITESEER 0.0470 0.655 0.0601 0.0617 0.0650 0.762 0.0581 - 0.0644 | 1.37

PUBMED 0.0719 0.112  0.937 0.0779 - - - - 0.0946 | 1.32
FP PCFI FISF (Ours)

Cora

CiteSeer

Figure 7: t-SNE plot visualizing imputed features.

To investigate smoothness within classes, we conduct further experiments. Table 15 demonstrates
the intra-class cosine similarity calculated from imputed features by FISF. Ratio denotes average
similarity/inter-class similarity. If Ratio is greater than 1, inter-class similarity becomes less than
the average intra-class similarity, which means the feature is distinctive enough for classification of
node features.

Table 16 shows the intra-class cosine similarity calculated from original features. The results indi-
cate that original features also have values of Ratio greater than 1 across the datasets. This means
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Figure 8: t-SNE plot visualizing deep features in GCN.

that the datasets also originally have higher intra-class feature similarity compared to inter-class fea-
ture similarity. Despite the introduction of synthetic features during diffusion, as shown in Table 15,
we can observe that imputed features by our scheme consistently maintains higher intra-class feature
similarity than inter-class feature similarity.

We also perform qualitative analysis on imputed features and deep features to compare imputation
methods. The qualitative analysis is conducted in structural missing settings with r,,, = 0.995.
Figure 7 and Figure 8 demonstrates the t-SNE plots visualizing imputed features and deep features,
respectively. FISF provides clearer cluster structures for both imputed features and deep features
than the other imputation methods.

C.11 SYNTHETIC FEATURES SAMPLED FROM A NON-UNIFORM DISTRIBUTION

Table 17: Performance on semi-supervised node classification tasks at r,, = 0.995, measured by
accuracy (%).

Dataset FISF FISF-L

CORA 79.29 +1.72 78.92+1.60
CITESEER 69.68 £2.47 69.63 £1.40
PUBMED 76.90 +1.50 76.70 £ 1.62
PHOTO 88.22 +£0.79 88.10+0.97
COMPUTERS 79.40 +1.11 79.09+1.14

OGBN-ARXIV | 69.92£0.17 69.03 £0.19

Our FISF samples the value of a synthetic feature from a uniform distribution, because this value
only needs to differ from the nearly identical values of observed features within the same channel.
Random sampling from a uniform distribution is simple yet effective to achieve this goal. In terms of
selecting a node for placing a synthetic feature, we have considered another node sampling scheme
that does not rely on a uniform distribution. We attempted to sample the node from a distribution
in which the sampling probability varies based on the locations of observed features. We aimed
to increase the sampling probability for nodes farther from observed features. However, we em-
pirically observe that sampling the node from this distribution rather degrades performance slightly
in downstream tasks, compared to when sampled from a uniform distribution. Table 17 shows the
comparison results between the original FISF and FISF-L using the aforementioned node sampling
strategy. We believe that this degradation comes from biased selected nodes, which damages the
diversity across feature channels in an imputed matrix. Consequently, we sample both a node and a
value for a synthetic feature from uniform distributions.
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C.12 ZERO INITIALIZATION VS RANDOM INITIALIZATION

# channels # channels # channels
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Figure 9: Distributions of variances for each feature channel with zero/random initialization for
missing features. Cora dataset with 99.5% missing features is commonly used.

Do low variance channels occur due to zero initialization use for missing features? We compare
the variance distributions when zero initialization and random initialization are used for missing
features. Figure 9 shows that many low-varince channels persist despite random initialization, but
there is a slight difference between the distributions despite using the same setting. This is because
all the diffusion-based methods approximate the steady state with a sufficiently large hyperparameter
K, indicating the number of diffusion iteration (e.g., K = 40 is used in FP and K = 100 is used in
PCFI and FISF). However, we have further confirmed that variance distributions becomes identical
with very large values (e.g., K = 1000) regardless of initialization. Although the final approximated
results are not affected by initialization for missing features with a large K, careful consideration is
needed when determining K, depending on the initialization. In conclusion, low-variance channels
are not mainly caused by the use of zero initialization for missing features.

C.13 STATISTICAL ANALYSIS

Table 18: p-values comparing our FISF to the runner-up on SSNC, measured across 50 splits of each
dataset under structural-missing settings with r,,, = 0.995. min FISF denotes the worst accuracy
among 50 runs.

Method | Cora CiteSeer PubMed Photo Computers ~ OGBN-Arxiv
FISF (ours) | 79.14£1.32 68.83+£1.95 76.97+144 88.11+£1.21 79.11+£1.01 69.91+£0.22
min FISF 75.95 65.43 T4.77 86.56 77.09 69.45

runner-up 74.35+£1.65 66.01+£299 7453+£240 8744+1.25 78.72+£131 68.78£0.24
p-value 1.66 x 10718 6.69 x 1077  3.13x107® 2.08 x 1072 7.87x 1072 1.96 x 10728

We conduct additional experiments to show that our FISF is insensitive to random synthetic feature
generation and evaluate the statistical significance of FISF’s superior performance. Table 18 shows
p-values comparing FISF to the runner-up in each setting for the results in semi-supervised node
classification tasks under structural missing settings with missing rate (r,, = 99.5%). As shown
in the table, the p-value indicates the statistical significance of the performance improvement of
our FISF over the runner-up. The results demonstrate that our FISF significantly outperforms the
runner-up in most cases, with p-values much lower than 0.05, suggesting that the performance gains
are not due to random chance. Furthermore, even the worst accuracy among 50 runs (min FISF)
shows superior or competitive performance compared to the runner-up. This demonstrates that our
FISF is robust and insensitive to variations in the random generation of synthetic features, thereby
confirming the stability and reliability of our method under extreme missing feature scenarios.
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Table 19: log(Ep) of imputed features on PubMed under structural-missing settings with r,,, =
0.995.

Tm 0.0 03 0.5 09 0995 0.999
FP 3.11 339 329 280 080 0.77
PCFI 3.11 345 339 3.06 149 212

FISF (Ours) | 3.11 3.45 3.40 3.11 4.15  5.27

C.14 INVESTIGATING THE COUNTERINTUITIVE PERFORMANCE TREND OF FISF UNDER
HIGH MISSING RATES

We conduct additional experiments to investigate the underlying reason for the counterintuitive per-
formance trend of FISF at high missing rates, as observed in the PubMed dataset results in Figure 3.
Feature homophily, which can be measured by the Dirichlet energy (Ep), is a crucial factor for
downstream graph neural networks to perform semi-supervised node classification tasks. Hence, we
measure the Dirichlet energy (Ep) of imputed features. Since this trend is highlighted on PubMed,
we perform these experiments on PubMed. Table 19 shows the results. These results indicate
that our FISF maintains high Dirichlet energy despite high rates of missing features, while other
diffusion-based methods suffer from a severe decrease in Dirichlet energy. The high levels of fea-
ture homophily (i.e., Dirichlet energy) stem from synthetic features, which diffuse their values along
edges to overcome the low-variance problem.
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Figure 10: Diffusing a synthetic feature for each low-variance channel results in distinctive imputed
features across nodes.

D DISCUSSIONS

D.1 JUSTIFICATION FOR SYNTHETIC FEATURE INJECTION

Conceptual explanation. In low-variance channels, all missing features are filled with nearly the
same values regardless of connectivity, which can not provide any structural information. In con-
trast, in our scheme, for each low-variance channel, the synthetic feature diffuses its value to its
surroundings and creates a local spike centered on the node with the synthetic features. Each node
has larger differences in values from the synthetic feature as the distance from the central node
increases. If we inject one synthetic feature into each low variance channel, but place it at a differ-
ent location for each channel. Then the diffused node feature vector containing every low-variance
channel feature after diffusion becomes distinctive from those of the other nodes by reflecting the
graph structure. Figure 10 illustrates a visualization of the distinctiveness of the diffused feature
vector by our scheme.

Table 20: The distribution of channel variances in features imputed by PCFI on PubMed according
to r,, under structural-missing settings.

channelvariance\ 00 03 05 09 0995 0.999

[10-3, 00) 13 12 9 1 0 0
[10 4 10 3) 467 435 388 126 19 13
10 —4) 20 53 103 373 163 70
(0,10~ ) 0O 0 0 0 318 417

Table 21: The distribution of channel variances in features imputed by FP on PubMed according to
T, under structural-missing settings.

channel variance\ 00 03 05 09 0995 0.999

(1073, 00) 3 9 0 0 0 0
[1074,10~ ) 467 412 6 58 0 0
[10-%,10~ 20 79 339 439 25 4
[0,1075) 0 0 155 3 475 496

Table 22: The distribution of channel variances in features imputed by FISF on PubMed according
to r,,, under structural-missing settings.

channelvariance\ 00 03 05 09 0995 0.999

[1073, 00) 13 14 12 8 7 0
[10-4, 10~ ) 467 465 414 380 246 222
[10-5,10-4) 20 21 74 112 193 205
[0,1075) 0 0 0 0 54 73
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Channel variance analysis. To clarify why randomly sampled values effectively enhance feature
distinctiveness, we conduct further experiments that investigate distributions of each channel’s vari-
ance for varying missing rate (r,,). We compare the distributions of the output matrices obtained by
our FISF and existing diffusion-based imputation methods. Tables 20, 21 and 22 demonstrate the
results. As shown in Tables 20 and 21, the number of low-variance channels in outputs produced by
existing diffusion-based imputation methods substantially increases as ,,, increases. This implies a
decrease in the distinctiveness of imputed features since all features within a low-variance channel
have nearly the same values. Unlike these methods, as shown in Table 22, we can confirm that FISF
effectively alleviates the occurrence of low-variance channels, indicating significantly higher feature
distinctiveness compared to existing methods.

D.2 Low VARIANCE PROBLEM VS OVER-SMOOTHING PROBLEM

To clarify the distinction between the low variance problem and the over-smoothing prob-
lem ( , ), we emphasize a fundamental difference between the two issues from the per-
spective of self-loops. Diffusion-based imputation methods ( , ; , )
and typical GNNs share a message passing framework to update features using aggregation steps.
However, during the aggregation steps of diffusion-based imputation methods, all observed features
have self-loops with a weight of 1, while these observed features do not aggregate features from
neighboring nodes (i.e., do not consider graph structures). The purpose of this aggregation rule is
to preserve the observed features despite multiple aggregation steps, while updating the values of
missing features. Due to this different aggregation rule only for observed features, the steady state of
overall imputed features is determined by the values of observed features (as shown in Appendix A).
We mathematically demonstrate that the cause of low variance channels lies in the situation where
the values of observed features within a specific channel are identical (as shown in Appendix B).
In a nutshell, the low-variance problem arises from identical values of observed features within a
specific channel.

In contrast, typical GNNs that suffer from the over-smoothing problem have consistent update rules,
including the weights of self-loops, across nodes and features. All nodes update their features by
aggregating features from neighboring nodes. The cause of the over-smoothing problem is proven
to be the excessive number of GNN layers (

). The key point in this proof is that the elgenvalues of the graph Lapla01an Wthh is the
weighted matrix used in GNN layers for message passing, fall between 0 and 1. In contrast, although
the weighted matrix used in diffusion-based imputation also has eigenvalues between 0 and 1, the
reason why the large number of layers does not lead to the over-smoothing problem is due to the
aforementioned unique aggregation rule regarding self-loops.

There are two main approaches designed to address the over-smoothing problem. The first is a self-
loop-based approach, including APPNP ( s ) and GDC ( s ),
which adds self-loops with certain weights to all nodes to prevent excessive smoothing. We compare
this approach with our FISF by applying an APPNP-style diffusion rule, as shown in Table 6 of the
general response PDF. As illustrated in the table, our FISF consistently outperforms the APPNP-
style imputation by significant margins across various datasets under structural missing settings with
a missing rate of 0.995. The second approach is concatenation-based, where multl scale features
aggregated from neighbors at different hops are concatenated ( , , ).
However, since imputation requires output with the same dimension as the orlgmal features, the
concatenation-based approach developed to address the over-smoothing problem cannot be applied
to imputation.

D.3 WHY NOT USE GRAPH POSITIONAL/STRUCTURAL ENCODING?

The key distinction of our FISF approach from graph positional/structural encoding is that FISF al-
lows for the integration of feature information and structural information within low-variance chan-
nels. In FISF, although a synthetic feature with randomly sampled values is injected into a low-
variance channel, the channel still contains observed features with nearly identical values. Since
FISF preserves all observed features during its diffusion process, the output of FISF retains this
feature information, reflecting the nearly identical values within the channel. Simultaneously, the
injected synthetic feature with a distinct value makes its surrounding nodes similar to its own value,
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thereby encoding structural information. After the final diffusion stage, the low-variance channels
in the output will contain both nearly identical observed feature values and feature values similar to
the synthetic feature, corresponding to feature information and structural information, respectively.
Thus, FISF can naturally integrate both feature and structural information within low-variance chan-
nels.

Table 23: Performance in semi-supervised node classification on various datasets, measured by
accuracy (%).

Method | Cora CiteSeer PubMed Photo Computers

node2vec 76.67+1.48 64.00+1.66 69.50+4.09 87.77+£1.42 7898+ 1.55
Preliminary diffusion + node2vec | 77.20+1.38  66.78+1.62  70.19+4.35 87.81+1.74 79.25+0.94
FISF (ours) 79.29+1.72 6998+247 76.90+1.50 88.20+0.79 79.40+1.11

We compare our FISF with the case where a positional/structural encoding vector is used as com-
plementary values. We employ node2vec ( , ), a representative structural
encoding method. The table below presents the accuracy in semi-supervised node classification un-
der structural-missing settings with a missing rate of 99.5%, where “node2vec” denotes the case
where node2vec is used alone as input, and “Preliminary diffusion + node2vec” refers to the case
where node2vec is used as complementary values. As shown in the table, our FISF consistently
outperforms both cases using positional/structural encoding vectors across datasets. These perfor-
mance gains stem from FISF’s ability to integrate feature information and structural information
within low-variance channels.

E EXPERIMENTAL DETAILS

E.1 DATASET DETAILS

Table 24 summarizes the dataset statistics. All the datasets used in this paper are provided in Py-
torch Geometric. All the datasets used in our work, including the Cora, CiteSeer, PubMed, Photo,
Computers, and OGBN-arxiv, are MIT-licensed. In the citation networks, nodes and edges represent
documents and citation links, respectively. In the case of recommendation networks, nodes represent
goods and an edge connects two nodes only when the nodes (i.e., products) are frequently bought
together. Following ( ) and ( ), we conduct all experiments on the
largest connected graph of each dataset. FISF can also handle disconnected graphs by working on
each connected graph.

Table 24: Dataset statistics.

Dataset #Nodes #Edges  #Features #Classes
CORA 2,485 5,069 1,433 7
CITESEER 2,120 3,679 3,703 6
PUBMED 19,717 44,324 500 3
PHoTO 7,487 119,043 745 8
COMPUTERS 13,381 245,778 767 10
OGBN-ARXIV 169,343 1,166,243 128 40

E.2 IMPLEMENTATION DETAILS

We conduct all the experiments on a single NVIDIA GeForce RTX 2080 Ti GPU and an Intel Core
15-6600 CPU at 3.30 Hz. All models are implemented in Pytorch ( , ) and Pytorch
Geometric ( s ).

Semi-supervised node classification. We randomly create 5 different training/validation/test node
splits for each dataset except for OGBN-Arxiv. (The node split of OGBN-Arxiv is fixed according
to published years of papers (i.e., nodes).) Following the splits in ( ), we assign
20 nodes per class as training nodes. Subsequently, the number of validation nodes is adjusted to
ensure that when combined with the training nodes, it totals 1, 500. For test nodes, we include all
nodes except those designated as training or validation nodes.
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Table 25: Statistics of medical tabular datasets.

Dataset | N F Fom Fa C Tm

Echocardiogram 74 12 3 9 2 259%%

Duke Breast Cancer | 907 93 34 59 2 11.94%

ABIDE 1112 104 85 19 2 5252%

Diabetes 10177 47 11 36 3 4.03%
Vanilla GCN models for imputation methods (MEGAE ( R ), FP ( , ),
PCFI ( , ), and our FISF) and GCNMF models are trained as follows. We utilize
Adam optimizer ( , ) and set the maximum number of epochs to 10, 000. We use
an early stopping strategy based on validation accuracy, with a patience of 200 epochs. We apply
dropout ( , ) with the drop probability p. p and learning rates in all experiments

are searched in {0,0.25,0.5} and {0.01,0.005,0.001,0.0001}, respectively, using grid search on
validation sets. We train GRAFENNE models by following the training details specified in

(2023).

For all the baselines, we follow all the hyperparameters specified in the original papers or codes. If
hyperparameters (specifically, hidden dimension and the number of layers) for a specific dataset are
not clarified in the papers, we perform a hyperparameter search using a grid search approach. The
search ranges of hidden dimension and the number of layers are {16, 32, 64, 128,256} and {2, 3},
respectively.

Link prediction. For GCNMF and GAE used as downstream models for imputation methods, we
train all the models with Adam optimizer for 200 iterations. We apply dropout (

) with the drop probability p. Through grid search on the validation sets, p and learning rates
in all experiments are searched within {0,0.25,0.5} and {0.1,0.01,0.005, 0.001, 0.0001}, respec-
tively. We randomly create 5 different training/validation/test edge splits for each dataset. For each
split, as the splits in ( ), we assign 10% edges for the training set, 5% edges
for the validation set, and 85% edges for the test set.

For GAE models for the imputation methods, we commonly train the models as follows. We
use Adam optimizer and set the number of epochs to 200. Learning rates are searched from
{0.01,0.005,0.001,0.0001} by grid search on validation sets. Following ( ),

( ), and ( ), we leverage GAE models with 32-dimensional hidden
layer and 16-dimensional latent variables.

Medical Classification. We create five random splits for training, validation, and testing, with
proportions of 10%, 10%, and 80%, respectively. The classification performance is then measured
by calculating the average Micro-F1 score across these five splits. We utilize MLP classifiers on
the feature matrices imputed by tabular imputation methods to perform classification. For the MLP
classifiers, we set the number of layers and the hidden dimension to 2 and 64, respectively. Table 25
presents the statistics of the medical tabular datasets used in this paper. N refers to the number
of samples, while F' indicates the number of features. The numerical and categorical features are
represented by Fi,,, and F,¢, respectively. The numerical features are scaled to a fixed range of 0
to 1, and categorical features are encoded using one-hot encoding. C' denotes the number of classes,
and r,, indicates the missing feature rate in each dataset. The value of k in kNN graph construction
for graph imputation methods is selected from {1,3,5,10} based on the validation set.

FISF implementation. For semi-supervised node classification tasks, we set the number of layers
and learning rates to 64 and 0.005, respectively. For link prediction tasks on Cora, CiteSeer, and
PubMed, we set learning rates to 0.01. We set learning rates to 0.001 for Photo and Computers. In
all experiments, we fix K to 100 and dropout is applied with p = 0.5. In the case of experiments
on OGBN-Arxiv, following FP ( , ) and PCFI ( s ), we leverage GCN
layers with skip connections ( , ) and set the hidden dimension to 256. Hyperparamters
(o, B, and ) of FISF used in experiments are summarized in Table 26 and Table 27. We will release
the code upon publication.

Implementation of baselines. For LP, we use codes implemented in Pytorch Geometric (
, ). The hyperparameter « of LP is searched from {0.95,0.9,0.8,0.7,...,0.1}. For
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Table 26: FISF hyperparameters used in experiments on semi-supervised node classification tasks.

Missing way Structural missing
Tm 0.3 0.5 0.9 0.995 0.999
Datasets « 6 v | « 6 v | « Ly « 6 7| « B v
CORA 07 09 1007 09 5009 07 91|09 07 9 [09 09 90

CITESEER 09 07 9|07 07 3009 05 50[09 09 909 09 90
PUBMED 09 09 1009 07 70{09 05 10]09 05 90]09 05 90
PHOTO 05 09 1005 07 901 09 7001 01 70|01 01 50
COMPUTERS 03 09 10,01 01 9|01 07 50|01 01 50|01 01 90
OGBN-ARrRx1v | 0.3 03 10|03 03 10]01 03 30|01 01 9|01 01 70

Missing way Uniform missing
Tm 0.3 0.5 0.9 0.995 0.999
Datasets @ 6 v | « 6 v | « 5 v | « 6 v | « 6 v
CORA 09 09 1009 07 3007 09 30|09 07 70|07 07 70

CITESEER 01 03 5001 03 7009 05 70]09 09 30|07 07 90
PUBMED 03 01 10{03 01 30|09 05 50|09 05 5009 05 90
PHoTo 03 03 53|03 03 50(01 03 70]03 01 30|01 05 90
COMPUTERS | 0.5 05 10|05 05 10|01 03 10|01 05 50|01 05 50
OGBN-ARrRx1v | 0.3 01 10{03 01 3|09 03 30|01 01 9 |01 01 10

Table 27: FISF hyperparameters used in experiments on link prediction tasks.

Missing way | Structural missing | Uniform missing
Tm 0.995 0.995

Datasets Q@ I} vy o Jé] vy
CORA 0.5 0.9 90 0.3 0.9 10
CITESEER | 0.9 0.9 90 0.1 0.7 10
PUBMED 0.1 0.3 70 0.1 05 90
COMPUTERS | 0.1 0.9 10 0.1 09 70
PHOTO 0.1 0.7 10 0.1 07 10

Table 28: URL links for baselines.

Baseline URL link

GCNMF https://github.com/marblet/ GCNmf

GRAFENNE  https://github.com/data-iitd/Grafenne

MEGAE https://github.com/zqgao22/max-entropy-gae

FP https://github.com/twitter-research/feature-propagation
PCFI https://github.com/daehoum1/pcfi

the baselines except for LP, we use code released by the authors of papers. The URL links for the
baselines are given in Table 28. While the codes for FP and PCFI are licensed under Apache-2.0,
and the codes for GCNMF and MEGAE are licensed under MIT, the code for GRAFENNE has no
public declaration of license.
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F ADDITIONAL EXPERIMENTAL RESULTS

F.1 AP RESULTS ON LINK PREDICTION

Table 29: Performance on link prediction tasks at r,, = 0.995, measured by AP (%). Standard
deviation errors are given. The best result is highlighted in bold and underlined, while the second-

best result is highlighted only in bold. OOM denotes an out-of-memory error.

Structural missing

Method CORA CITESEER PUBMED PHOTO COMPUTERS
Full features 92.62 +£1.13 91.60 + 1.44 96.59 £ 0.32 95.24 £ 0.39 93.77 £ 0.61
GCNMF 70.20 £+ 0.80 69.19 £1.78 86.20 £ 0.32 80.58 £ 0.28 83.34 £0.17
GRAFENNE  64.70 &+ 3.76 72.08 +£9.71 70.43 + 3.74 64.78 £ 0.84 66.56 + 1.14
MEGAE 69.78 £ 0.78 70.85 + 2.92 OOM 86.46 + 1.65 86.12 +1.13
FP 86.40 £+ 1.26 82.61 £ 1.96 83.98 £0.79 93.74 £ 0.57 91.50 £ 0.56
PCFI 88.63 £ 0.90 82.98 + 0.86 87.07+0.42 96.31 £0.25 94.58 +£0.37
FISF 88.81+1.35 85.85+1.38 87.55+0.35 95.33+0.22 94.71+0.26

FISF+NIP 89.35+1.24 85.25+1.85 87.62+0.12 9595+0.18 95.41+0.33

Uniform missing

Method CORA CITESEER PUBMED PHOTO COMPUTERS
Full features 92.62 £ 1.13 91.60 £ 1.44 96.59 + 0.32 95.24 + 0.39 93.77 £ 0.61
GCNMF 64.21 £ 2.01 65.06 £ 2.67 82.64 +2.17 80.61 + 0.20 83.38 £ 0.12
GRAFENNE 75.04 +13.33 71.39+9.71 73.56 + 5.77 68.36 + 7.71 69.79 + 5.81
MEGAE 67.98 £ 1.85 63.67 £ 2.89 OOM 83.22 +1.48 85.11 £+ 2.00
FP 88.67 £ 1.26 85.39 + 1.89 82.99 +2.14 95.51 +£0.19 94.06 + 0.27
PCFI 89.13+1.06 8547+1.82 88.20+0.38 96.87+0.20 95.55+0.32
FISF 89.16 £0.77 85.17+2.00 88.73+0.36 96.27+0.23 95.12 + 0.32

FISF+NIP 89.23 £0.89 84.73£2.00 88.72+0.36 96.32+0.26 96.12+0.30
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F.2 DISTRIBUTIONS OF FEATURE VARIANCES
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Figure 11: Distributions of variances for each feature channel on Cora dataset with 90%/99.5%

missing features. FP and PCFI generates output matrices with many low-variance channels outlined
in red, whereas FISF resolves the issue of low-variance channels.
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Figure 12: Distributions of variances for each feature channel on CiteSeer dataset with 90%/99.5%
missing features. FP and PCFI generates output matrices with many low-variance channels outlined
in red, whereas FISF resolves the issue of low-variance channels.
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