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Abstract

We deal with the state distributional shift problem commonly encountered in offline
reinforcement learning during test, where the agent tends to take unreliable actions
at out-of-sample (unseen) states. Our idea is to encourage the agent to follow
the so called state recovery principle when taking actions, i.e., besides long-term
return, the immediate consequences of the current action should also be taken
into account and those capable of recovering the state distribution of the behavior
policy are preferred. For this purpose, an inverse dynamics model is learned and
employed to guide the state recovery behavior of the new policy. Theoretically,
we show that the proposed method helps aligning the transited state distribution of
the new policy with the offline dataset at out-of-sample states, without the need
of explicitly predicting the transited state distribution, which is usually difficult in
high-dimensional and complicated environments. The effectiveness and feasibility
of the proposed method is demonstrated with the state-of-the-art performance on
the general offline RL benchmarks.

1 Introduction

Reinforcement learning has made significant advances in recent years, but it has to collect experience
actively to gain understanding of the underlying environments. However, such online interaction is
not always practical, due to either the potential high cost of data collection procedure or its possible
dangerous consequences in applications as autonomous driving or healthcare. To address these issues,
offline reinforcement learning aims to learn a policy from offline datasets without doing any actual
interaction with the environments [19, 13, 1].

However, directly deploying online RL algorithms, such as Deep Deterministic Policy Gradient [18],
to learn the new policy from the offline dataset without proper constraints would highly likely suffer
from action distributional shift due to the change in the actions generated by the new policy. This
would result in the so called extrapolation error [8], i.e., the TD target could be wrongly estimated
when querying those out-of-distribution (OOD) actions generated by the new policy. To address these
issues, methods like Conservative Q-Learning (CQL) [16], TD3+BC [7] and Implicit Q-Learning
(IQL) [14], treat the OOD actions as conterfactual queries and try to avoid performing such queries
completely during learning, hence suppressing the Q-function extrapolation error. However, such
pessimism for out-of-sample data could be too restricted and sample inefficient, as not all out-of-
sample(unseen) states are not generalizable [20].

To effectively generalize to out-of-sample or even OOD states, it is necessary to constrain the behavior
of agent at those states, otherwise the policy extrapolation error that occurs at test stage may drive the
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Figure 1: An example of CQL agent’s failure for the accumulative error due to state distributional
shift on a Walker2d robotic agent. The interval between every two images is ten steps.

agent’s transited state distribution away from the offline dataset, referred as the state distributional
shift problem - a problem has not been paid enough attention as most previous works focus on
addressing the issues of OOD actions during training [16, 7]. The problem of state distributional shift
is likely to arise in those extensive and non-stationary environments, where it is impossible for the
agent to cover the entire state space during training. A brief example is illustrated in Figure 1, where
a robotic agent, trained using offline RL frameworks like CQL, is knocked by some external force
unintentionally and falls into an out-of-sample state during test, which leads to failure finally due to
the unreliable actions taken at this out-of-sample(unseen) state [3] and the error confounding effects.

To deal with the above problem, a natural idea is to teach the agent to recover from these out-of-
sample states to their familiar regions, i.e., the demonstration of offline datasets. For this purpose, we
propose the Out-of-sample State Recovery (OSR) method to implement this state recovery principle.
Our idea is to estimate the actions whose consequence would be in the support region of the offline
dataset using inverse dynamics model (IDM) [2]. The estimated IDM can be interpreted as an
extended policy with pre-defined consequences, hence being suitable for guiding the learning of the
new policy. Theoretically, we show that the proposed OSR makes the transited state distribution
of the learnt policy at out-of-sample states align well with the offline dataset, without the need of
building any forward dynamics models. We also propose a modified OSR-v that suppresses the
probability of selecting actions according to the risk of OOD consequences through imposing extra
value-constraints when decision making. We experimentally2 demonstrated that the proposed OSR
outperforms several closely related state-of-the-art methods in offline AntMaze/MuJoCo control
suites with various settings.

In what follows, after an introduction and a review of related works, Section 3 provides a concise
introduction to the background of offline RL and our work. The OSR method is presented in detail
with theoretical analysis of its effectiveness in Section 4.2. The variant of OSR, called OSR-v, is then
introduced with theoretical analysis of its advantages in Section 4.3. In Section 4.4, the practical
implementation of both methods is described, including the loss function used. Experimental results
are presented in Section 5 to evaluate the effectiveness of both methods under various settings. Finally,
the paper concludes with a summary of the findings and contributions.

2 Related work

Robust offline reinfocement learning. Robustness is critical for offline RL methods to implement
in real-world applications. Recent work RORL [25] adds smoothing term to relax the conservatism
of algorithms like Conservative Q-Learning, making the agent generalize to out-of-sample states.
ROMI [23] introduce reverse mechanism to build links between isolated data clusters based on
out-of-sample data. However, it is still possible that the agent would drift away from the dataset as the
results of the well-known error compounding effects due to the myopic of the new policy, referred as
state distributional shift problem, which is more important in practical applications. For example, in
healthcare [12], it is critical for the agent to make decisions with safe consequences, i.e., generating
reliable trajectories. Theoretically, it is shown that control the divergence of the learnt policy from
the behavior policy helps to bound the state distributional shift [22], but the bound is actually very
loose [15]. Recently model-based State Deviation Correction (SDC) [27] builds a dynamics model
and a transition model to guide the agent to generate in-distribution trajectories, through which to
enhance the agent’s safety and controllability. However, building a high-capacity dynamics model is
not always practical in complicated applications, highlighting the necessity to constraint the agent’s
behavior without constructing any forward model to predict the high-dimensional observations.

2Our code is available at https://github.com/Jack10843/OSR
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Inverse dynamics model. An inverse dynamics model I(a|s′, s) predicts the action distribution
that explains the transition between a given pair of states. Inverse dynamics models haven been
applied to improving generalization to real-world problems [6], Markov representation learning [2],
defining intrinsic rewards for exploration [5]. In our work, the inverse dynamics model is interpreted
as a consequence-constraint policy that generates action distributions with predictable consequences,
which in turn plays the role of supervision to the new policy.

3 Background

A reinforcement learning problem is usually modeled as a Markov Decision Process (MDP), which
can be represented by a tuple of the form (S,A, P,R, γ), where S is the state space, A is the action
space, P is the transition probability matrix, R and γ are the reward function and the discount factor.
A policy is defined as π : S → A and trained to maximize the expected cumulative discounted reward
in the MDP:

max
π

E
[ ∞∑
t=0

γR(st, π(at|st))
]

(1)

In general, we define a Q-value function Qπ(s, a) = E[
∑∞

t=0 γR(st, π(at|st))|s, a] to represent the
expected cumulative rewards. Q-learning is a classic method that trains the Q-value function by
minimizing the Bellman error over Q [24]. In the setting of continuous action space, Q-learning
methods use exact or an approximate maximization scheme, such as CEM [11] to recover the greedy
policy, as follows,

Q← argmin
Q

E
[
R(s, a) + γEa′∼π(·|s′)Q(s′, a′)−Q(s, a)

]2
π ← argmax

π
EsEa∼π(·|s)Q(s, a) (2)

In offline setting, Q-Learning algorithms learns a Q-value function Qπ(s, a) and a policy π from a
dataset D, which is collected by a behavior policy πβ . Since there is always an action distributional
shift of the new policy π and the behavior policy πβ , this basic recipe fails to estimate the Q-values
for OOD state-action pairs. Conservative Q-Learning (CQL), as a representative OOD-constraint
offline RL algorithm, tries to underestimate the Q-values for OOD state-action pairs to prevent the
agent from extrapolation error [16]. The CQL term is as follows,

min
Q

[
Es∼D,a∼π(·|s)Q(s, a)− Es,a∼DQ(s, a)

]
(3)

However, at test stage, there still exists a static state distributional shift of the new policy π and the
behavior policy πβ , which may accumulate the discrepancy between the agent and demonstration of
the dataset. To migrate this, State Deviation Correction (SDC) [27] aims to train a policy choosing
actions whose visited states are as closer to the dataset as possible. Specifically, the SDC trains a
dynamics model M and a transition model U , to optimize the new policy, as follows,

min
π

λ · Es∼DD
(
M(·|ŝ, π(·|ŝ)), U(·|s)

)
(4)

where ŝ is a perturbed version of the original state s, λ > 0 is the weight for the SDC regularization,
and D is a distance measure, which is maximum mean discrepancy (MMD) in [27].

4 Out-of-sample state recovery using inverse dynamics

In this section, we first describe our Out-of-sample State Recovery (OSR) method in detail, as a policy
regularization onto the actor loss, which is introduced in detail in section 4.2. Then we also propose a
variant of OSR, OSR via value-constraints (OSR-v), for the purposes to reduce the hyperparameters
and test the feasibility of practising state recovery principle in different modes, in section 4.3. Finally,
we specifically describe how to implement OSR and OSR-v in practice in section 4.4.

4.1 Noise injection onto dataset

It is well-known that noise injection is helpful to address the covariate shift problem in deep learn-
ing [17]. While this technique is adopted in [27] to simulate the OOD states, in this work we interpret
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the states perturbed with linear Gaussian noise as counter-examples on how to recover from those
states into in-sample states. Given an offline dataset D, which consists of quadruples (s, a, r, s′), we
first perform data augmentation onto it to form a mixed dataset.

Specifically, given a quadruple (s, a, r, s′), we perturb the state s to obtain a noisy state,

ŝ = s+ β · ϵ (5)

where ϵ is sampled from the standard Gaussian distribution N (0, 1) and β is usually set to be a small
constant. Besides, we could also utilize more complex methods to perturb the states, such as the
adversarial attacks in [25]. In this way, we obtain a set of perturbed quadruples (ŝ, a, r, s′) , and
group them into a new perturbed dataset D̃. Note that we do not perturb the next state s′, to preserve
the destination we wish the agent to jump from ŝ.

Finally we combine the two datasets D and D̃ to form a new dataset Dtot, i.e., Dtot = D+ D̃, where
each element in Dtot is denoted as (s̃, a, r, s′). Next we describe how to train a inverse dynamics
model to learn how to safely perform transition from {s̃} to s′.

4.2 Learning to recover from out-of-sample states via policy-constraints

A inverse dynamics model (IDM), denoted as Iπβ (a|s, s′), is defined in terms of the behavior policy
πβ , dynamics model P (s′|s, a) and the transition function P (s′|s, πβ) via Bayes’ theorem, as follows,

Iπβ (a|s, s′) = πβ(a|s)P (s′|s, a)
P (s′|s, πβ)

(6)

where P (s′|s, πβ) =
∑
a∈A

P (s′|s, a)πβ(a|s). Note that to learn a IDM model, we don’t have to

estimate the dynamic model of the environment but only needs to treat this task as a usual function
approximation problem using a neural network. In particular, using the quadruples (s̃, a, r, s′) in
Dtot, the needed IDM Iπβ (a|s, s′) can be estimated using a probabilistic regression model with s̃, s′

as input and action a as output.

With the estimated IDM model available, we interpreted it as an extended policy with desired
immediate consequence known, illustrating how to recover from out-of-samples into in-sample(safe)
states, then use it to guide the learning of the new policy. In this work, we use the Kullback-
Leibler(KL) divergence to measure the divergence between two distributions. In particular, we
minimize the KL divergence between Iπβ (a|s̃, s′) and the new policy π(a|s̃), as follows,

min
π

Es̃∼DtotKL
(
Es′∼P (s′|s,πβ)I

πβ (a|s̃, s′)
∥∥∥π(a|s̃)) (7)

where the s̃ is sampled from the mixed dataset Dtot and s′ is its in-sample consecutive state.
(7) is the OSR term aiming to play the same role of traditional model-based SDC, but with-
out modeling the high-dimensional observations. Obviously, (7) utilizes a forward KL diver-
gence, in which the difference between Iπβ (a|s̃, s′) and π(a|s̃) is weighted by Iπβ (a|s̃, s′).
Minimizing this forward KL divergence is equivalent to maximizing the policy likelihood as,
maxπ Es̃∼Dtot,s′∼P (s′|s,πβ),a∼Iπβ (a|s̃,s′)[log π(a|s̃)], which is easy to achieve by the definition of
KL divergence. In this manner, the learnt policy π is able to recover the average behavior of the IDM
Es′∼P (s′|s,πβ)I

πβ (a|s̃, s′) with greatest probability.

To further explain the feasibility of OSR term, Theorem 1 shows that the OSR term aligns the transited
state distribution of the learnt policy with the offline dataset at out-of-sample states in the setting of
bounded action space, which is enough to meet the requirements of most RL environments. First, two
assumptions are given to serve Theorem 1 in Appendix A, where the assumptions give the continuity
and positivity for the transition function of πβ , and the positivity for the new policy we train. Then,
Theorem 1. Given two consecutive state s and s′, the out-of-sample state ŝ within the ϵ-
neighbourhood of s and the behavior policy πβ . Given an inverse dynamics model Iπβ (a|s, s′).
In bounded action space setting, the following two optimization formulas are equivalent,

min
π

KL
(
Es′∼P (s′|s,πβ)I

πβ (a|ŝ, s′)
∥∥∥π(a|ŝ))⇐⇒ min

π
KL

(
P (s′|s, πβ)

∥∥∥P (s′|ŝ, π)
)

, that is, the two optimization formulas achieve the same policy.
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The proof of Theorem 1 is conducted in Appendix B.1. It theoretically guarantees that OSR have
the effect that the learnt policy is regularized to recover the transited state distribution P (s′|ŝ, π) at
out-of-sample state ŝ aligned well with the transited state distribution P (s′|s, πβ) of the behavior
policy πβ at the corresponding in-sample state s. For the fact that the offline dataset is generated
via the behavior policy πβ , then P (s′|s, πβ) is the in-distributional transited state distribution of
the offline dataset. Therefore, we remark that OSR helps aligning the new policy’s transited state
distribution P (s′|ŝ, π) at out-of-sample state ŝ with the offline dataset. Interestingly, we find that the
term minπ KL

(
P (s′|s, πβ)

∥∥P (s′|ŝ, π)
)

could also be termed as a KL-divergence version of SDC
introduced in (4).

4.3 Value-constraint out-of-sample state recovery: a variant

In this section, we propose Out-of-sample State Recovery via value-constraints (OSR-v) as a variant
of OSR proposed before. The proposed OSR-v penalizes the Q-values of those actions that prefer
transiting to OOD states at out-of-sample states, which drives the agent able to choose the actions that
transits to in-sample states, recovering from out-of-sample states. In particular, given two consecutive
states s̃ and s′ sampled from the mixed dataset Dtot constructed before, we overestimate the Q-values
of actions that transits to in-sample states, i.e., actions generated by the IDM Iπβ (·|s̃, s′), while
suppressing the Q-values of actions with unknown consequences, i.e., actions generated by the new
policy π, as follows,

min
Q

Es̃,s′∼Dtot

(
Eâ∼π(·|s̃)Q(s̃, â)− Eâtar∼Iπβ (·|s̃,s′)Q(s̃, âtar)

)
(8)

where âtar refers to the action sampled from IDM, which is referred as target action.

In practice, we observe that OSR-v enable the agent to follow the state recovery principle as well. In
order to rigorously explain this phenomenon, we give Theorem 2 under the assumptions mentioned
in Appendix A to show that performing OSR-v is equivalent to underestimating the value of OOD
states while overestimating the value of in-sample states, which guides the agent prefer to transit to
those in-sample(safe) states, avoiding error accumulated via state distributional shift.
Theorem 2. Given two consecutive state s and s′, the out-of-sample state ŝ within the ϵ-
neighbourhood of s and the behavior policy πβ . π is the new policy. Define Q(s, a) as a approximal
Q-value function and V (s) as a approximal value function. Given an inverse dynamics model
Iπβ (a|s, s′). Then the following two optimization formulas are approximately equivalent:

min
Q

Eâ∼π(·|ŝ)Q(ŝ, â)− Eâtar∼Iπβ (·|ŝ,s′)Q(ŝ, âtar) (9)

∼⇔min
V

Es′∼P (s′|ŝ,π)V (s′)− Es′∼P (s′|s,πβ)V (s′) (10)

, that is, they achieve the same policy approximately. Then the difference of the two optimization
formulas is no larger than 2δ

∑
a πβ(a|ŝ)Q(ŝ, a).

The proof of Theorem 2 is conducted in Appendix B.4. Theorem 2 demonstrates the approximate
equivalence of (9) and (10). There is actually a little gap between (9) and (10) which is caused by
the existence of the continuous gap δ, so when δ is large, (9) and (10) are quite different. However,
if we assume the infinite norm of reward function ∥R∥∞ ≤ 1, then 2δ

∑
a πβ(a|ŝ)Q(ŝ, a) ≤ 2δ

1−γ ,
where γ is the discount factor, and by the conservative selection of the magnitude of the noise ϵ, the δ
would be a quite tiny value in practice.

The s′ sampled from P (s′|s, πβ), the state distribution aligned with the offline datasetD, is in-sample,
then overestimating of such s′ increases the agent’s preference to transiting to in-sample states, which
is supported by the reasoning presented in Proposition 1, as follows,
Proposition 1. Given an arbitrary state s and its target state s′. Q is an approximal Q-value function
and V is its value function. πQ is the learnt policy according to Q. Let πQ(a|s) is positive correlated
to Q(s, a), noted as πQ(a|s) ∝ Q(s, a), and assume ∃a, P (s′|s, a) > 0, then P (s′|s, πQ) ∝ V (s′).

The proof and more discussion of Proposition 1 is conducted in Appendix B.2. For the fact that
out-of-sample(noisy) state ŝ is close to s, the in-sample prior of s′, so we assume ∃a, P (s′|ŝ, a) > 0,
and via Proposition 1, Es′∼P (s′|s,πβ)P (s′|ŝ, π) ∝ Es′∼P (s′|s,πβ)V (s′). Therefore, the result of
Theorem 2 and Proposition 1 guarantees that OSR-v can align the transited state distribution of the
new policy with the offline dataset, avoiding compounding state distributional shift as well.
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4.4 Implementation and algorithm summary

We implement our methods, OSR and OSR-v, introduced in previous sections based on an Conserva-
tive Q-Learning(CQL) framework to practice the state recovery principle in the setting of countinuous
action space, without modeling the dynamics of the environment. To be specific, we would implement
OSR in policy-constraint mode and OSR-v in value-constraint mode.

Policy-constraint mode (OSR). The policy-constraint based method, OSR proposed in (7), could
be implemented as SR loss Lsr in (11), where the detailed derivation is presented in Appendix B.5.

Lsr = Es̃,s′∼DtotKL
(
Iπβ (a|s̃, s′)

∥∥∥π(a|s̃)) (11)

Then the problem is to estimate the KL divergence in (11) under the condition of continuous
action space. In general, we often model the policy as π(a|s̃) = N (µπ, σπ; s̃) and the IDM as
Iπβ (a|s̃, s′) = N (µI , σI ; s̃, s

′), where N notes Gaussian distribution. First, we construct the SR
loss for the policy network to estimate the KL divergence mentioned in (11).

There is an analytical solution for calculating the KL divergence between two Gaussian distributions,
the Gaussian policy π(a|s̃) = N (µπ, σπ; s̃) and the Gaussian IDM Iπβ (a|s̃, s′) = N (µI , σI ; s̃, s

′),
so we can transfer (11) as the following SR loss:

Lsr = Es̃,s′∼Dtot

[ D∑
d=1

(log
σd
I

σd
π

+
(σd

I )
2 + (µd

I − µd
π)

2

2(σd
π)

2
)
]

(12)

where subscript d represents the value of dth dimension of the D − dimensional variable. After
constructing the term of OSR in the settings of both discrete and continuous action space, we construct
the actor loss function of the policy network as follows,

Lπ = Es̃∼Dtot,â∼π(·|s̃)

[
Q(s̃, â)

]
+ λLsr

where λ is the balance-coefficient and the Lsr is as (12) in the setting of continuous action space.
Lsr imply a behavior cloning from the target distribution estimated via the inverse dynamics model
Iπβ (·|s̃, s′) to our new policy to enable the agent always transits to those in-sample states s′ from no
matter in-sample s or out-of-sample ŝ, i.e., s̃ from the mixed dataset Dtot mentioned in section 4.1.
Then the critic loss function for the Q-networks is,

LQ = Es,a,r,s′∼D

[
α ·

(
Eâ∼π(â|s)Q(s, â)−Q(s, a)

)
+
(
r + γEa′∼π(·|s′)Q(s′, a′)−Q(s, a)

)2]
where α is the balance-coefficient; The second term is an one-step Bellman error, as (2) shows.

Value-constraint mode (OSR-v). We note the term of (8) mentioned in section 4.3, as Lsr−v, to
regularize the Q-networks. Then the critic loss function for the Q-networks is as follows,

LQ = α · Lsr−v + Es,a,r,s′∼D

[
r + γEa′∼π(·|s′)Q(s′, a′)−Q(s, a)

]
where Lsr−v = Es̃,s′∼Dtot

(
Eâ∼π(·|s̃)Q(s̃, â)− Eâtar∼Iπβ (·|s̃,s′)Q(s̃, âtar)

)
where α is the balance-coefficient. We replace the CQL regularization, because Lsr−v would degrade
to CQL regularization when it performs on the in-sample part(the original offline dataset D) of the
mixed dataset Dtot, as Proposition 2 shows.
Proposition 2. When training on the original dataset D, Lsr−v is equivalent to CQL regularization.

The proof of Proposition 2 is conducted in Appendix B.3. Proposition 2 shows the feasibility of
replacing the term of CQL by the OSR term, so that fewer hyperparameters are introduced. Lsr−v

overestimates the actions that prefer transiting to in-sample sates to avoid error accumulation. Then
the actor loss Lπ we use in OSR-v is as follows,

Lπ = Es̃∼Dtot,â∼π(·|s̃)
[
Q(s̃, â)

]
To sum up, both OSR and OSR-v optimize actor loss Lπ to update the policy network π and critic
loss LQ to update our Q-networks, and output the learnt policy network π. The whole process of
OSR is summarized in Algorithm 1 in Appendix C while the whole process of OSR-v is summarized
as Algorithm 2 in Appendix C.
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Table 1: Results of OSR(ours), OSR-v(ours), SDC, RAMBO, MOPO, IQL and CQL on offline
MuJoCo and AntMaze control tasks averaged over 4 seeds. * indicates the average without ’expert’
datasets. The top-2 highest scores in each benchmark are bolded.

Task name CQL IQL MOPO RAMBO SDC OSR OSR-v

Halfcheetah-r. 35.4 13.1 31.9 40.0 36.2 35.2± 1.2 35.9± 1.0
Walker2d-r. 7.0 5.4 13.3 11.5 14.3 13.5± 2.8 14.1± 3.9
Hopper-r. 10.8 7.9 13.0 21.6 10.6 10.3± 3.1 13.5± 3.4
Halfcheetah-m. 44.4 47.4 40.2 77.6 47.1 48.8± 0.2 49.1± 0.4
Walker2d-m. 79.2 78.3 26.5 86.9 81.1 85.7± 0.6 85.1± 0.7
Hopper-m. 58.0 66.2 14.0 92.8 91.3 83.1± 1.9 95.2± 1.1
Halfcheetah-m.-r. 46.2 44.2 54.0 68.9 47.3 46.8± 0.4 48.5± 0.6
Walker2d-m.-r. 26.7 73.8 92.5 85.0 30.3 87.9± 1.1 87.8± 1.0
Hopper-m.-r. 48.6 94.7 42.7 96.6 48.2 96.7± 1.7 101.2± 0.8
Halfcheetah-m.-e. 62.4 86.7 57.9 93.7 101.3 94.7± 0.9 99.1± 0.4
Walker2d-m.-e. 98.7 109.6 51.7 68.3 105.3 114.3± 1.5 112.9± 0.8
Hopper-m.-e. 111.0 91.5 55.0 83.3 112.9 113.1± 0.6 113.2± 0.6
Halfcheetah-e. 104.8 95.0 - - 106.6 97.7± 0.7 102.1± 0.8
Walker2d-e. 153.9 109.4 - - 108.3 110.3± 0.4 111.4± 0.8
Hopper-e. 109.9 109.9 - - 112.6 113.1± 0.5 112.9± 0.4
MuJoCo-v2 Avg. 66.5 68.9 41.1* 68.5* 70.2 76.7(69.2*) 78.9(71.5*)
AntMaze-u. 74.0 87.5 0.0 25.0 89.0 89.9±1.9 92.0±0.8
AntMaze-m.-p. 61.2 71.2 0.0 16.4 71.9 66.0±2.5 71.3±1.3
AntMaze-l.-p. 15.8 39.6 0.0 0.0 37.2 37.9±2.7 38.3±2.5
AntMaze-u.-d. 84.0 62.2 0.0 0.0 57.3 74.0±2.8 69.0±2.5
AntMaze-m.-d. 53.7 70.0 0.0 23.2 78.7 80.0±2.7 77.0±2.4
AntMaze-l.-d. 14.9 47.5 0.0 2.4 33.2 37.9±1.5 34.0±2.2
AntMaze-v0 Avg. 50.6 63.0 0.0 22.3 61.2 64.3 63.4

5 Experiments

In experiments we aim to answer: 1) Does the proposed OSR help to achieve the state-of-the-art
performance in offline RL? 2) Is the inverse dynamics model able to guide the policy recovering from
out-of-sample states? 3) Is OSR able to improve the agent’s robustness for out-of-sample situations?
4) Does OSR generalize well if the offline dataset only covers limited valuable area of the state space.
Our experiments are organized as follows: Firstly, we conduct a comparative study on the MuJoCo
and AntMaze benchmarks in the D4RL datasets for different versions of our method; then we design
an out-of-sample MuJoCo setting to evaluate the generalization ability of CQL, SDC, the proposed
OSR and OSR-v, and explore the behavior of the inverse dynamics model(IDM) and OSR policy;
finally, we test the efficacy of OSR when presented with limited valuable data. A brief introduction
of our code is available in Appendix D.9. MuJoCo. There are three types of high-dimensional
control environments representing different robots in D4RL: Hopper, Halfcheetah and Walker2d,
and five kinds of datasets: ’random’, ’medium’, ’medium-replay’, ’medium-expert’ and ’expert’.
The ’random’ is generated by a random policy and the ’medium’ is collected by an early-stopped
SAC [9] policy. The ’medium-replay’ collects the data in the replay buffer of the ’medium’ policy.
The ’expert’ is produced by a completely trained SAC. The ’medium-expert’ is a mixture of ’medium’
and ’expert’ in half. AntMaze. AntMaze in D4RL is a maze-like environment where an ant agent
must navigate through obstacles to reach a goal location. There are three different layouts of maze:
’umaze’, ’medium’ and ’large’, and different dataset types: ’fixed’, ’play’ and ’diverse’ which has
different start and goal locations used to collect the dataset. Hyperparameter Details. We base
the hyperparameters for OSR on those used in CQL [16]. We observe the performance of OSR is
influenced by the noise magnitude β and SR weighting λ. Therefore, we conduct a sensitivity analysis
of OSR in Appendix D.1.

Other experiments, including Sensitive Analysis, Ablation study, Comparison Study of implementa-
tions with Q-ensemble trick and so on, are attached in Appendix D.
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5.1 Comparative study on offline MuJoCo/AntMaze suite

In this section, we compare our methods with several significant methods, including MOPO [26],
RAMBO [21], IQL [14], CQL [16] and SDC [27], on the D4RL dataset in the MuJoCo benchmarks.
Part of the results for the comparative methods are obtained by [27, 21]. All these methods are
implemented without Q-ensemble trick [4] and results are shown in Table 1, where the proposed
OSR and OSR-v achieve the similar or better performance than other methods on most tasks and
the best average score, and we also remark that OSR and OSR-v generalize significantly better on
the ’medium-expert’ datasets where limited high-valuable data is available. More training details of
OSR/OSR-v could be achieved in Appendix D.3. Besides, we also implement OSR with Q-ensemble
trick of 10 Q-functions [4], termed as OSR-10, to compare with Q-ensemble based methods like
RORL [25], SAC-10 and EDAC-10 [4], in Appendix D.4. From the results above, we conclude that
OSR helps to achieve the state-of-the-art performance in offline RL.

5.2 Out-of-sample MuJoCo setting

To evaluate whether the inverse dynamics model and the proposed OSR policy enable the agent to
recover from out-of-sample situations, we design Out-of-sample MuJoCo (OOSMuJoCo) benchmarks
by adding different steps of random actions (Gaussian noise with magnitude of 1e-3) to simulate
external force to knock the agent into out-of-sample states on Halfcheetah, Walker2d and Hopper.
There are 3 levels of external force: slight(s) takes 5 steps of random actions, moderate(m) takes 10
steps and large(l) takes 20 steps. The visualization of OOSMuJoCo is shown in Figure 2.

Figure 2: The visualizations of the 9 OOSMuJoCo benchmarks. The red arrows represent the
direction the agents move after external force, and the agents fall into out-of-sample states then.

We evaluate the performance of policies trained by CQL, SDC, OSR and OSR-v on ’medium-
expert’ datasets in the three benchmarks. The score and performance decrease of these policies
across the 9 OOSMuJoCo benchmarks are shown in Table 2, where the performance decrease
is measured as the percentage reduction in scores from OOSMuJoCo compared to the results of
standard MuJoCo environments in Table 1. Our results indicate that the proposed OSR/OSR-v
experiences significantly less performance degradation than the other two methods across most of the
OOSMuJoCo benchmarks, demonstrating better robustness against perturbation for out-of-sample
situations in the complicated and non-stationary real-world environments.

Table 2: Results of CQL, SDC, OSR/OSR-v in OOSMuJoCo setting on the normalized return and
decrease metric averaged over 4 seeds. The hightest score and lowest decrease are bolded.

CQL SDC OSR OSR-v
Task name score dec.(%) score dec.(%) score dec.(%) score dec.(%)

Halfcheetah-OOS-s. 56.2 10.0 100.9 0.4 94.1 0.6 98.4 0.7
Halfcheetah-OOS-m. 52.9 15.3 99.8 1.5 92.7 2.1 98.4 0.7
Halfcheetah-OOS-l. 42.1 32.5 83.3 17.8 91.7 3.2 79.8 19.5
Walker2d-OOS-s. 81.1 47.3 102.7 2.5 113.3 0.9 110.3 2.3
Walker2d-OOS-m. 77.4 21.6 102.2 2.9 113.2 1.0 110.9 1.8
Walker2d-OOS-l. 52.0 47.3 95.6 9.2 110.1 3.7 106.7 5.5
Hopper-OOS-s. 110.4 0.6 112.0 0.6 111.4 1.5 112.5 0.6
Hopper-OOS-m. 97.3 12.3 110.8 1.9 109.2 3.4 112.2 0.9
Hopper-OOS-l. 54.4 51.0 89.2 20.9 106.1 6.2 105.6 6.7

Besides, as a toy example, we visualize the Halfcheetah agent within an expert trajectory produced
by the behavior policy πβ on the offline dataset D, as is shown in Figure 3, then we also visualize
the trajectories generated by the policy of OSR and the inverse dynamics model(IDM) guided from
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the behavior policy, where we set the target state of IDM to the corresponding state in the expert
trajectory. We add external force to knock the agent into an out-of-sample state and we observe
that the agents equiped with IDM and OSR policy are both able to recover from the out-of-sample
states. The state recovery processes of other 2 benchmarks is shown in Appendix D.5.2 and the
visualizations of state distribution is shown in Appendix D.5.1. The results above demonstrate that
the the inverse dynamics model is able to guide the policy recovering from out-of-sample state and
OSR is able to improve the agent’s robustness for out-of-sample situations.

Figure 3: The state recovery process via IDM and OSR on the ’Halfcheetah-OOS-large’ benchmark.
The interval between every two images is ten steps.

5.3 Limited valuable data setting

In this section, we test our method’s feasibility when only limited valuable data is available for
training, which is a novel task with the mixture of the expert dataset and random dataset with different
ratios [27], aiming to evaluate the robustness of ORL algorithms on the condition that the offline
dataset only covers limited valuable state space. In this paper, the proportions of random samples
are 0.5, 0.6, 0.7, 0.8 and 0.9 and the ratios of expert samples decline, for Halfcheetah, Hopper and
Walker2d. All datasets contain 1,000,000 samples.

Figure 4: The curve of CQL, SDC and OSR in the setting of limited valuable data.

We compare the proposed OSR with CQL and SDC in a limited valuable data setting. The results,
shown in Figure 4, demonstrate that all methods experience performance degradation when expert
samples are limited. However, our proposed method, OSR, achieves the lowest performance decrease
with the raise of the random sample ratio among the three methods in most tasks, which suggests that
our method is less sensitive to the quality of training data. The results above mean that even if the
dataset covers only limited valuable area of the extensive state space, the proposed OSR still works.

6 Conclusion

In this paper, we proposed a simple yet effective method, named Out-of-sample State Recovery
(OSR), for offline reinforcement learning. The proposed method follows the state recovery principle
to deal with the state distributional shift issue commonly encountered in offline RL. Unlike previous
methods, we address this in a way that does not need to explicitly model the transition of the
underlying environment by treating the inverse dynamics model as a guidance with desired immediate
consequence for the new policy. Our theoretical results show that the proposed OSR is equivalent to
aligning the transition distribution of the learnt policy with the offline dataset. The proposed method
is evaluated on several offline AntMaze/MuJoCo settings and achieved the SOTA performance.
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Appendix

A Two assumptions

Assumption 1. The transition function P (s′|s, πβ) could be considered as a function according to
variable s, that is f(s). Then we assume this function is continuous:

∀ϵ,∃δ, s.t.∥s− ŝ∥ ≤ ϵ⇒
∥P (s′|s, πβ)− P (s′|ŝ, πβ)∥ ≤ δ

and ∀s, s′, we have P (s′|s, πβ) > 0.

By Assumption 1, we could easily infer:

∀ϵ,∃δ, s.t.∥s− ŝ∥ ≤ ϵ⇒

1− δ ≤ P (s′|s, πβ)

P (s′|ŝ, πβ)
≤ 1 + δ

Assumption 2. Assume the new policy we train is a soft exploration policy, which choose every
action a from the action set A with probability ϵπ at least at each state s in S, i.e., ∀s ∈ S, a ∈
A, π(a|s) ≥ ϵπ > 0.

The rationality of this comes from the boundedness of action space A. For example, one typical way
we model the policy π is to construct a Gaussian distribution. Noting the upper bound of the action
space A is aupp and the lower bound is alow, then ϵπ = min(π(aupp|s), π(alow|s)) > 0.

B Proofs

B.1 Proof of Theorem 1

Theorem 1. Given two consecutive state s and s′, the out-of-sample state ŝ within the ϵ-
neighbourhood of s and the behavior policy πβ . Given an inverse dynamics model Iπβ (a|s, s′).
In bounded action space setting, the following two optimization formulas are equivalent,

min
π

KL

(
Es′∼P (s′|s,πβ)I

πβ (a|ŝ, s′)
∥∥∥∥π(a|ŝ)) (13)

⇐⇒ min
π

KL

(
P (s′|s, πβ)

∥∥∥∥P (s′|ŝ, π)
)

(14)

, that is, the two optimization formulas achieve the same policy.
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Proof.

min
π

KL

(
Es′∼P (s′|s,πβ)I

πβ (a|ŝ, s′)
∥∥∥∥π(a|ŝ))

⇔min
π

∑
a

∑
s′

P (s′|s, πβ)
πβ(a|ŝ)P (s′|ŝ, a)

P (s′|ŝ, πβ)
log

∑
s̃′

P (s′|s, πβ)
πβ(a|ŝ)P (s̃′|ŝ, a)
P (s̃′|ŝ, πβ)π(a|ŝ)

⇔min
π

∑
a

∑
s′

P (s′|s, πβ)
πβ(a|ŝ)P (s′|ŝ, a)

P (s′|ŝ, πβ)
log

1

π(a|ŝ)

≤min
π

(1 + δ)
∑
a

∑
s′

πβ(a|ŝ)P (s′|ŝ, a) log 1

π(a|ŝ)
(Assumption1)

⇔min
π

∑
a

∑
s′

πβ(a|ŝ)P (s′|ŝ, a) log ϵπP (s′|ŝ, πβ)

π(a|ŝ)

≤min
π

∑
a

∑
s′

πβ(a|ŝ)P (s′|ŝ, a) log P (s′|ŝ, πβ)∑
a π(a|ŝ)P (s′|ŝ, a)

(Assumption2)

⇔min
π

∑
s′

P (s′|ŝ, πβ) log
P (s′|ŝ, πβ)

P (s′|ŝ, π)

≤min
π

∑
s′

P (s′|s, πβ)

1− δ
log

P (s′|s,πβ)
1−δ

P (s′|ŝ, π)
(Assumption1)

⇔min
π

∑
s′

P (s′|s, πβ) log
P (s′|s, πβ)

P (s′|ŝ, π)

⇔min
π

KL

(
P (s′|s, πβ)

∥∥∥∥P (s′|ŝ, π)
)

(15)

On the other hand:

min
π

KL

(
Es′∼P (s′|s,πβ)I

πβ (a|ŝ, s′)
∥∥∥∥π(a|ŝ))

⇔min
π

∑
a

∑
s′

P (s′|s, πβ)
πβ(a|ŝ)P (s′|ŝ, a)

P (s′|ŝ, πβ)
log

1

π(a|ŝ)

≥min
π

(1− δ)
∑
a

∑
s′

πβ(a|ŝ)P (s′|ŝ, a) log 1∑
a π(a|ŝ)P (s′|ŝ, a)

(Assumption1)

⇔min
π

∑
s′

P (s′|ŝ, π) log P (s′|ŝ, πβ)

P (s′|ŝ, π)

≥min
π

∑
s′

P (s′|s, π)
1 + δ

log

P (s′|s,πβ)
1+δ

P (s′|ŝ, π)
(Assumption1)

⇔min
π

∑
s′

P (s′|s, πβ) log
P (s′|s, πβ)

P (s′|ŝ, π)

⇔min
π

KL

(
P (s′|s, πβ)

∥∥∥∥P (s′|ŝ, π)
)

(16)

Combining (15) and (16), we complete the proof.

B.2 Proof of Proposition 1

Proposition 1. Given an arbitrary state s and its target state s′. Q is an approximal Q-value function
and V is its value function. πQ is the learnt policy according to Q. Let πQ(a|s) is positive correlated
to Q(s, a), noted as πQ(a|s) ∝ Q(s, a), and assume ∃a, P (s′|s, a) > 0, then P (s′|s, πQ) ∝ V (s′).
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Proof.

πQ(a|s) ∝ Q(s, a) (17)

⇒πQ(a|s) ·
∑
s′

P (s′|s, a) ∝ R(s, a) + γ
∑
s′

P (s′|s, a)V (s′) (18)

⇒
∑
s′

[
πQ(a|s) · P (s′|s, a)

]
∝

∑
s′

P (s′|s, a)
[
R(s, a) + γV (s′)

]
(19)

⇒
[
πQ(a|s) · P (s′|s, a)

]
∝ P (s′|s, a)

[
R(s, a) + γV (s′)

]
(20)

⇒
∑
a

[
πQ(a|s) · P (s′|s, a)

]
∝

∑
a

P (s′|s, a)R(s, a) + V (s′) · γ
∑
a

P (s′|s, a) (21)

⇒P (s′|s, πQ) ∝ C1(s, s
′) + V (s′) · C2(s, s

′, γ) (22)

⇒P (s′|s, πQ) ∝ V (s′) (23)

complete the proof.

Proposition 1 shows that from any state s, overestimating the value of a target state s′ would enhance
the potentiality for the agent to transit to this target s′(except the condition that s′ is unreachable
from s, i.e., ∀a, P (s′|s, a) = 0). In this paper, the transition we wish the agent to take is from
the noisy ŝ of s to the s′ which is known reachable from s. For the reason that ŝ is not very far
away from s, so we can assume s′ is reachable from ŝ, and by Proposition 1, we conclude that
Es′∼P (s′|s,πβ)P (s′|ŝ, π) ∝ Es′∼P (s′|s,πβ)V (s′). For the fact that P (s′|s, πβ) is the transited state
distribution conditioned on s that aligned with the offline dataset D, we conclude overestimating of
in-sample s′ increases the agent’s preference to transiting to in-sample states.

B.3 Proof of Proposition 2

Proposition 2. When training on the original dataset D, Lsr−v is equivalent to CQL regularization.

Proof. The proof is performed on the equivalence of OSR and CQL regularizations given an in-sample
state s:

min
Q

Ea∼π(a|s)Q(s, a)− Es′∼P (s′|s,πβ)Ea∼Iπβ (a|s,s′)Q(s, a)

⇔ min
Q

Ea∼π(a|s)Q(s, a)−
∑
s′

P (s′|s, πβ)
∑
a

πβ(a|s)P (s′|s, a)
P (s′|s, πβ)

Q(s, a)

⇔ min
Q

Ea∼π(a|s)Q(s, a)−
∑
a

πβ(a|s)Q(s, a)

⇔ min
Q

Ea∼π(a|s)Q(s, a)− Ea∼πβ(a|s)Q(s, a)

⇔ CQLregularization

Complete the proof.

B.4 Proof of Theorem 2

Theorem 2. Given two consecutive state s and s′, the out-of-sample state ŝ within the ϵ-
neighbourhood of s and the behavior policy πβ . π is the new policy. Define Q(s, a) as a approximal
Q-value function and V (s) as a approximal value function. Given an inverse dynamics model
Iπβ (a|s, s′). Then the following two optimization formulas are approximately equivalent:

min
Q

Eâ∼π(·|ŝ)Q(ŝ, â)− Eâtar∼Iπβ (·|ŝ,s′)Q(ŝ, âtar) (24)

∼⇔ min
V

Es′∼P (s′|ŝ,π)V (s′)− Es′∼P (s′|s,πβ)V (s′) (25)

, that is, they achieve the same policy approximately. Then the difference of the two optimization
formulas is no larger than 2δ

∑
a πβ(a|ŝ)Q(ŝ, a).
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Proof. First we derive the upper bound of (24):

min
Q

Eâ∼π(·|ŝ)Q(ŝ, â)− Eâtar∼Iπβ (·|ŝ,s′)Q(ŝ, âtar)

⇔min
Q

∑
a

π(a|ŝ)Q(ŝ, a)−
∑
s′

P (s′|s, πβ)
∑
a

πβ(a|ŝ)P (s′|ŝ, a)
P (s′|ŝ, πβ)

Q(ŝ, a)

⇔min
Q

∑
a

[
π(a|ŝ)−

∑
s′

P (s′|s, πβ)
πβ(a|ŝ)P (s′|ŝ, a)

P (s′|ŝ, πβ)

]
Q(ŝ, a)

≤min
Q

∑
a

[
π(a|ŝ)− (1− δ)πβ(a|ŝ)

]
Q(ŝ, a) (Assumption1)

Similarly, we have the lower bound of (24):

min
Q

Eâ∼π(·|ŝ)Q(ŝ, â)− Eâtar∼Iπβ (·|ŝ,s′)Q(ŝ, âtar)

≥min
Q

∑
a

[
π(a|ŝ)− (1 + δ)πβ(a|ŝ)

]
Q(ŝ, a)

Then we derive the upper bound of (25):

min
V

Es′∼P (s′|ŝ,π)V (s′)− Es′∼P (s′|s,πβ)V (s′)

⇔min
V

∑
s′

P (s′|ŝ, π)V (s′)−
∑
s′

P (s′|s, πβ)V (s′)

≤min
V

∑
s′

P (s′|ŝ, π)V (s′)−
∑
s′

(1− δ)P (s′|ŝ, πβ)V (s′) (Assumption1)

⇔min
V

∑
s′

∑
a

π(a|ŝ)P (s′|ŝ, a)V (s′)−
∑
s′

(1− δ)
∑
a

πβ(a|ŝ)P (s′|ŝ, a)V (s′)

⇔min
V

∑
a

[
π(a|ŝ)− (1− δ)πβ(a|ŝ)

]
·
[
γP (s′|ŝ, a)V (s′) +R(ŝ, a)−R(ŝ, a)

]
(BellmanEquation)

⇔min
Q

∑
a

[
π(a|ŝ)− (1− δ)πβ(a|ŝ)

][
Q(ŝ, a)−R(ŝ, a)

]
⇔min

Q

∑
a

[
π(a|ŝ)− (1− δ)πβ(a|ŝ)

]
Q(ŝ, a)

Similarly, we have the lower bound of (25):

min
V

Es′∼P (s′|ŝ,π)V (s′)− Es′∼P (s′|s,πβ)V (s′)

≥min
Q

∑
a

[
π(a|ŝ)− (1 + δ)πβ(a|ŝ)

]
Q(ŝ, a)

Therefore, for the face that (24) and (25) have the same upper and lower bounds, we conclude that

min
Q

Eâ∼π(·|ŝ)Q(ŝ, â)− Eâtar∼Iπβ (·|ŝ,s′)Q(ŝ, âtar) (26)

is approximately equivalent to:

min
V

Es′∼P (s′|ŝ,π)V (s′)− Es′∼P (s′|s,πβ)V (s′) (27)

for the fact that they would achieve the similar policy. Then we subtract the upper bound
∑
a

[
π(a|ŝ)−

(1− δ)πβ(a|ŝ)
]
Q(ŝ, a) with the lower bound

∑
a

[
π(a|ŝ)− (1 + δ)πβ(a|ŝ)

]
Q(ŝ, a), and we can get

the bound of the difference between (24) and (25), which is 2δ
∑

a πβ(a|ŝ)Q(ŝ, a).

Complete the proof.
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B.5 Explanation of the difference between the theory and implementation

First, we add the original s to the tuple (s̃, s′) in the Dtot for clearer derivation, as (s, s̃, s′). And it
looks like that the proposed optimization objective (Eq.7) is not equivalent to its actual implementation
(Eq.11), i.e.,

E(s,s̃)∼Dtot
DKL

[
Es′∼P (s′|s,πβ)I

πβ (a|s̃, s′)
∥∥∥∥π(a|s̃)] ̸= E(s,s̃)∼Dtot

Es′∼P (s′|s,πβ)DKL

[
Iπβ (a|s̃, s′)

∥∥∥∥π(a|s̃)]
, where P (s′|s, πβ) is the transition distribution.

However, these two optimization problems are actually equivalent, in the sense that they induce the
same solution,

argmin
π

E(s,s̃)∼Dtot
DKL

[
Es′∼P (s′|s,πβ)I

πβ (a|s̃, s′)
∥∥∥∥π(a|s̃)]

=argmin
π

E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)DKL

[
Iπβ (a|s̃, s′)

∥∥∥∥π(a|s̃)]
In what below, we give the detailed derivation,

argmin
π

E(s,s̃)∼Dtot
DKL

[
Es′∼P (s′|s,πβ)I

πβ (a|s̃, s′)
∥∥∥∥π(a|s̃)]

=argmin
π

E(s,s̃)∼Dtot

∑
a

Es′∼P (s′|s,πβ)I
πβ (a|s̃, s′) log

Es′′∼P (s′′|s,πβ)I
πβ (a|s̃, s′′)

π(a|s̃)

= argmin
π

E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)

∑
a

Iπβ (a|s̃, s′) log
Es′′∼P (s′′|s,πβ)I

πβ (a|s̃, s′′)
π(a|s̃)

= argmin
π

E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)

∑
a

Iπβ (a|s̃, s′) logEs′′∼P (s′′|s,πβ)I
πβ (a|s̃, s′′)

+ E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)

∑
a

Iπβ (a|s̃, s′) log 1

π(a|s̃)
(28)

Note the term E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)

∑
a I

πβ (a|s̃, s′) logEs′′∼P (s′′|s,πβ)I
πβ (a|s̃, s′′) in Eq.(28)

is a constant w.r.t. π, hence we can remove it as follows,

(28)

= argmin
π

E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)

∑
a

Iπβ (a|s̃, s′) log 1

π(a|s̃)
(29)

We remark that E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)

∑
a I

πβ (a|s̃, s′) log Iπβ (a|s̃, s′) is a constant w.r.t. π, so
we can add it onto Eq.(29) as follows,

(29)

=argmin
π

E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)

∑
a

Iπβ (a|s̃, s′) log 1

π(a|s̃)

+ E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)

∑
a

Iπβ (a|s̃, s′) log Iπβ (a|s̃, s′)

= argmin
π

E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)

∑
a

Iπβ (a|s̃, s′) log Iπβ (a|s̃, s′)
π(a|s̃)

= argmin
π

E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)DKL

[
Iπβ (a|s̃, s′)

∥∥∥∥π(a|s̃)] (30)
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And then we can remove the expectation w.r.t. s′ in Eq.(30) with Monte Calro approximation with
the sample number N as 1,

argmin
π

E(s,s̃)∼Dtot
Es′∼P (s′|s,πβ)DKL

[
Iπβ (a|s̃, s′)

∥∥∥∥π(a|s̃)]
≈ argmin

π
Es̃∼Dtot

1

N

N∑
i=1

DKL

[
Iπβ (a|s̃, s′i)

∥∥∥∥π(a|s̃)]
≈ argmin

π
Es̃∼Dtot

DKL

[
Iπβ (a|s̃, s′)

∥∥∥∥π(a|s̃)] (31)

where Eq.(31) is the Eq.(11) in our paper.

C Alogrithms

The pseudoccode of OSR is listed in Algorithm 1, and the pseudoccode of OSR-v is listed in
Algorithm 2.

Algorithm 1 Policy-constraint Out-of-sample State Recovery (OSR)
Input: mixed offline dataset Dtot, maximal update iterations T ,
Parameter: policy network π, Q-networks Q1, Q2, inverse dynamics model I ,
Output: learnt policy network π

1: Initialize the policy network, Q-networks and the inverse dynamics model.
2: Let t = 0.
3: while t < T do
4: Sample mini-batch of N samples (s̃, a, r, s′) from Dtot.
5: Train the inverse dynamics model I .
6: Feed s̃ to the policy network π and get µπ, σπ .
7: Get â = µπ + σπ · ϵ, where ϵ ∼ N (0, 1).
8: Feed s̃ and s′ to the inverse dynamics model I and get µI , σI .
9: Update the policy network π according to,

Lsr = Es̃,s′∼Dtot

[
log
|σI |
|σπ|

+ tr(σ−1
π σI) + (µI − µπ)

Tσ−1
π (µI − µπ)

]
Lπ = Es̃,s′∼Dtot,â∼π(·|s̃)

[
Q(s̃, â)

]
+ λLsr.

10: Update the Q-networks according to,

LQ = Es,a,r,s′∼D

[
α ·

(
Eâ∼π(â|s)Q(s, â)−Q(s, a)

)
+

(
r + γEa′∼π(·|s′)Q(s′, a′)−Q(s, a)

)2]
.

11: end while
12: return learnt policy network π.
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Algorithm 2 Value-constraint Out-of-sample State Recovery (OSR-v)
Input: offline dataset Dtot, maximal update iterations T ,
Parameter: policy network π, Q-networks Q1, Q2, inverse dynamics model I ,
Output: learnt policy network π

1: Initialize the policy network, Q-networks and the inverse dynamics model.
2: Let t = 0.
3: while t < T do
4: Sample mini-batch of N samples (s̃, a, r, s′) from Dtot.
5: Train the inverse dynamics model I .
6: Feed s̃ to the policy network π and get â.
7: Feed s̃ and s′ to the inverse dynamics model I and get âtar.
8: Update the policy network π according to,

Lπ = Es̃∼Dtot,â∼π(·|s̃)
[
Q(s̃, â)

]
9: Update the Q-networks according to,

Lsr−v = Es̃,s′∼Dtot

(
Eâ∼π(·|s̃)Q(s̃, â)− Eâtar∼Iπβ (·|s̃,s′)Q(s̃, âtar)

)
LQ = α · Lsr−v + Es,a,r,s′∼D

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
10: end while
11: return learnt policy network π.

D More experimental results

D.1 Sensitive analysis over hyperparameters

In this section, we perform sensitive analysis on two key hyperparameters: the balance-coefficient λ
and the noise magnitude β to evaluate how these hyperparameters influence the performance of OSR.

Sensitive analysis on β. The β is the hyperparameter that control the magnitude of the noise that
add to our mixed dataset Dtot for training. Its influence to OSR is as shown in Figure 5, where the
curve is smoothed by a Gaussian filter. The performance of the learnt policy is best when the β is
1e-3; takes second place when the β equals to 5e-3; is worst when the β is 1e-2. From the results,
we conclude that when β is too large, the agent would fail to be well trained over some or all seeds.
Therefore, we ought to conservatively choose the value of β and experience suggests the β should be
no bigger than 2e-3 for ’walker2d’ benchmark, 5e-3 for ’hopper’ and ’3e-3’ for ’halfcheetah’.

Figure 5: The sensitive results of β. (a) is on ’halfcheetah-medium-expert’, (b) is on ’hopper-medium-
expert’ and (c) is on ’walker2d-medium-expert’.

Sensitive analysis on λ. The λ is the weight for the OSR regularization that affects the magnitude
of conservatism of OSR. The sensitivity of this hyperparameter to the performance of OSR is as
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shown in Figure 6, where the curve is smoothed by a Gaussian filter. The learnt policy performs best
when λ equals to 1.0; slight poor when λ is 0.5; worst when λ is 0.1. Therefore, we can conclude that
if λ is too small, OSR may fail to train the policy, and experience suggests that the λ should range
from 0.5 to 1.0.

Figure 6: The sensitive results of λ. (a) is on ’halfcheetah-medium-expert’, (b) is on ’hopper-medium-
expert’ and (c) is on ’walker2d-medium-expert’.

To further evaluate how the hyperparameters λ and β affect the performance, we have attached more
results of sensitive analysis based on the normalized score metrics as follows,

Table 3: Sensitive analysis on ’Halfcheetah-medium-expert’

λ
β 1e-5 1e-4 1e-3 1e-2 1e-1

0(CQL) 62.4 62.4 62.4 62.4 62.4
0.01 58.7 59.3 64.6 62.1 46.5
0.1 54.2 76.4 83.4 63.7 50.3
0.5 75.4 87.9 94.6 82.3 33.6
1.0 73.2 89.2 92.4 46.7 34.4
10.0 64.7 67.9 76.5 43.9 32.7

Table 4: Sensitive analysis on ’Hopper-medium-expert’

λ
β 1e-5 1e-4 1e-3 1e-2 1e-1

0(CQL) 111.0 111.0 111.0 111.0 111.0
0.01 109.3 110.2 111.6 46.3 20.6
0.1 111.4 112.1 111.3 29.1 18.7
0.5 111.5 112.3 112.9 17.1 20.4
1.0 112.1 111.7 113.0 17.4 14.5
10.0 98.3 70.8 69.6 22.6 13.3

Table 5: Sensitive analysis on ’Walker2d-medium-expert’

λ
β 1e-5 1e-4 1e-3 1e-2 1e-1

0(CQL) 98.7 98.7 98.7 98.7 98.7
0.01 101.1 102.5 104.6 94.1 33.3
0.1 103.2 108.9 112.4 97.6 16.6
0.5 109.4 112.6 114.1 83.3 16.8
1.0 108.2 110.1 113.8 84.7 20.1
10.0 101.7 100.8 89.1 72.8 17.1
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From the results, we observe that we should be cautious in choosing a β that is not very large;
otherwise, it could lead to failure. We remark that it is better to choose the appropriate hyperparameters
in the neighborhood of the bold data listed in the table above.

D.2 Ablation study

D.2.1 Ablation study on the CQL term

We have conducted a more comprehensive ablation study on three environments, shown in the Table
below, where each row gives the normalized scores of a specific compared ablated method.

Table 6: Ablation study on the CQL term

Halfcheetah-m.-e. Hopper-m.-e. Walker2d-m.-e.
QL 9.8 0.3 0.2
QL+BC 41.2 44.7 73.6
QL+IDM 47.5 53.9 80.2
CQL 62.4 98.7 111.0
CQL+BC 85.7 111.8 104.3
CQL+IDM(OSR) 94.7 114.3 113.1

Based on the above results, we have the following observations:

1.the IDM model is useful - we can see that the performance ranking is: OSR > CQL+BC > CQL ,
where BC denotes traditional behavior cloning (using behavior policy). The IDM can be thought of
as a behavior cloning but taking the consequence of an action into consideration when cloning that
action.

2.regulating the Q function search space is important for the generalization capability of an offline RL
agent - note that if we replace CQL with standard QL in OSR, we have the following performance
ranking: OSR>QL+IDM>QL+BC, which shows that the CQL-stlye value function learning is
important both for IDM and BC. One possible reason for this is that the agent is trained under the
actor-critic framework where both value function and policy play a role, and most importantly, in the
setting of offline RL, conservative learning like CQL is critical for suppressing extrapolation error
and overestimation, as pointed out by the reviewer.

3.IDM and CQL are complementary to each other - the IDM provides a way to guide the agent to
navigate to safer regions, which allows the agent to learn more smart behavior when encountering
unfamiliar states - in the sense that the desired behaviors of an agent should be rational (i.e., being
less likely to be punished by the objective function of CQL ) not only under normal in-distribution
states but under difficult unseen situations as well (this latter point is less studied in current literature)
. The IDM can also be thought of as a mechanism to control the training procedure of CQL, such that
it will behave less ’overly-conservatively’ during learning, potentially improving its generalization
capability.

D.2.2 Ablation study on the noise injection

We have conducted a more comprehensive ablation study, and the results are shown in the Table
below,

Table 7: Ablation study on the noise injection

Halfcheetah-m.-e. Hopper-m.-e. Walker2d-m.-e.
CQL 62.4 98.7 111.0
CQL+BC 85.7 111.8 104.3
CQL+BC(s.) 91.8 111.2 109.2
CQL+BC(s.a.) 88.3 111.4 108.9
OSR(β=0) 92.3 111.8 110.1
OSR 94.7 114.3 113.1
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First, we run our OSR algorithm with the noisy level being zero and compare it with CQL - an OSR
baseline without the inverse dynamic model (IDM). The results indicate that our OSR (β=0) (the 5th
row) outperforms CQL (the 1st row) significantly on the 3 tasks. This demonstrates the significance
of the inverse dynamics model (IDM) in helping the agent to navigate to more safe regions. Similar
performance improvement can be observed if we replace the IDM model with the behavior policy
(see the CQL + BC setting, the second row), but its effect is not so significant as our OSR method.

Then we introduce the state noise into our base model OSR (β=0). The results show that this further
improves the performance of the OSR by 2-3 (last row), and adding noise improves the performance
of CQL + BC (the 3rd and the 4th row) as well except on the Hopper task, while the proposed
OSR(>0) method consistently improves the performance over all the three environments.

D.3 Training details

In this section, we introduce our training details, including: 1) the hyperparameters and how they
were choosen; 2) the structure of the neural networks we use: the Q-networks, inverse dynamics
model network and policy network; 3) the total amount of compute and the type of resources used.

D.3.1 Hyperparameters

In Table 8 and 9, we give the hyperparameters used by OSR and OSR-v to generate Table 1 results.
In fact, we have already evaluated the influence of the hyperparameters noise magnitude β and SDC
weight λ in Appendix D.1.

Table 8: The hyperparameters used by OSR to generate Table 1 results.

Task name noise magnitude β OSR weight λ CQL weight α

Halfcheetah-random 1e-3 0.5 10.0
Walker2d-random 1e-3 0.5 5.0
Hopper-random 1e-3 0.5 5.0
Halfcheetah-medium 3e-3 0.5 10.0
Walker2d-medium 2e-3 0.5 5.0
Hopper-medium 5e-3 0.5 5.0
Halfcheetah-medium-r. 3e-3 0.5 10.0
Walker2d-medium-r. 2e-3 0.5 5.0
Hopper-medium-r. 5e-3 0.5 5.0
Halfcheetah-medium-e. 3e-3 0.5 10.0
Walker2d-medium-e. 2e-3 0.5 5.0
Hopper-medium-e. 5e-3 0.5 5.0
Halfcheetah-expert 3e-3 0.5 10.0
Walker2d-expert 2e-3 0.5 5.0
Hopper-expert 5e-3 0.5 5.0
AntMaze-umaze 1e-3 0.5 5.0
AntMaze-medium-p. 1e-3 0.5 5.0
AntMaze-large-p. 1e-3 0.5 5.0
AntMaze-umaze-d. 1e-3 0.5 5.0
AntMaze-medium-d. 1e-3 0.5 5.0
AntMaze-large-d. 1e-3 0.5 5.0
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Table 9: The hyperparameters used by OSR-v to generate Table 1 results.

Task name noise magnitude β CQL-OSR weight α

Halfcheetah-random 1e-3 10.0
Walker2d-random 1e-3 5.0
Hopper-random 1e-3 5.0
Halfcheetah-medium 3e-3 10.0
Walker2d-medium 2e-3 5.0
Hopper-medium 5e-3 5.0
Halfcheetah-medium-r. 3e-3 10.0
Walker2d-medium-r. 2e-3 5.0
Hopper-medium-r. 5e-3 5.0
Halfcheetah-medium-e. 3e-3 10.0
Walker2d-medium-e. 2e-3 5.0
Hopper-medium-e. 5e-3 5.0
Halfcheetah-expert 3e-3 10.0
Walker2d-expert 2e-3 5.0
Hopper-expert 5e-3 5.0
AntMaze-umaze 1e-3 5.0
AntMaze-medium-p. 1e-3 5.0
AntMaze-large-p. 1e-3 5.0
AntMaze-umaze-d. 1e-3 5.0
AntMaze-medium-d. 1e-3 5.0
AntMaze-large-d. 1e-3 5.0

D.3.2 Neural network structures

In this section, we introduce the structure of the networks we use in this paper: policy network, Q
network and the inverse dynamics model network.

The structure of the policy network and Q networks is as shown in Table 10, where ’s_dim’ is the
dimension of states and ’a_dim’ is the dimension of actions. ’h_dim’ is the dimension of the hidden
layers, which is usually 256 in our experiments. The policy network is a Guassian policy and the Q
networks includes two Q function networks and two target Q function networks.

Table 10: The structure of the policy net and the Q networks.

policy net Q net

Linear(s_dim, 256) Linear(s_dim, h_dim)
Relu() Relu()
Linear(h_dim, h_dim) Linear(h_dim, h_dim)
Relu() Relu()
Linear(h_dim, a_dim) Linear(h_dim, 1)

The structure of the inverse dynamics network is as shown in Table 11, which is a conditional
variational auto-encoder. ’s_dim’ is the dimension of states, ’a_dim’ is the dimension of actions and
’h_dim’ is the dimension of the hidden variables. ’z_dim’ is the dimension of the Gaussian hidden
variables in conditional variational auto-encoder.

D.3.3 Compute resources

We conducted our experiments using a server equipped with one Intel Xeon Gold 6226R CPU, with
16 cores and 32 threads, and 128GB of DDR4 memory. We used a NVIDIA RTX3090 GPU with
24GB of memory for our deep learning experiments. All computations were performed using Python
3.7 and the PyTorch 1.8.1 deep learning framework.
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Table 11: The structure of the inverse dynamics model network.

inverse dynamics model net

Linear(2 * s_dim, h_dim)
Linear(h_dim, h_dim)
Linear(h_dim, h_dim)
Linear(h_dim, z_dim) Linear(h_dim, z_dim)
Linear(2 * s_dim + z_dim, h_dim)
Linear(h_dim, h_dim)
Linear(h_dim, a_dim)

D.4 Comparison study of methods with Q-ensemble trick

Besides, we also implement OSR with Q-ensemble trick [4], termed as OSR-10, like RORL [25],
SAC-10 and EDAC-10 [4], with 10 Q-functions. The results are shown in Figure 12 in Appendix
D.4. We observe that the Halfcheetah task improves obviously in SOTA results when using OSR-10,
potentially due to its heightened sensitivity to out-of-sample situations.

Table 12: Results of OSR-10(ours) and SAC-10, EDAC-10, RORL on 9 MuJoCo benchmarks. Part
of the results are reported in the RORL paper. The top-2 highest scores in each benchmark are bolded.

Halfcheetah Walker2d Hopper
Methos medium medium-r. medium-e. medium medium-r. medium-e. medium medium-r. medium-e.

RORL 66.8±0.7 61.9±1.5 107.8±1.1 102.4±1.4 90.4±0.5 121.2±1.5 104.8±0.1 102.8±0.5 112.7±0.2
SAC-10 64.9±1.3 63.2±0.6 107.1±2.0 46.7±45.3 89.6±3.1 116.7±1.9 0.8±0.2 102.9±0.9 6.1±7.7
EDAC-10 64.1±1.1 60.1±0.3 107.2±1.0 87.6±11.0 94.0±1.2 115.4±0.5 103.6±0.2 102.8±0.3 58.1±22.3
OSR-10 67.1±0.9 64.7±1.7 108.7±0.9 102.0±0.8 93.8±1.3 123.4±2.2 105.5±0.6 103.1±1.2 113.2±2.7

D.5 More experimental details on OOSMuJoCo

D.5.1 State distributional visualized results

To assess the feasibility of our proposed approach, we used t-Distributed Stochastic Neighbour
Embedding (t-SNE) [10] to visualize the state distributions of several benchmarks: Halfcheetah-OOS,
Hopper-OOS and Walker2d-OOS, as shown in Figure 8, 9 and 7. The results indicate that both SDC
and our proposed method, OSR, generate significantly fewer out-of-distribution (OOD) samples, that
is, the states generated by SDC and OSR lay in the support of the dataset. In contrast, traditional
CQL tends to deviate from the dataset when making decisions at out-of-sample states.

Figure 7: The visualizations of the state distributions of experiments on the ’Halfcheetah-OOS’ with
three magnitudes. The purple boxes indicate some typical out-of-sample trajectories.
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Figure 8: The visualizations of the state distributions of experiments on the ’Hopper-OOS’ with three
magnitudes. The purple boxes indicate some typical out-of-sample trajectories.

Figure 9: The visualizations of the state distributions of experiments on the ’Walker2d-OOS’ with
three magnitudes. The purple boxes indicate some typical out-of-sample trajectories.

D.5.2 Other state recovery processes

We also visualize the Hopper and Walker2d agents respectively within an expert trajectory produced
by the behavior policy πβ on the offline dataset D, as is shown in Figure 10 and 11(every 10 steps
apart), then we visualize the trajectories by the inverse dynamics model(IDM) guided by the expert
trajectory and the new policy of OSR. We add external force to knock the agent into an out-of-sample
state and we observe that the agents with IDM and the new policy are all able to recover from the
out-of-sample states.

Figure 10: The state recovery process via IDM and OSR on the ’Hopper-OOS-large’ benchmark. The
interval between every two images is ten steps.
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Figure 11: The state recovery process via IDM and OSR on the ’Walker2d-OOS-large’ benchmark.
The interval between every two images is ten steps.

In order to observe the process of state recovery more clearly, we visualized the motion of each step
of the three agents during the state recovery period via the learnt policy of OSR, as is shown in Figure
12. We remark that OSR is able to help the agents to recover from the out-of-sample states, which is
quite important for real-world applications.

Figure 12: The state recovery processes of three agents: Halfcheetah, Hopper and Walker2d. The red
arrows represent the external forces that knock the agents falling into out-of-sample states.

D.5.3 Comparison with other robust offline RL framework

We have compared our method with RORL [25] on the out-of-sample MuJoCo benchmark, and
the results are given below; for comparison, we also give the results obtained without using the
out-of-samples on these benchmarks. From the table, we observe that RORL generalizes well at
out-of-sample states with slight noise, but its performance may suffer a lot under large perturbation.
For example, while its normalized score on Halfcheetah-OOS-s. is 103.8, its performance drops
significantly to 55.6 on the more challenging Halfcheetah-OOS-l. benchmark. On the contrary, our
method performs much more stable across all the environments. In the attached PDF file, we give
some visualization of the trajectories generated by both methods in some OOS benchmarks.

Table 13: Comparison with RORL on the out-of-sample MuJoCo benchmark

RORL-OOS RORL-w/o OOS OSR-OOS OSR-w/o OOS

Halfcheetah-OOS-s. 103.8 107.8 94.1 94.7
Halfcheetah-OOS-m. 79.8 107.8 92.7 94.7
Halfcheetah-OOS-l. 55.6 107.8 91.7 94.7
Hopper-OOS-s. 111.5 121.2 113.3 114.3
Hopper-OOS-m. 89.5 121.2 113.2 114.3
Hopper-OOS-l. 66.5 121.2 110.1 114.3
Walker2d-OOD-s. 117.8 112.7 111.4 113.1
Walker2d-OOS-m. 82.2 112.7 109.2 113.1
Walker2d-OOS-l. 46.5 112.7 106.1 113.1
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D.6 Comparison with offline RL works with reverse model

we have compared our method with ROMI [23] - an offline RL method based on RDM, and the
results are given below. This shows that although, on average, both methods perform comparably
across the environments (average score: 68.9 (OSR) vs. 68.2 (ROMI)), our method performs much
better in most ’medium’ and ’medium-expert’ benchmarks (e.g., Halfcheetah-m.-e., Hopper-m.,
Hopper-m.e., Walker2d-m.e.) than ROMI, indicating the advantage of using IDM if the underlying
dataset covering a portion of high-value areas. However, our method may suffer from very noisy
datasets (e.g., Hopper-r.), in which case RDM works better. This suggests that it could be beneficial
to combine the advantages of both models for an even more robust offline RL.

Table 14: Comparison with ROMI on the standard MuJoCo benchmark

ROMI OSR(ours)

Halfcheetah-m. 49.1 48.8
Halfcheetah-m.-r. 47.0 46.8
Halfcheetah-m.-e. 86.8 94.7
Halfcheetah-r. 24.5 35.2
Hopper-m. 72.3 83.1
Hopper-m.-r. 98.1 96.7
Hopper-m.-e. 111.4 113.1
Hopper-r. 30.2 10.3
Walker2d-m. 84.3 85.7
Walker2d-m.-r. 109.7 87.9
Walker2d-m.-e. 109.7 114.3
Walker2d-r. 7.5 13.5

D.7 Comparison on the MuJoCo benchmark with adversarial attacks

We have trained our method OSR-10 based on the large perturbation scales in the following table
(same as Table 5 in [25]), referred as OSR-10-large-noise (OSR-10-l.), on the three ’medium’
MuJoCo datasets, while OSR-10 and RORL utilize the perturbation with smaller scales metioned
before.

Table 15: Hyperparameters of OSR-10-large-noise (OSR-10-l.)

Halfcheetah-medium Hopper-medium Walker2d-medium
Scalar ϵOOD of OOD Loss 0.00 0.02 0.03
Scalar ϵOSR of OSR Loss 0.05 0.005 0.07

We run OSR-10-l. and RORL-l. (RORL trained on the perturbation scales in the Table 5 of [25] on
’medium’ as well) in both the adversarial environments introduced in [25] and the OOS MuJoCo
benchmarks proposed in our paper. The results of both methods in the adversarial environments are
listed in the table below, where we set the scale of perturbation of the adversarial environments as
0.15, and we also provide the two methods’ results in the clean environments for comparison (3rd
and 6th rows).

The results show that the peformance of RORL and OSR-10 improves by 13.1% and 12.1% respec-
tively afer adding larger scale of perturbation in training. This indicates that increasing the difficulty
of training data to some degree is indeed helpful in enhancing the generalization capbility of the
learned agent, hence improving its robustness against adversarial attacks. It’s our future work to
further investigate the performance boundary of applying this trick.
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Table 16: Comparison on the MuJoCo benchmark with adversarial attacks with RORL

RORL-OOS RORL-l.-OOS RORL-l.-w/o OOS OSR-10-OOS OSR-10-l.-OOS OSR-10-l.-w/o OOS

Halfcheetah+random 53.4 58.4 61.2 55.2 59.3 63.3
Halfcheetah+action diff 51.7 52.1 61.2 53.3 54.6 63.3
Halfcheetah+min Q 43.9 46.4 61.2 50.6 55.0 63.3
Hopper+random 67.8 82.8 102.8 70.6 87.9 103.5
Hopper+action diff 62.3 77.3 102.8 63.8 76.2 103.5
Hopper+min Q 41.3 46.2 102.8 44.9 49.4 103.5
Walker2d+random 76.7 93.1 97.4 79.4 91.7 100.7
Walker2d+action diff 76.4 89.2 97.4 79.1 92.8 100.7
Walker2d+min Q 68.6 72.5 97.4 78.9 81.6 100.7

D.8 Experiments on out-of-distribution MuJoCo benchmark

To assess the generalizability of our method, we need to first construct a dataset with more realistic
out-of-sample states to test the learnt model. For this we employ a modified generative adversarial
network (GAN), which is optimized as follows,

min
G

max
D

[Es∼P (s)[logD(s)] + EPG(s′)[log(1−D(s′))]] + α · EPG(s)
H[πβ(·|s)] (32)

where G is generator, D is the discriminator, P (s) is the real-word state distribution (the dataset)
and PG(s) is the state distribution generated via G. H is the entropy function. In words, the above
objective aims to generate real-world samples (i..e., consistent with the in-distribution data) that
confuse the behavior policy πβ most; hence its output could be considered as kind of realistic
out-of-sample states.

In evaluation, we initialize the MuJoCo environments with the generated out-of-sample states and
assess the generalizability of the learnt agent on them. The results, based on the average of normalized
scores and recovery rate, are as follows:

Table 17: Normalized scores/recovery rate on the generated out-of-distribution MuJoCo states

Halfcheetah Hopper Walker2d
CQL 20.4/33.8% 36.5/39.1% 13.1/12.6%
OSR 40.1/69.9% 72.0/88.8% 43.3/32.4%

The above results indicate that our OSR effectively guides the agent to recover from most real-world
out-of-sample situations (nearly 70%) in the Halfcheetah and Hopper tasks, despite the mismatch
between the constructed (Gaussian) noisy dataset and the actual (GAN-based) out-of-sample states.
Although the Walker2D task seems challenging to it, our OSR method performs significantly better
than CQL, where a risk-guiding mechanism like ours is lacking.

To gain further insights, we provide visualizations of typical out-of-distribution (OOD) states in the
three tasks, along with the corresponding trajectories of OSR, as is shown in Figure 13.
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Figure 13: The visualization of OSR’s state recovery process on the real-world out-of-sample (OOS)
Halfcheetah, Hopper and Walker2d benchmarks, where the initial states are generated by the modified
generative adversarial network. The states in orange boxes represent the generated OOS states, and
those in blue boxes are the recovered normal states. The trajectories in the left green box are samples
successfully recovered while in the right red box are samples failed to recover.

D.9 Code

We build our OSR and OSR-v based on the CQL project from github3. The reasons why we choose
YOUNG-GENG’s CQL project instead of the official version4 are as follows: 1) The official version
CQL code perform incorrect gradient calculation with old version of pytorch(see issue #5); 2)In the
project by yong-geng, a Gaussian policy is utilized, which meets the needs of our method.

We build our OSR-10 based on the RORL project from github5.

E Discussion

The assumptions. The theoretical framework presented in this paper is based on two key assump-
tions. Assumption 1 assumes that the transition of the behavior policy is ’smooth-transitioned’,
meaning that it is insensitive to disturbances in observations. However, in practical applications, the
behavior policy may not have such a property, which could limit the generalizability of the proposed
method to some datasets. Therefore, it is important to carefully consider the effects of non-smooth
transitions when applying the proposed method in practice. Assumption 2, on the other hand, assumes
that the new policy is modeled as a Gaussian distribution. While this assumption is reasonable in
many settings, it may not hold if the new policy is modeled in a different way, such as a deterministic
policy, then the validity of Assumption 2 should be carefully evaluated based on the specific modeling
assumptions used in each application. Therefore, it is important to note that the limitations of the
proposed method are closely tied to the assumptions made in the theoretical framework.

3Project of CQL by YOUNG-GENG: https://github.com/young-geng/CQL
4Project of CQL by AVIRALKUMAR2907: https://github.com/aviralkumar2907/CQL
5Project of CQL by YangRui2015: https://github.com/YangRui2015/RORL
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Figure 14: The state recovery process via IDM and OSR on the Walker2d-OOS benchmark with vary
large knock(100 steps of random actions). The interval between every two images is ten steps.

Not all kind of out-of-sample situations could be recovered. In a related work by [27], the authors
identify three key factors that can lead to state distributional shift problem in offline reinforcement
learning: initial state difference, dynamics bias, and approximation error. Initial state difference
refers to the difference between the initial state distributions of the offline dataset and the actual
environment, and dynamics bias arises due to the discrepancy between the empirical distribution of
the dynamics of the offline dataset and the true dynamics. Approximation error of the neural network
can also contribute to state distributional shift. However, it is important to note that in scenarios
where the initial state difference and dynamics bias drive the agent to a state that is quite far from the
dataset, neither SDC nor our proposed method, OSR, can enable the agent to recover to the dataset,
for the lack of the information for the inference of such a recovery, as is shown in Figure 14. Then
additional strategies may be required to address these challenges. Nonetheless, both SDC and OSR
can effectively address the problems of approximation error and some perturbed environments, where
the out-of-sample states are located within the β neighborhood of the dataset.
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