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A OVERFITTING ISSUE OF TRAINING LARGE
VISION MODELS IN THE CONTEXT OF
IRSTD

In machine learning theory, a phenomenon known as overfitting
exists, wherein a model excels on the training data but struggles to
generalize to new, unseen data. This phenomenon is often depicted
by a "U-shaped" curve in the model’s performance throughout train-
ing, showing an initial performance increase and then a decrease as
the model converges. As shown in Figure 2, we finetune three large
models: SAM, SAM-HQ, and our teacher model Semantic-SAM
on the SIRST dataset and visualize their performance curves and
training loss. We can see from the figure that, as the training loss
decreases, the performance of all three models grows initially and
then decreases, exhibiting a serious overfitting issue. Although we
mitigate this issue by adopting early stopping to stop the training
process when performance starts to degrade, the potential of these
models is partially constrained, and the performance is inferior to
our proposed model.

B EXCLUDED IMAGE FOR THE IRSTD1K
DATASET

IRSTD1k dataset contains 1001 images. We follow [2] to choose 800
images as the train set. We carefully check the labels and images
of the whole dataset and exclude 6 images from the test set due
to their incorrect or misleading annotations. To ensure fairness,
we test all methods under the same settings and provide details of
these excluded images in Figure 3.

Specifically, in Figure 3a, there is an unannotated bright spot in
the upper right corner of the image. This spot appears similar to
the targets in the center of the image to the naked eye, and there is
insufficient additional information to determine whether it should
be considered a target. In Figure 3b, based on the definition of small
targets given by [1, 2], the plane on the right side of the image
appears too large to be considered a small target. Additionally, the
bright spot framed in red lacks annotation. In figure 3c, the spot
framed in red misses annotation. The ground truth mask of the
target framed in red in Figure 3d is inaccurately labeled, as the mask
appears much larger than the corresponding target itself. Moreover,
we delete Figure 3e. Even to the human eye, it is impossible to
determine if the location marked by a red box is indeed a target.
Finally, we exclude Figure 3f due to missing annotation for the
location indicated by the red box.

C SPEED-ACCURACY TRADEOFFS
In Figure 5, we investigate the throughput and accuracy of our
model against IRSTD SOTA methods, SAM, and SAM variants. Our
model achieves a better trade-off between throughput and accuracy.

Compared to the latest IRSTD methods, our model surpasses UIU-
net, DNA-net, and ISNet by approximately 5 IoU while maintaining
a comparable inference speed to UIU-net. In addition, our approach
outperforms large vision models such as SAM, SAM-HQ, and the
teacher model Semantic-SAM in both performance and throughput,
demonstrating that our proposed method fully harnesses the poten-
tial of generic segmentation models. Despite the faster throughput
of efficient SAM variants like Efficient-SAM and MobileSAM, our
method still reaches ‘real-time’ speed and exceeds them by a large
margin of 9 IoU.

D VISUAL COMPARISON ON THE NUDT
DATASET

In Figure 4, we visually compare outputs of different methods on the
same input image from the NUDT dataset. Our model demonstrates
significant superiority over 10 other methods across different sce-
narios. Concretely, for the first and second input images where the
targets are bright and clear, although all methods can detect and
locate small targets, our model produces outputs with the finest-
grained details closest to the ground truth. In complex scenarios
when targets are dimmer and obscured by their surroundings, such
as the third and fourth input images in Figure 4, other methods
either fail to accurately locate targets or produce low-quality masks.
In contrast, our method consistently delivers robust results, effec-
tively segmenting highly discriminative objects.
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Figure 1: The comparisons of the IoU and throughput on a
single Nvidia GeForce 4090 GPU. The circle size refers to the
model size. Batch size is set to 1, and the experiments are
conducted on the IRSTD1k dataset.
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Figure 2: The performance and training loss curve of SAM, SAM-HQ, and Semantic-SAM on SIRST dataset. We can observe a
"U-shaped" in performance as the training proceeds. This indicates that the model overfits to the dataset
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Figure 3: Deleted images from the testing split of the IRSTD1k dataset
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Figure 4: Visual comparison among 11 methods on the NUDT dataset.
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Figure 5: Details in FPN and modified SAM decoder. The proposed query design effectively levitates multi-level information
and prompts final decoding progress
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