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A Related Works

A.1 Model-free Pushing Manipulation

In model-free pushing manipulation methods, a policy that directly maps a visual observation to a
sequence of pushing actions is learned without learning a pushing dynamics model. They typically
require to design a task-specific reward function and train the policy in an end-to-end manner with
a large amount of data. Researchers have attempted to solve diverse tasks with these methods such
as grasping [1, 2, 3], singulation [4], object rearrangement [5, 6], object sorting [7, 8], and invisible
target object finding [9, 10]. Model-free methods are known to have very good convergence perfor-
mance, but they require a lot of data. Also, when a new task is given, the agent must be trained from
scratch. On the other hand, in model-based approaches, the learned model is reusable given a new
task, and much less additional data is needed.

A.2 Visual Pushing Dynamics Learning

A few studies have proposed data-driven visual pushing dynamics models using trained deep neural
network models. Early works have modeled the object motions with several rigid body transforma-
tions instead of predicting pixel-wise flow from observation [11, 12]. Some works have proposed
object-centric models by representing each object by a visual feature [13, 14, 15], or a segmented
image [16]. However, these works predict the motions of the objects from only partial observation,
so they often predict inaccurate or incomplete object motions. A recent work infers the amodal 3D
geometry of each object on 3D voxel space and uses it to predict the motions to increase the accu-
racy and solve the incompleteness of the above methods [17]. Our work is also in the spirit of [17]
in utilizing the ground-truth information of the objects to increase the accuracy of the prediction.
Still, we use implicit representation for the objects to utilize them for efficient motion prediction and
various manipulations.

A.3 Shape Recognition from Visual Observation

Many works have been proposed to recognize the full 3D shapes from partial observations such
as depth images. Some of them use explicit representation such as occupancy grid [18], point
cloud [19], or mesh [20]. Since they often lead to shape prediction not being precise enough due
to limited resolutions of the representations, recent works have explored learning implicit 3D rep-
resentations for the objects using neural implicit functions [21, 22, 23, 24]. In this paper, we adopt
superquadric functions that balance the expressiveness of the shapes and efficiency of the computa-
tional with a small number of parameters [25]. They have been used for robotic manipulation such
as grasping [26, 27, 28]. We note in our paper that we represent each object as a single superquadric
function, but our work can be easily extended to general implicit representations, especially de-
formable superquadric [29, 30] or a set of superquadrics [31].

A.4 Invariance and Equivariance in Deep Learning and Robot Manipulations

Recently, invariance and equivariance properties turn out to be very important inductive biases for
deep learning models to generalize well and be trained data efficiently [32]. Convolutional neu-
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ral networks (CNNs) have translation equivariance properties, which are particularly suitable for
image recognition tasks [33]. Graph neural networks, point cloud neural networks, and set neural
networks have the permutation invariant properties [34, 35, 36]. More advanced equivariance prop-
erties such as rotational equivariance for image data and SO(3)-equivariance for spherical image
data have been achieved by group equivariant CNNs [37, 38, 39]. In the context of robot manipu-
lations, recent works have adopted these equivariance principles and shown significantly improved
sample efficiency and performance. Some of them use group invariant Q function to achieve the
group equivariant reinforcement learning [40? , 41] or use SE(3)-equivariant object representation
for object manipulation tasks [42]. Our work differs from other works in that we learn equivariant
dynamics model for robot pushing manipulation, and it is novel in that the SE(2)-equivariant dy-
namics model, which is a suitable inductive bias for pushing dynamics, is formulated. Similar to our
approach, there is an approach that performs input transformations to achieve the equivariance [43],
but the model is equivariant for only a few rotations and scales; our model is intrinsically equivariant
to the continuous SE(2) transformations.
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B Details for SE(2)-Equivariant Pushing Dynamics Model

B.1 Pose Decomposition

In the manuscript, we introduce an object pose decomposition method that decomposes an object
pose T ∈ SE(3) to a projected pose to the table denoted by C ∈ SE(3) and the remaining rigid-body
transformation U ∈ SE(3) such that T = CU as shown in the left of Figure 1.

Figure 1: Object Pose Decomposition.

To achieve this, we first calculate the projection matrix U−1 as shown in the right of Figure 1. The
projection matrix is decomposed as M1M2, where M1 ∈ SE(3) is the rotation matrix that aligns
the z-axis of the object pose with the z-axis of the base frame and M2 ∈ SE(3) is the translation
matrix that projects the z-axis-aligned frame to the table surface. If M1M2 is calculated, we can
obtain U = (M1M2)

−1 and C = TM1M2 accordingly.

To calculate M1, we follow the following steps. The vector z and z0 is the z-axis vector of the
base frame T0 and object frame T expressed in the base frame T0 (e.g., z0 = (0, 0, 1)T ). First, we
calculate the inner product and cross product between z and z0 to obtain the following results:

cosφ = z · z0, sinφ = ||z× z0||, w =
z× z0
||z× z0||

,

where w is the rotation axis expressed in T0 and φ is the rotation angle; φ can be obtained by
φ = atan2(sinφ, cosφ). Then the matrix M1 is of the form

M1 =

[
exp([R−1w]φ) 0

0 1

]
, (1)

where R ∈ SO(3) is the rotation matrix part of T, the bracket [·] : R3 → so(3) is the skew-
symmetric operation, and exp : so(3) → SO(3) is the exponential map from rotation vector so(3)
to rotation matrix SO(3). In other words, M1 rotates the frame T by φ with the rotation axis R−1w
which is the axis of the rotation expressed in T. The matrix M2 is simply of the form

M2 =

[
I3 tz
0 1

]
, (2)

where tz = (0, 0,−tz) ∈ R3. We note that (i) M1 and M2 are uniquely defined for given T, (ii)
the projected transformation matrix C = TM1M2 is of the form

C =

[
Rot(ẑ, θ) txy

0 1

]
, (3)

where Rot(ẑ, θ) ∈ SO(3) is a 3 × 3 rotation matrix for rotations around z-axis and txy =
(tx, ty, 0) ∈ R3, and (iii) given a new object frame T′ = CaT (Ca has the form of Equation
(3)) and T = CU, the frame is uniquely expressed by T′ = C′U where C′ = CaC.
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B.2 Proof for Equivariance

Proposition 1. A pushing dynamics model f = {fi}Ni=1 proposed in Section 2 is SE(2)-equivariant,
i.e., given the inputs and outputs

{T′i}Ni=1 = f({(Ti,qi)}Ni=1, (p,v)), (4)

and for all rigid-body transformations that have the following form

C =

[
Rot(ẑ, θ) txy

0 1

]
, (5)

where Rot(ẑ, θ) is a 3× 3 rotation matrix for rotations around z-axis and txy = (tx, ty, 0) ∈ R3,
the model satisfies

{CT′i}Ni=1 = f({(CTi,qi)}Ni=1, (Rot(ẑ, θ)p+ txy,Rot(ẑ, θ)v)). (6)

Proof. It is enough to show that one element fi is SE(2)-equivariant. For convenience, Figure 3
describing fi from the manuscript is excerpted below.

Figure 2: SE(2)-equivariant pushing dynamics neural network architecture for an i-th object, fi.

Since CT′i = (CTi)δTi, the claim that “fi is SE(2)-equivariant” is equivalent to the claim that
“δTi is invariant to the arbitrary transformation C”. This claim suffices to show that the network
inputs are invariant to the transformation C. Below is a description of whether each input is invari-
ant. We note that when Ti is decomposed to Ti = CiUi, the frame CTi is also decomposed to
CTi = (CCi)Ui from the property (iii) above.

Action. Through a series of calculations, we below confirm that the term for the action is invariant.

(CCi)
−1(Rot(ẑ, θ)p+ txy,Rot(ẑ, θ)v)

= C−1i C−1(Rot(ẑ, θ)p+ txy,Rot(ẑ, θ)v)

= ...

= C−1i (p,v)

Ego. The frames Ui are invariant.

Scene. Since (CCi)
−1(CTj) = C−1i Tj for j = 1, ..., N, j 6= i, the terms for the surrounding

objects are also invariant.

In conclusion, δTi is invariant to the arbitrary transformation C, so fi is SE(2)-equivariant. There-
fore, the pushing dynamics model f = {fi}Ni=1 described in Section 2 is SE(2)-equivariant.
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C Implementation Details for Our Overall Methods

C.1 Object Shape and Pose Recognition

The goal of the object shape and pose recognition is to design an algorithm that takes a partial point
cloud of the objects in the scene P ⊂ R3, observed from a (synthetic or real-world) depth camera,
as input and outputs the superquadric representations {qi,Ti}Ni=1, where qi is the shape parameter,
Ti ∈ SE(3) is the pose, and N is the number of the objects. We note that a noise is added to each
point x ∈ P – in detail, x 7→ x +mv where v is uniformly sampled on S2 and m is sampled from
a Gaussian with zero-mean and standard deviation 0.001 – to bridge the sim-to-real gap on vision
sensor data as described in [44, 45]. To achieve this goal to design the algorithm, we first segment
a partially observed point cloud P into a set of object point clouds {Pi}Ni=1, then convert them into
superquadric representations qi and Ti.

From the raw vision sensor data P ⊂ R3, the table points are discarded through plane fitting and
then up/down-sampled to 2048 points. In the other words, the partially observed point cloud P is
processed to P = {xj ∈ R3}nj=1, where n = 2048.

Point cloud segmentation. We use the same architecture and loss function used in [46]. Since our
purpose is just to separate the point cloud, the network should learn permutation-invariant segmen-
tation labels, so the loss function should be invariant by a permutation of prediction. To achieve this,
we first find a bipartite matching between ground-truth and prediction segmentation labels using the
Hungarian algorithm [47], then compute the usual segmentation loss between the matched labels.
This makes the loss function permutation-invariant, and guarantees that the network can separate
the point cloud properly. The trained segmentation network separates the point cloud P into several
object point clouds {Pi}Ni=1.

Superquadric recognition. Our remaining goal is to convert each segmented point cloud Pi to
superquadric representation qi and Ti. We first construct the input representation using not only the
segmented point cloud Pi but also surrounding point cloud P1, · · · ,Pi−1,Pi+1, · · · ,PN . In detail,
we concatenate 1 after each segmented point xj ∈ Pi (i.e., xj = (x, y, z) 7→ (x, y, z, 1)), and 0
after each surrounding point xj ∈ P\Pi. We denote this newly created 4-dimensional point from a
point xj ∈ R3 as xs,j ∈ R4, and denote the set of all these points as Ps,i = {xs,j ∈ R4}nj=1; the
set Ps,i still has n points.

Then, inspired from [30], we design a neural network that takes the point cloud Ps,i = {xs,j ∈
R4}nj=1 as input and outputs the superquadric parameter qi and its pose Ti that best represents
the full object shape as shown in Figure 3. The network consists of (i) the EdgeConv layers [46]
with latent space dimension (64, 64, 128, 256) and max pooling operator to produce a global fea-
ture vector from Ps,i in a permutation-invariant manner and (ii) four fully-connected layers (MLP)
with latent space dimension (512, 256) (with LeakyRelu nonlinearities) to obtain the superquadric
parameter {a1, a2, a3, e1, e2} and the pose T = [R; t] from the extracted global feature. Especially,
each MLP outputs (i) translation vector t ∈ R3, (ii) quaternion vector r ∈ S3 representing the ro-
tation matrix R ∈ SO(3), (iii) size parameters a = (a1, a2, a3) ∈ R3, and (iv) shape parameters
e = (e1, e2) ∈ R2; the values e1 and e2 are bounded in [0.2, 1.7] since the superquadric equation
diverges when e1 and e2 goes to zero and shows too complex shapes when e1 and e2 become large.

Figure 3: Superquadric Recognition network. The red dots are the points with label 1 and the black
dots are the points with label 0 in the partially observed point cloud.
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For the predicted superquadric to fit well with the ground-truth shape, the loss function should
also be designed to be the difference between the prediction and the ground-truth object shapes.
For ground-truth shape, we uniformly sample the points from the surface of the object by Pg,i =
{xg,j ∈ R3}ng

j=1, where ng = 512, and we call Pg,i the ground-truth point cloud of the i’the object.
Then we use the distances from the ground-truth point cloud to the predicted superquadric as the
loss function. The distance form is from [48] which is defined as follows. Only in this Appendix
C.1, the notation for S is abused as follows:

S(x, y, z) =

(∣∣∣∣ xa1
∣∣∣∣ 2
e2

+

∣∣∣∣ ya2
∣∣∣∣ 2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣ 2
e1

, (7)

Then, the distance δ between a point x0 ∈ R3 and a superquadric surface S(x)− 1 = 0 is

δ(x0, S) = ||x0||
∣∣∣1− S− e1

2 (x0)
∣∣∣ , (8)

where ‖ · ‖ denotes the Euclidean norm. Accordingly, the loss function is defined as:

L =
1

ng

ng∑
j=1

δ2(T−1xg,j , S), (9)

where S is defined by the superquadric parameters {a1, a2, a3, e1, e2} and T is its pose.

C.2 Details for SuperQuadric Pushing Dynamics Network (SQPD-Net)

SuperQuadric Pushing Dynamics Network (SQPD-Net) has the structure of SE(2)-equivariant push-
ing dynamics model described in Section 2. The detail of the network architecture is shown in
Figure 4. The input dimensions are as follows: (i) the planar pushing action C−1i (p,v) is repre-
sented by a 5-dimensional vector where the start point is p ∈ R3 and the direction v is represented
by (cos θ, sin θ) ∈ R2 where θ is the pushing direction in the x-y plane, (ii) the i’the object (Ui,qi)
is a 12-dimensional vector where Ui ∈ SE(3) is expressed by 7-dimensional (3-dimensional trans-
lation and 4-dimensional rotation quaternion) and qi ∈ R5, and (iii) the surrounding objects C−1i Tj

for j = 1, ..., N, j 6= i is also 12-dimensional similar to (ii).

Figure 4: Detail network architecture of SQPD-Net.

Action encoder, ego encoder, and scene encoder consist of the shallow MLP layers with latent space
dimension (64, 128) and output feature dimension 256; for scene encoder, an additional MLP layer
with latent dimension (256, 256) is also included. After the three feature vectors are obtained from
the inputs, they are concatenated and a 768-dimensional global feature is obtained. The global
feature then passes through the last MLP layers with size (256, 256, 128, 128, 64, 64) to produce
the motion δTi = [δRi; δti], consists of the translate motion vector δti and rotation motion vector
δRi expressed in quaternion. In this work, we consider the planar pushing motions of the objects,
so the predicted motion δTi is of the form Equation (3). We note that all MLPs are followed by
LeakyRelu nonlinearities.

Distance measure on SO(3). The general distance measure is the Frobenius norm of the difference
of two rotation matrices as follows:

dSO(3)(R1,R2) = ‖R1 −R2‖F , (10)
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where R1,R2 ∈ SO(3) are the rotation matrices. We can use this distance measure for training, but
we only consider planar pushing motions of the objects in this paper, we use simpler distance metric
as follows:

dSO(3)(R1,R2) = 1− cos(θ1 − θ2), (11)
where θ1 and θ2 are the rotation angle of R1 and R2, when the rotation matrices are represented as
Ri = Rot(ẑ, θi)

Shape alignment. Since we use symmetric shapes for the object sets, various solutions can appear
with the different poses of objects when recognition is performed. We introduce a processing tech-
nique that standardizes the recognized object shapes in terms of their poses to reduce the complexity
of data statistics and accelerate the training of the SQPD-Net.

We recall the superquadric equation for convenience of explanation:

S(x, y, z;q, I4) =

(∣∣∣∣ xa1
∣∣∣∣ 2
e2

+

∣∣∣∣ ya2
∣∣∣∣ 2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣ 2
e1

− 1 = 0. (12)

If shape parameters e1 and e2 of the predicted superquadric object are almost equal (i.e., ||e1−e2|| <
0.01), we rearrange the object pose so that the z-axis is close to the surface normal vector of the
table and x-axis is close to the action vector. As the object poses are rearranged, the size parameters
a1, a2, a3 are also rearranged, e.g., if the x-, y-, and z-axis of the original object pose are rearranged
to z-, x-, and y-, the size parameters are changed by (a1, a2, a3) 7→ (a3, a1, a2). Otherwise, there is
no solution for z-axis alignment. So we only rearrange the x-axis of the object pose to be close to
the action vector.

C.3 Details for Grasping Cost Function

This subsection includes the details for the calculation of the grasping cost function.

Candidate grasp poses. When a superquadric representation of the target object is obtained from
the shape and pose recognition, we generate candidate grasp poses. Grasp poses can be generated
in a general superquadric through sampling-based methods [30]; in this work, we use a simple
rule-based method for grasp pose generation. We generate top-down and side grasp poses (with 4
directions) according to the shape of the superquadric. At this time, the two gripper fingers should
be on the antipodal points on the object. For each approaching direction, 6 grasp poses are generated
(maximum 30 grasp poses). Grasp poses with a distance between the antipodal points greater than
7cm are removed from the candidates (the maximum gripper width of the Franka gripper is 8cm).
The grasp poses generated from various object shapes are shown in Figure 5.

Figure 5: Generated candidate grasp poses for various recognized superquadric shapes.
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Figure 6: Gripper mesh, sampled gripper point
cloud from the mesh, and point cloud with the
camera’s point cloud.

Gripper collision detection. After generat-
ing candidate grasp poses, we check the colli-
sions with the environment and the other rec-
ognized objects. The collision detection has
to be computed thousands of times to calcu-
late the cost in one step of sampling-based
MPC (exactly, it is the product of the number
of sampled actions and the number of grasp
poses generated above), so it is difficult to use
the traditional collision checking algorithm be-
tween meshes. Instead, we introduce an ef-
ficient method that utilizes the advantage of
shape recognition through an implicit function.
We first sample the points on the gripper mesh in the maximum open state as shown in Figure 6; the
sampled points are denoted by Pgr = {xgr,j ∈ R3}ngr

j=1, where ngr = 512. For an implicit object
representation S(x) = 0, we note that a point x0 ∈ R3 is inside the object when S(x0) is less than 0
and outside when S(x0) is greater than 0. We use this fact to determine whether the gripper collides
with the objects or tables or not: when the value

min
j
S(T−1gr xgr,j), (13)

where Tgr is the pose of the gripper, is less than 0, then the gripper collides with the object. Through
this, collisions can be checked quickly and efficiently.

In real-world pushing manipulation experiments, the gripper is equipped with an Azure Kinect cam-
era. To account for this, we also sample and use the camera point cloud to check the collision, as
shown in the right of Figure 6. In this case, 1024 points are sampled (i.e., ngr = 1024) on both the
gripper and the camera.

Grasping criteria. Let the recognized shapes’ implicit representations be S1(x) = 0, S2(x) =
0, · · · , SN (x) = 0, and additionally, the table’s implicit representation be SN+1(x) = 0 (the box-
shaped table can also be represented by superquadric equation). Let Tgr,1, · · · ,Tgr,Nc

∈ SE(3) be
the candidate grasp poses. Then the terminal cost is defined by:

q(sT+1) = 1−max
k

[
1(min

i,j
Si(T

−1
gr,kxgr,j) > 0) ◦ 1(Tgr,k is kinematically feasible)

]
, (14)

where i = 1, · · · , N + 1 is the object index, j = 1, · · · , ngr is the gripper point cloud index,
k = 1, · · · , Nc is the candidate grasp pose index, the indicator function 1(·) is Nc-dimensional
vector, and ◦ is the element-wise multiplication. The terminal cost is 0 if at least one kinematically
feasible and collision-free grasp pose exists and 1 otherwise. When the terminal cost achieves 0,
grasping proceeds by selecting one of the grasp poses that satisfy both conditions, i.e., Tgr,k such
that

min
i,j

Si(T
−1
gr,kxgr,j) > 0 and Tgr,k is kinematically feasible. (15)
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D Experimental Details

D.1 Details for Pushing Manipulation Data Generation

This subsection includes further details when generating a pushing manipulation dataset for training
pushing dynamics learning models.

Figure 7: Known (red) and unknown (blue) object shapes
used for data generation.

Object configuration. The objects
consist of cubes and cylinders with
various shape parameters (i.e., width,
height, depth for the cube, and radius,
and height for the cylinder). The
shape parameters are randomly gen-
erated, and 18 different objects are
generated for each box and cylinder
as shown in Figure 7. Then, the ob-
jects are divided into 9/9 known and
unknown sets per shape class. The
known objects are used for training
the pushing dynamics models, and
the unknown objects are used for the
performance evaluation of the trained
models. For data generation, these objects are dropped on the workspace of 0.512m × 0.512m ×
0.192m.

Figure 8: Pushing action sampling
method for a chosen object.

Action sampler. To sample an action (p,v) ∈ R6, we
first randomly choose an object to push and randomly
choose the pushing direction among pre-defined 8 angles
divided equally between 0 to 2π towards the center of the
object pose. The vector v ∈ R3 is then defined from the
pushing direction vector. To determine the pushing start
point p ∈ R3, the height of the pushing point is randomly
chosen within the candidate heights which belong to 5
pre-defined heights divided equally by the workspace height (i.e., 0.192m) and less than the object’s
height. The starting point in the x-y plane is also chosen within the 4 candidates on the pushing
line as shown in Figure 8. For each object, a maximum of 160 action candidates can be generated.
For each action, the trajectory of the robot pushing motion is divided into 10 via points and the end
effector of the robot reaches the via points sequentially and slowly, making the object as quasi-static
as possible.

D.2 Details for Pushing Dynamics Learning Experiments

Details for equivariance study. The models are trained with only one pushing manipulation data
with a single object, which is a 3-tuple (past observation, pushing action, next observation). Then,
the 9 pieces of test data are generated by applying random SE(2)-transformation to the generated
training data (i.e., the object and pose in the training data are subject to the same SE(2) transfor-
mation), and evaluate the trained model on this test dataset. This experiment is conducted on 10
training data with different objects and poses, so the total number of evaluations is 90 times.

Details for pushing dynamics learning. In this experiment, the models are trained with a relatively
large dataset that consists of as follows: For each sequence, the objects are randomly chosen from
the known objects, and randomly dropped on the workspace. The number of objects per sequence
varies from 1 to 4. We sample and execute a maximum of 20 random pushing actions per sequence,
and we stop the sequence when objects’ positions are out of the workspace or objects fall down. We
collect data until the total numbers of data tuples are 12000/1200/1200 for training/validation/test,
respectively. To test the generalization performance for unknown objects, we additionally generate
300 data tuples per the number of objects from 1 to 4, where the objects are randomly chosen from
the unknown objects. So, the unknown test dataset consists of 1200 data tuples. We evaluate the
trained models on both the known and unknown test datasets. The segmentation, recognition, and
motion prediction networks (SQPD-Net) take approximately 21.5 hours, 34 hours, and 16 hours to
train on the RTX3080 Ti, respectively.
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D.3 Details for Pushing Manipulation Experiments

Object configuration. For pushing manipulation experiments on simulation and real-world exper-
iments, we use box- and cylinder-like objects inspired by the YCB dataset [49]. For each task, we
use the object sets shown in Figure 9. In the moving and singulation tasks, a total of 10 experiments
– 5 experiments for 2 object sets – are performed. In the grasping tasks, the “grasping large” and the
“grasping clutter” tasks include 5 experiments for one object set. The objects have different poses
for each experiment. Simulation manipulation experiments are conducted by making objects of the
same size as these.

Figure 9: Object sets used in moving, singulation, and grasping tasks.

Action sampler. We use the same action sampler used in data generation as described in Section
D.1 on the recognized object shapes. When sampling the pushing actions, we reject the actions
that collide with the objects or the table are rejected using the gripper collision detection method
introduced in Section C.3.

Details for pushing manipulation. We use the sampling-based MPCs [50]. At each timestep
t, when the observation ot (for our case, the partially observed point cloud Pt) is obtained, the
shape recognition is performed and obtain the shape parameters qt,i and poses Tt,i. We denote
by st = {(Tt,i,qt,i)}Ni=1. From the recognized objects st, we sample 100 action sequences; the
time horizon of each sequence is one for moving and singulation tasks and three for grasping tasks.
Then, using our trained SQPD-Net, we compute the next objects’ poses (i.e., st+1 = f(st,at)) and
accordingly compute cost functions using st+1 for all sampled actions. Then we find an optimal
action that best minimizes the cost function. The action sequences are resampled and the optimal
action is chosen every timestep t. The success criterion for each task is as follows: (i) moving is
success when the distance between the positions of the objects and the goal positions is less than
5cm on average, (ii) singulation is success when all distances between the objects are more than τ =
20cm, and (iii) grasping is success when at least one grasp pose is found. We note that the candidate
grasp poses for the target object are resampled every timestep t. If the task trial does not succeed
within 10 timesteps, the trial is considered as a failure.

10



E Additional Experimental Results

E.1 Additional Results for Equivariance Study

More examples of the results of the equivariance study in Section 4.1 are shown in Figure 10. The
trend of the experimental results, including 2DFlow and SE3-Net, is similar to the experimental
results in Section 4.1.

Figure 10: The representative three examples of the equivariance study experiments.
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E.2 Additional Results for Pushing Dynamics Learning

More examples for the results of pushing dynamics learning in Section 4.2 are shown in Figure 11
and Figure 12. The trend of the experimental results is also similar to the experimental results in
Section 4.2. The results of 2DFlow, SE3-Net, and SE3Pose-Net, which predict the flow of the point
cloud, show that they have difficulties predicting the motions of the objects at all. 3DFlow and
DSR-Net attempt to predict the motion more than the above methods, but the prediction accuracy is
still not enough. Our SQPD-Net accurately predicts the motion of moving objects.
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Figure 11: The representative examples of the pushing dynamics learning experiments for the num-
ber of objects 1 and 2.
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Figure 12: The representative examples of the pushing dynamics learning experiments for the num-
ber of objects 3 and 4.
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E.3 Pushing Dynamics Learning on Real-world Pushing Data

Figure 13: Execution of pushing action.

In this experiment, we train our SQPD-Net on the real-
world dataset and compare the performance with the
physics-based simulator (PyBullet). We generate a real-
world pushing manipulation dataset using four cube-
shaped objects of different sizes shown in Figure 13. In
this case, one scene contains only one of these four ob-
jects. For each scene, the object is placed in a fixed
pose (rotated 22.5◦ degrees with respect to the robot’s
base frame), then we sample and execute one of the 20
different random pushing actions per object; so the total
number of data tuples is 80. To annotate the pose of the
object before and after the pushing action, we use the Iter-
ative Closest Point (ICP) algorithm that matches the point
cloud observation to the ground-truth object model. We
then divide the four objects into three known objects and one unknown object; the known objects
are used to train our R-SQPD-Net, and the unknown objects are used to evaluate the trained model.
The number of cases of dividing objects is four, and the model is trained and evaluated in all these
cases. We denote the model trained in box a, b, c and evaluated in box d as “a, b, c → d”. To get
the predictions of PyBullet, we drop the superquadric object given by our trained recognition model
into the simulator and let the robot simulator perform the same pushing action that is performed in
the real-world.

Figure 14 shows the motion of the objects predicted by the PyBullet simulator and trained R-SQPD-
Net. As shown, both PyBullet and R-SQPD-Net tend to predict the position and approximate direc-
tion of the objects after movement. However, R-SQPD-Net predicts the orientation of the predicted
object much better. This is due to some differences between the dynamic natures of PyBullet and
the real-world. Since our model is trained directly from data collected in the real-world, it can
predict the dynamics of pushing objects well. In order to quantitatively verify this fact, translation
and rotation errors are measured for the poses of the predicted objects as shown in Table 1. We
have confirmed that R-SQPD-Net outperforms PyBullet overall, and especially, our model performs
much better in terms of rotation errors. In conclusion, we verify that our model can be successfully
trained on real-world data. Also, the simulator is somewhat accurate, but to perform more accurate
pushing manipulations in the real-world, we should collect a dataset from the real-world and train
the model on this dataset.

Figure 14: Real-world ground-truth pushing data (yellow) and pushing dynamics prediction results
of PyBullet physics simulator (blue) and trained R-SQPD-Net (green). The initial pose of the object
before being pushed is indicated in gray color.
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Table 1: Translation and rotation errors computed with real-world data.

PyBullet R-SQPD-Net
MODEL translation (cm) rotation (◦) translation (cm) rotation (◦)
2,3,4→ 1 1.025 ± 0.520 8.129 ± 7.206 0.681 ± 0.349 4.304 ± 4.091
1,3,4→ 2 1.007 ± 0.599 4.000 ± 3.658 0.972 ± 0.580 3.581 ± 3.110
1,2,4→ 3 0.963 ± 0.702 13.038 ± 7.357 0.800 ± 0.347 4.197 ± 3.508
1,2,3→ 4 0.847 ± 0.541 4.584 ± 3.308 0.674 ± 0.512 2.995 ± 2.346

E.4 Pushing Manipulation via Interaction

To verify that our model R-SQPD-Net works well for cases where multi-object interactions are
essential to achieve the goal, we have conducted a new pushing manipulation task named interactive
moving.

Interactive moving is similar to moving task in that the goal is to move some objects, but here it
is a task that moves one target object to the desired pose. In this case, the robot should not push
the target object. The current pose of the target object and the desired pose are given as Tt and
Td ∈ SE(3) respectively, then we define a terminal cost function as

q(sT+1) = ‖tT+1 − td‖22, (16)

where the notation t(·) denotes the translation vector of T(·). We set the desired positions td as
(0.3, 0.0, t0,z); the task is described in the left of Figure 15. Since the robot cannot directly push the
target object, it must move the target object to the desired position by pushing other objects. That
is, this task essentially requires interaction between multi-objects. We sample 100 action sequences
and the time horizon of each sequence is set to one.

Figure 15: Real-world manipulation results using R-SQPD-Net for the interactive moving task (the
target object is the cylinder surrounded by cubes). The red arrow at each recognition step means the
optimal pushing action.

Figure 15 shows some manipulation results for interactive moving tasks. In the case of the first row,
it succeeded in moving the target object to the desired position by pushing the yellow box. Even in
the case of the slightly difficult case in the second row, our approach can find the series of actions
that sequentially push the yellow and green boxes so that successfully perform the desired task. In
conclusion, We verify that R-SQPD-Net can learn multi-object interaction well and that it can be
used properly in manipulation tasks.

E.5 Supplementary Videos for Pushing Manipulation Experiments

Pushing manipulation videos can be found at https://www.youtube.com/watch?v=OLoAHhf7vk0.
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E.6 Failure cases for Pushing Manipulation

There are some failure cases for pushing manipulation, and some representative examples of the
failure cases are shown in Figure 16.

Figure 16: The representative examples of the failure cases for pushing manipulation.

The first case is the result of a failure to recognize the shape; this leads to inaccurate calculation
of task objective function or unexpected collision with the objects (left of the Figure 16). Also, to
prevent the object from falling down, we provide a constraint so that the center of the object is inside
the workspace. The constraint sometimes did not work and the object falls down from the table since
recognition and trained dynamics are not perfectly accurate (center of the Figure 16). The second
case prevalent is the failure of sim-to-real transfer of the pushing dynamics model. Such cases occur
when pushing the standing long cylinder, in detail, when the same pushing action is performed, the
cylinder does not fall over in the simulation but sometimes falls over in the real-world experiment
(right of the Figure 16). These unexpected object motions cause the performance drop of the pushing
manipulation tasks.
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