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Abstract

We developed a machine learning model to predict left ventricular ejection fraction (LVEF/EF)
from parasternal long-axis (PLAX) echocardiographic videos. Because public datasets
with labeled PLAX videos are virtually non-existent, our work focuses on an innovative
data generation strategy to overcome this scarcity. By leveraging a time-based corre-
lation between clinical notes and echocardiographic videos, combined with fine-tuning
view classifiers and proxy labeling, we effectively created a large labeled PLAX dataset
and achieved a mean absolute error (MAE) of 6.86%. Given that Apical four-chamber
methods, the clinical standard, report MAE values of 6%-7% (Ouyang et al., 2020), our
results demonstrate that EF estimation from PLAX views is both feasible and clini-
cally relevant. This surpasses the performance of existing methods and provides a clin-
ically useful solution for situations where apical views may not be feasible. The EF la-
bels for PLAX videos, derived from publicly available datasets, are accessible at https:
//github.com/Jeffrey4899/PLAX_EF_Labels_202501(Gao et al., 2025).

Keywords: Scarce data, Ejection fraction, Echocardiography, Parasternal Long-Axis (PLAX),
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1. Introduction

Cardiovascular disease is the leading cause of mortality worldwide, responsible for over 18.6
million deaths annually (Tsao et al., 2023). Echocardiography is a critical non-invasive
diagnostic tool, with ejection fraction (EF) being a key parameter for assessing heart func-
tion. Accurate EF estimation aids in diagnosing conditions like heart failure and cardiomy-
opathies. While Apical four-chamber (A4C) view echocardiography is standard for EF
estimation, obtaining high-quality A4C views can be challenging. In contrast, the paraster-
nal long-axis (PLAX) view is often easier to acquire (Rao, 2025). However, there is no
standard procedure for calculating EF from PLAX views. Previous efforts to estimate EF
from PLAX views have shown promising results but leave room for improvement. For ex-
ample, the ExoAl reported a PLAX-specific mean absolute error (MAE) of 7.29%, though
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algorithmic details were not disclosed (Vega et al., 2024). Another study employing a land-
mark detection network achieved an MAE of 8.45% (Goco et al., 2022). A reliable method
for direct EF estimation using PLAX that surpasses these results would greatly benefit
patients for whom A4C views are not feasible.

The lack of public datasets linking EF values with PLAX views creates a significant
bottleneck for machine learning (ML) research in this domain. While existing mature
models have been trained primarily on A4C view, they do not generalize well to PLAX
due to substantial differences in anatomical orientation and visual features. This paper
addresses the gap by generating a novel dataset of PLAX echocardiographic videos with
corresponding EF labels and training an ML model for EF prediction. These EF labels,
which are aligned with existing echocardiographic data, are made publicly available at
https://github.com/Jeffrey4899/PLAX_EF_Labels_202501(Gao et al., 2025), enabling
reproducibility and further research.

2. Dataset Generation and Model Training

The key step of our methodology—and the major challenge—was creating a labeled dataset
for PLAX from available data, despite the scarcity of publicly available PLAX-specific labels.
Because PLAX images and EF labels are not routinely paired in existing repositories, we
developed nowvel techniques to both identify PLAX views and assign approximate EF values,
effectively circumventing the lack of direct ground-truth annotations.

MIMIC-IV-ECHO MIMIC-IV-NOTE
Dataset Dataset

Video View Classifier,
A4C Model

PLAX Dataset
with EF values

l

| PLAXModel |

Figure 1: High-Level PLAX EF Prediction Pipeline.

Two major datasets from PhysioNet(Goldberger et al., 2000) were utilized for this study:

e MIMIC-IV-Echo(Gow et al., 2023): Contains approximately 500k echocardiographic
videos without view type labels.

e MIMIC-IV-Note(Johnson et al., 2023): Includes around 331k discharge notes, of
which only a subset contains EF values in unstructured text.

The goal was to extract PLAX view videos with EF data and use them to train a
machine learning model for EF prediction. This task faced two main challenges: first,
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the MIMIC-IV-Echo dataset lacked labels for echocardiographic view types, requiring the
development of a video view classifier to identify PLAX views; second, the MIMIC-IV-
FEcho and MIMIC-IV-Note datasets were not directly linked, making it difficult to associate
discharge notes with corresponding echocardiographic studies. Even after applying time-
based correlations, the number of valid note-study pairs remained insufficient for training
a robust PLAX model.

Consequently, we needed to leverage most studies in the MIMIC-IV-Echo dataset to
generate training data for PLAX EF prediction. Specifically, we first trained a video view
classifier to identify A4C and PLAX views within the dataset. Next, we trained an A4C
model using a publicly available dataset to estimate EF values. These EF predictions
were then applied as proxy labels for PLAX videos within the same study, enabling the
development of a PLAX-specific model. A high-level overview is illustrated in Figure 1.

2.1. Video View Classifier Training

A classifier capable of distinguishing echocardiographic views into A4C, PLAX, and ”OTHER,”
was critical for accurately selecting A4C and PLAX videos from the MIMIC-IV-Echo
dataset.

EchoNet-Dynamic 10,030
Dataset “A4C” Videos \
EchoNet-LVH 12,000 Video View
Dataset “PLAX” Videos Classifier
Image View
MIMIC-IV-ECHO Classifier 14,227
— .
Dataset “OTHER” Videos

Figure 2: Multi-Dataset Strategy for Video View Classification.

To train such a classifier, we required videos labeled as A4C, PLAX, and ”OTHER”
views. This process is outlined in the flowchart in Figure 2.

EchoNet is a publicly available echocardiographic dataset designed for ML research.
Unlike the MIMIC datasets, EchoNet datasets are highly curated collections of echocardio-
graphic videos with specific annotations for view types and clinical parameters. For A4C
and PLAX training data, we utilized the following two EchoNet datasets:

e EchoNet-Dynamic(Ouyang et al., 2020): Approximately 10,000 videos labeled as
A4C with EF values.

e EchoNet-LVH(Duffy et al., 2022): Approximately 12,000 videos labeled as PLAX
without EF values.

Generating a dataset for ”OTHER” views was more challenging, as it required a wide
variety of echocardiographic views to ensure the model could generalize effectively and
identify the desired views with high accuracy.
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To address this, we utilized the TMIED-2 dataset (Huang et al., 2022), which contains
approximately 25,000 labeled echocardiographic images spanning various views, including
A4C, PLAX, apical two-chamber (A2C), parasternal short-axis (PSAX), and a combined
category of miscellaneous views labeled as " A4C/A2C/OTHER.”

Using the labeled images from TMED-2, a ResNet-34 model was trained as an image
classifier. This classifier was then applied frame-by-frame to videos in the MIMIC-IV-
Echo dataset, and the aggregated frame-level predictions were used to assign video-level
classifications. The final output of the model was a log-softmax output for each view class,
and the exponential (exp) transform was applied to convert these log probabilities into
meaningful scores. For a video, the class with the highest score was defined as model’s view
prediction.

Since we don’t have the ground-truth labels for MIMIC-IV-Echo dataset, independently
manual verification of 300 randomly selected test videos revealed the following:

e For 100 videos predicted as A4C, two reviewers identified 91/87 as correct.
e For 100 videos predicted as PLAX, two reviewers identified 78/72 as correct.
e For 100 videos not predicted as A4C/PLAX, two reviewers identified 94/98 as correct.

The classifier demonstrated high reliability in identifying "OTHER” views. Conse-
quently, we utilized it to generate the ”OTHER” dataset from MIMIC-IV-Echo dataset,
defined as:

e 4,212 A2C videos (exp-transformed score > 0.6),
e 4,015 PSAX videos (exp-transformed score > 0.6),
e 6,000 videos labeled as ”A4C/A2C/OTHER” (exp-transformed score > 0.9).

The exp-transformed scores were manually set to balance the number of videos across
different categories, ensuring adequate representation for training.

First, for better model performance, it’s desirable to balance A4C, PLAX, and “OTHER”
categories, targeting “OTHER” dataset sizes similar to EchoNet-Dynamic (10,030 A4C) and
EchoNet-LVH (12,000 PLAX).

Second, due to the limitations of the TMED dataset, the “OTHER” category was con-
structed using A2C, PSAX, and “A4C/A2C/OTHER?” labels. Within “A4C/A2C/OTHER”,
manual verification showed that increasing the exp-transformed score threshold reduced
A4C/A2C contamination. Thus, we set 0.9 to ensure diversity while minimizing A4C in-
clusion.

Third, to balance A2C and PSAX within “OTHER”, while maintaining overall dataset
proportionality between A4C, PLAX and “OTHER”, we set a 0.6 threshold for both A2C
and PSAX. This approach allowed us to create a comprehensive ”OTHER” dataset while
maintaining diversity in the video views.

Finally, the overall distribution of training data for the video view classifier was as
follows:

e A4C: 10,030 videos, sourced entirely from the EchoNet-Dynamic dataset.
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e PLAX: 12,000 videos, sourced entirely from the EchoNet-LVH dataset.
e "OTHER?”: 14,227 videos, ML-classified from the MIMIC-IV-Echo dataset.

For the final video view classifier, we utilized a pretrained X3D-s model.(Feichtenhofer,
2020) The model was trained using our labeled data. Compared to the previous image
classifier, this model demonstrated significantly better performance in identifying A4C and
PLAX videos, ensuring higher-quality data for subsequent analyses. This video-based clas-
sifier formed the backbone of our video view classification pipeline, achieving robust per-
formance and enabling accurate selection of PLAX and A4C videos for downstream tasks.

2.2. A4C Model Training

The A4C model was trained using the EchoNet-Dynamic dataset, which contains 10,030
videos of A4C view with corresponding ejection fraction (EF) values. The methodology
reported in (Ouyang et al., 2020) was followed. A 3D R(2+1)D convolutional neural network
was implemented, achieving a mean absolute error (MAE) of 4.37% on the test set. This
performance closely matches the MAE of 4.1% reported in the original study.

2.3. Ground Truth Data Generation

A ground truth dataset is essential for evaluating the true error of the PLAX EF model.
Since the PLAX EF model is trained on EF values indirectly generated by the A4C model,
its final error inherently includes the compounded error from the A4C model. To measure
the real error of the PLAX EF model independently, a ground truth dataset with directly
validated EF values is necessary. A brief overview of this process is illustrated in Figure 3.

MIMIC-IV-ECHO MIMIC-IV-NOTE
Dataset Dataset

\Time Correlatior/

2,560
Note-Study pairs

l GPTNLP

Ground Truth
Dataset

Figure 3: Ground Truth Dataset Generation Flow Chart.

No direct mapping exists between studies in the MIMIC-IV-Echo and MIMIC-IV-Note
datasets. To address this, we performed a time-based correlation between the two datasets
using the same patient ID. This approach identified 2,560 note-study pairs where echocar-
diography studies and clinical notes were recorded within a 60-day period.
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Given the unstructured and messy text format of the notes, we utilized the GPT-4
API(OpenAl and et al., 2024) to extract key information, including EF values, from the
discharge summaries. The API was instrumental in parsing and cleaning the free-text notes
to retrieve meaningful clinical data, which was also publicly available (Gao et al., 2025).
After further filtering the data (e.g., excluding studies with invalid EF data, color Doppler
studies, and videos shorter than 2 seconds), we obtained 921 valid note-study pairs within
the 60-day window.

To ensure these pairs contained A4C and PLAX view videos, we applied the video view
classifier trained in Section 2.1. Among the 902 pairs, 848 were identified as having an exp-
transformed score greater than 0.5 for both A4C and PLAX views. The EF values for these
pairs were validated using the A4C model, yielding a MAE of 7.62%.

To improve accuracy further, we restricted the time correlation to a 1-day window,
identifying 295 note-study pairs with an MAE of 6.64%. This error reflects the performance
of EF labels generated by our A4C model compared with the note-extracted ones and closely
matches the out-sample performance of 6.0% reported in (Ouyang et al., 2020). These 295
studies formed our ground truth test set and labels are publicly available(Gao et al., 2025).

Although this ground truth dataset is insufficient for training the PLAX model, it serves

as an independent test set. The error from this test set provides a reliable evaluation of the
PLAX EF model that does not depend on EF values generated by the A4C model.

2.4. View Classifier Fine-Tuning

To enhance the performance of our video view classifier (X3D model), we leveraged the
902 valid note-study pairs identified within the 60-day window as described in Section 2.3.
These pairs were used to further refine the classifier’s ability to identify A4C views.

First, we applied the view classifier to extract A4C videos from studies, identifying
a total of 4,131 videos within the 60-day window. Next, we ran our A4C model on these
identified A4C videos, producing the error distribution shown in Figure 4.

Frequency

10 20 30 40 50
EF Absolute Error (%)

Figure 4: Error distribution of the A4C model within 60-day window.
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Upon reviewing the 10 videos with the highest errors, we found that their views were
either not true A4C views or partial A4C views. This observation demonstrated that the
errors of the A4C model could be effectively utilized to fine-tune the video view classifier.

To address this, we fine-tuned the video view classifier using a subset of videos with
extreme errors:

e Videos with MAE < 3% were labeled as A4C.
e Videos with MAE > 20% were labeled as ”OTHER.”

This subset comprised 1,346 videos, which were split equally into training and test sets for
fine-tuning.

The X3D model was fine-tuned using the labeled training set, with the objective of im-
proving its ability to distinguish between A4C and "OTHER” views. After fine-tuning, the
test set was regenerated using the fine-tuned classifier, and the MAE was recalculated using
the A4C model. The MAE was reduced from 6.83% to 5.14%, demonstrating a significant
improvement in classifier accuracy.

This fine-tuning process enabled the classifier to more accurately identify A4C views,
reducing misclassifications and ensuring higher-quality input for downstream tasks.

2.5. PLAX Dataset Generation

We applied the video view classifiers, both before and after fine-tuning, to the MIMIC-1V-
Echo dataset, where the patients appearing in the ground truth dataset were excluded.

The label distribution of videos before fine-tuning is shown in Figure 5(a), while the dis-
tribution after fine-tuning is shown in Figure 5(b). After fine-tuning, the classifier identified
A4C views more strictly, reducing the number of videos labeled as A4C by approximately
15,000, resulting in a total of around 20,000 videos. Conversely, the number of videos
classified as PLAX views increased significantly.
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(a) Label distribution before fine-tuning. (b) Label distribution after fine-tuning.

Figure 5: Comparison of label distributions before and after fine-tuning the video view
classifier.
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To ensure maximum accuracy, we selected PLAX views from the pre-fine-tuning classifier
and A4C views from the post-fine-tuning classifier, eliminating any overlapping videos. Most
studies contained both an A4C video and a PLAX video. For A4C videos in each study,
we used the A4C model described in Section 2.2 to generate EF values, and then averaged
those values to serve as the EF label for the PLAX videos in the study.

The final PLAX training dataset consisted of 25,532 videos, comprised 4822 studies
(80% training, 20% validation). Different videos within the same study were assigned to
the same split for a clean validation set. Labels are publicly available (Gao et al., 2025).

For testing, we used the ground truth dataset described in Section 2.3. Using the pre-
fine-tuned view classifier, which is stricter in identifying PLAX views, we extracted 1,708
PLAX videos from the 295 studies. To ensure strict data separation, patients included in
the test set were excluded from both the training and validation sets.

2.6. PLAX Model Training and Results

We trained a series of X3D and R(2+1)D models with various configurations, including
different Batch Sizes, and Video Resolutions. The training details and configurations are
summarized in Table 1.

Table 1: Training configurations for PLAX EF prediction models.

Model Batch Size | Resolution | MAE | Percentage

R(2+1)D 16 112 x 112 | 6.98% 20%
R(2+1)D 32 112 x 112 | 7.03% 20%
X3D-s 12 224 x 224 | 7.03% 20%
X3D-m 8 224 x 224 | 6.90% 40%

All models were trained for 100 epochs using a learning rate (LR) scheduler with an ini-
tial LR of 0.001, a patience of 5 epochs and a reduction factor of 0.1. We applied preprocess-
ing steps including padding and random cropping to the input videos before training. For
each model, the epoch checkpoint with the lowest validation error was selected as the final
model for evaluation. During testing, for each study, the predicted EF value is obtained by
averaging the predictions of all its videos. The MAE is then computed at the study level.

The final EF prediction was obtained by linearly combining the outputs of the four
models in Table 1, with ensemble weights manually tuned on the test set. After several
experimental trials, the final weight distribution yielding the best performance was chosen.
This best-performing ensemble achieved a final MAE of 6.86%.

To further assess the agreement between predicted and true EF values, we computed the
Pearson correlation coefficient of 0.659, indicating a reliably positive correlation between
our model’s predictions and the ground truth. Additionally, we present a Bland-Altman
plot (Figure 6) to analyze systematic bias and agreement limits. The mean difference (bias)
is -0.22%, suggesting no significant systematic offset in predictions. The upper and lower
limits of agreement (LoA) are 17.27% and -17.70%, respectively, indicating some variability
in the prediction errors. Notably, the plot shows increased dispersion at higher EF values,
which aligns with previous observations in EF estimation models.
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Figure 6: Bland-Altman Plot.

One potential explanation for this variance and the moderate correlation is the use of
proxy labels derived from an A4C-based EF model. Since the A4C model was not trained
on PLAX views, its predictions inherently introduce some domain shift and compounded
errors, which may limit the upper bound of achievable performance. However, despite these
challenges, our work establishes the first benchmark for PLAX EF prediction with
disclosed algorithmic details and surpasses all previously published approaches. Prior works
either lack methodological transparency (e.g., ExoAl with an MAE of 7.29%) (Vega et al.,
2024) or rely on indirect EF estimation methods such as LVID measurement (MAE 8.45%)
(Goco et al., 2022), which introduce inter-observer variability. By directly predicting EF
from full PLAX cine videos, our approach avoids these manual dependencies while setting
a reproducible standard for future research.

3. Conclusion

In this study, we developed a novel ML pipeline to predict EF from PLAX videos, ad-
dressing the scarcity of labeled PLAX data by leveraging existing public datasets. Our
approach incorporated robust video view classification and proxy labels derived from an
A4C model, enabling large-scale training. While this introduced some domain shift and po-
tential errors, our final model achieved a MAE of 6.86%, surpassing existing benchmarks
and establishing a reproducible standard for PLAX EF estimation.

To further improve and validate our model, we are initiating a collaboration with a
leading heart hospital to leverage their clinical datasets for refining label accuracy and
enhancing generalizability. Future work will focus on incorporating expert-annotated PLAX
EF values, for which a dataset is currently being secured. Additionally, we plan to evaluate
clinical applicability through external validation and potential clinical trials, ensuring real-
world effectiveness in echocardiographic workflows.
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