Supplementary material: Regret Rates for Randomized Allocation Strategies for Nonparametric Bandits with Delayed Rewards

Anonymous Author(s)
Affiliation
Address
email

S1 Results with sub-exponential errors

In this section, we extend the finite-time regret rates for the two proposed strategies in Section 3 to the case with sub-exponential errors.
Assumption S1. We assume that $\epsilon_{j} \sim \operatorname{Sub}$-Exponential $\left(\nu^{2}, \alpha\right)$, i.e.,

$$
E\left(\exp \left(\lambda \epsilon_{j}\right)\right) \leq \exp \left\{\frac{\lambda^{2} \nu^{2}}{2}\right\}, \forall \lambda:|\lambda|<\frac{1}{\alpha}
$$

Theorem S1. Suppose assumption $S 1$ and assumptions 26 in the paper are satisfied and $\left\{\pi_{n}\right\}$ is a decreasing sequence. Assume that $N>n_{\delta}^{(3)}$ and the kernel estimator as defined in (2) and kernel chosen as described in (3). Then with probability larger than $1-2 \delta$, the cumulative regret for strategy η_{2} satisfies,

$$
R_{N}\left(\eta_{2}\right)<\left\{\begin{array}{c}
A n_{\delta}^{\prime}+\sum_{n=n_{\delta}^{\prime}+1}^{N} 2\left(\max _{1 \leq i \leq \ell} w\left(L h_{q(n)} ; f_{i}\right)+\frac{C_{N, \delta}^{\prime}}{\sqrt{h_{q(n)}^{d} \pi_{q(n)} q(n)}}\right) \\
+A \sum_{t=1}^{N^{*}(\delta)} M_{\delta}(\ell-1) \pi_{t}+\max \left\{A \sqrt{M_{\delta} \frac{E\left(\tau_{N}\right)}{2} \log \left(\frac{2}{\delta}\right)}, A \sqrt{\left(\frac{N}{2}\right) \log \left(\frac{2}{\delta}\right)}\right\}, \\
\quad \text { if } h_{q(n)}^{d} q(n) \pi_{q(n)}>\frac{8 \log \left(16 \ell N^{2} / \delta\right) \alpha^{2}}{\nu^{2} c_{5} c \tilde{c}_{1}(2 L)^{d}}, \\
A n_{\delta}^{\prime}+\sum_{n=n_{\delta}^{\prime}+1}^{N} 2\left(\max _{1 \leq i \leq \ell} w\left(L h_{q(n)} ; f_{i}\right)+\frac{C_{N, \delta \prime}^{i m e}}{h_{q(n)}^{d} \pi_{q(n)} q(n)}\right) \\
+A \sum_{t=1}^{N^{*}(\delta)} M_{\delta}(\ell-1) \pi_{t}+\max \left\{A \sqrt{M_{\delta} \frac{E\left(\tau_{N}\right)}{2} \log \left(\frac{2}{\delta}\right)}, A \sqrt{\left(\frac{N}{2}\right) \log \left(\frac{2}{\delta}\right)}\right\} \tag{S1.1}\\
\quad \text { if } h_{q(n)}^{d} q(n) \pi_{q(n)}<\frac{8 \log \left(16 \ell N^{2} / \delta\right) \alpha^{2}}{\nu^{2} c_{5} \underline{c} \tilde{a}_{1}(2 L)^{d}}
\end{array}\right.
$$

where, $\quad C_{N, \delta}^{\prime}=\sqrt{8 C^{2} \nu^{2} \log \left(16 \ell N^{2} / \delta\right) / c_{5} \underline{c} \tilde{a}_{1}(2 L)^{d}} \quad$ and $\quad C_{N, \delta}^{\prime \prime}=$ $8 \alpha C \log \left(16 \ell N^{2} / \delta\right) /\left(c_{5} \underline{c} \tilde{a}_{1}(2 L)^{d}\right)$.

Note that the modification of sub-exponential errors does not effect the randomization error, however the estimation error changes depending upon the amount of delay and choice of the hyperparameters $\left\{h_{n}\right\}$ and $\left\{\pi_{n}\right\}$. Note that, we will get a similar result for strategy η_{1}. The proof can be found in section S3.

S2 Proof of Lemmas

Proof of Lemma 1 Recall, $\tau_{n}=\sum_{j=1}^{n} I\left\{t_{j} \leq n\right\}$. Then, $\mathrm{E}\left(\tau_{n}\right)=\mathrm{E}\left(\sum_{j=1}^{n} I\left\{t_{j} \leq n\right\}\right)=$ $\sum_{j=1}^{n} P\left(t_{j} \leq n\right)=\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)$. Now, by Assumption 7 we have, for large enough n, there exists a positive integer a_{1}, such that, $\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right) \geq a_{1} q(n)$. Then using the inequality in Corollary S2, we get,

$$
\begin{aligned}
P\left(\tau_{n} \leq \frac{a_{1} q(n)}{2}\right) & \leq P\left(\tau_{n} \leq \frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right) \\
& \leq \exp \left(-\frac{3 \sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{28}\right) \\
& \leq \exp \left(\frac{-3 a_{1} q(n)}{28}\right)
\end{aligned}
$$

It is easy to see that the upper bound is summable in n under the condition (10) and (8). By the Borel-Cantelli lemma, the event $\left\{\tau_{n}>a_{1} q(n) / 2\right\}$ happens infinitely often, therefore $\tau_{n} \xrightarrow{\text { a.s. }} \infty$. Note that, by construction this implies that $h_{\tau_{n}} \xrightarrow{\text { a.s. }} 0$, and $\pi_{\tau_{n}} \xrightarrow{\text { a.s. }} 0$ as $n \rightarrow \infty$. As an immediate consequence of this along with continuity of f, we get that $w\left(h_{\tau_{n}} ; f\right) \xrightarrow{\text { a.s. }} 0$, as $n \rightarrow \infty$.

S2.1 Proof of Lemma 2

Proof of Lemma 2. Recall that $Q_{n+1}(x)=\left\{1 \leq j \leq n: 1 \leq t_{j} \leq n,\left\|x-X_{j}\right\| \leq L h_{\tau_{n}}\right\}$ and $Q_{i, n+1}(x)=\left\{1 \leq j \leq n: j \in Q_{n+1}(x), I_{j}=i\right\}$. Let $M_{n+1}(x)$ and $M_{i, n+1}(x)$ be the size of $Q_{n+1}(x)$ and $Q_{i, n+1}(x)$, respectively. It can be seen that if $M_{n+1}(x)=0$, (5) trivially holds. Therefore, without loss of generality we can assume $M_{n+1}(x)>0$. For the event $B_{i, n}=$ $\left\{\frac{1}{M_{i, n+1}(x)} \sum_{j \in J_{i, n+1}} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right) \geq c_{5}\right\}$. Note that,

$$
\begin{align*}
& P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon\right) \\
& =P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon, \frac{M_{i, n+1}(x)}{M_{n+1}(x)} \leq \frac{\pi_{\tau_{n}}}{2}\right) \\
& +P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon, \frac{M_{i, n+1}(x)}{M_{n+1}(x)}>\frac{\pi_{\tau_{n}}}{2}\right) \\
& \leq P_{X^{n}, \mathcal{A}_{N}}\left(\frac{M_{i, n+1}(x)}{M_{n+1}(x)} \leq \frac{\pi_{\tau_{n}}}{2}\right)+P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon, \frac{M_{i, n+1}(x)}{M_{n+1}(x)}>\frac{\pi_{\tau_{n}}}{2}\right) \\
& \stackrel{a}{\leq} \exp \left(-\frac{3 M_{n+1}(x) \pi_{\tau_{n}}}{28}\right)+P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon, \frac{M_{i, n+1}(x)}{M_{n+1}(x)}>\frac{\pi_{\tau_{n}}}{2}, B_{i, n}\right) \\
& +P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon, \frac{M_{i, n+1}(x)}{M_{n+1}(x)}>\frac{\pi_{\tau_{n}}}{2}, B_{i, n}^{c}\right) \\
& =: \exp \left(-\frac{3 M_{n+1}(x) \pi_{\tau_{n}}}{28}\right)+A_{1}+A_{2}, \tag{S2.1}
\end{align*}
$$

Using this, we will construct an upper bound for A_{1}. Define $\sigma_{t}=\inf \left\{\tilde{n}: \sum_{j=1}^{\tilde{n}} I\left\{I_{j}=i, t_{j} \leq\right.\right.$ $\left.\left.n,\left\|x-X_{j}\right\| \leq L h_{\tau_{n}}\right\} \geq t\right\}, t \geq 1$. Then, for large enough n, by Lemma $1, \epsilon>w\left(L h_{\tau_{n}}, f_{i}\right)$ a.s. and we have,

$$
\begin{align*}
A_{1} \leq & P_{X^{n}, \mathcal{A}_{N}}\left(\left|\sum_{j \in Q_{i, n+1}(x)} \epsilon_{j} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)\right| \geq c_{5} M_{i, n+1}(x)\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right),\right. \\
& \left.\quad \frac{M_{i, n+1}(x)}{M_{n+1}(x)}>\frac{\pi_{\tau_{n}}}{2}\right) \\
\leq & \sum_{\bar{n}=0}^{n} P_{X^{n}, \mathcal{A}_{N}}\left(\left|\sum_{t=1}^{\bar{n}} \epsilon_{\sigma_{t}} K\left(\frac{x-X_{\sigma_{t}}}{h_{\tau_{n}}}\right)\right| \geq c_{5} \bar{n}\left(\epsilon-w\left(L h_{\tau_{n}}, f_{i}\right)\right),\right. \\
& \left.\quad \frac{M_{i, n+1}(x)}{M_{n+1}(x)}>\frac{\pi_{\tau_{n}}}{2}, M_{i, n+1}(x)=\bar{n}\right) \\
\leq & \sum_{\left\lceil M_{n+1}(x) \pi_{\tau_{n}} / 2\right\rceil}^{n} P_{X^{n}, \mathcal{A}_{N}}\left(\left|\sum_{t=1}^{\bar{n}} \epsilon_{\sigma_{t}} K\left(\frac{x-X_{\sigma_{t}}}{h_{\tau_{n}}}\right)\right| \geq c_{5} \bar{n}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)\right) \\
\leq & \sum_{\left\lceil M_{n+1}(x) \pi_{\tau_{n}} / 2\right\rceil}^{n} 2 \exp \left(-\frac{\bar{n} c_{5}^{2}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)^{2}}{2 c_{4}^{2} v^{2}+2 c_{4} c\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)}\right) \\
\leq & 2 N \exp \left(-\frac{c_{5}^{2} M_{n+1}(x) \pi_{\tau_{n}}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)^{2}}{4 c_{4}^{2} v^{2}+4 c_{4} c\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)}\right), \tag{S2.3}
\end{align*}
$$

where the first term in the inequality in step a comes from the extended Bernstein inequality (S6.2). By Assumption 5 and the definition 1 of the modulus of continuity, we have,

$$
\begin{align*}
& \left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \\
& \quad=\left|\frac{\sum_{j \in J_{i, n+1}} Y_{i, j} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}{\sum_{j \in J_{i, n+1}} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}-f_{i}(x)\right| \\
& =\left|\frac{\sum_{j \in J_{i, n+1}}\left(f_{i}\left(X_{j}\right)+\epsilon_{j}\right) K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}{\sum_{j \in J_{i, n+1}} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}-f_{i}(x)\right| \\
& =\left|\frac{\sum_{j \in J_{i, n+1}}\left(f_{i}\left(X_{j}\right)-f_{i}(x)\right) K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}{\sum_{j \in J_{i, n+1}} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}+\frac{\sum_{j \in J_{i, n+1}} \epsilon_{j} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}{\sum_{j \in J_{i, n+1}} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}\right| \\
& \quad \leq \sup _{x, y:\|x-y\|_{\infty} \leq L h_{\tau_{n}}}\left|f_{i}(x)-f_{i}(y)\right|+\left|\frac{\sum_{j \in J_{i, n+1}} \epsilon_{j} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}{\sum_{j \in J_{i, n+1}} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}\right| \\
& \quad=w\left(L h_{\tau_{n}} ; f_{i}\right)+\left|\frac{\sum_{j \in J_{i, n+1}} \epsilon_{j} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}{\sum_{j \in J_{i, n+1}} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)}\right| . \tag{S2.2}
\end{align*}
$$

Under $B_{i, n}$,

$$
\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \leq w\left(L h_{\tau_{n}} ; f_{i}\right)+\frac{1}{c_{5} M_{i, n+1}(x)}\left|\sum_{j \in Q_{i, n+1}(x)} \epsilon_{j} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)\right|
$$

where the last inequality follows from Lemma $\mathrm{S8}$ and the upper boundedness of the kernel function (assumption55. Now, to find the bound for A_{2}, under $B_{i, n}^{c}$ we run into technical problems since the denominator of the Nadaraya-Watson estimator can be extremely small, hence we will replace the
kernel $K(\cdot)$ in (2) with a uniform kernel $I\left(\|u\|_{\infty} \leq L\right)$. That is for the case when,

$$
\begin{equation*}
B_{i, n}^{c}:=\left\{\sum_{j \in J_{i, n+1}} K\left(\frac{x-X_{j}}{h_{\tau_{n}}}\right)<c_{5} \sum_{j \in J_{i, n+1}} I\left(\left\|x-X_{j}\right\|_{\infty} \leq L h_{\tau_{n}}\right)\right\} \tag{S2.4}
\end{equation*}
$$

40
41
for some small positive constant $0<c_{5}<1$, we will use the uniform kernel. Therefore, using $(\bar{S} 2.2$,, (S2.4) and S6.5) (LemmaS8), we get that,

$$
\begin{align*}
A_{2} \leq & P_{X^{n}, \mathcal{A}_{N}}\left(\left|\sum_{j \in J_{i, n+1}} \epsilon_{j} I\left(| | x-X_{j} \| \leq L h_{\tau_{n}}\right)\right| \geq M_{i, n+1}(x)\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right),\right. \\
& \left.\quad \frac{M_{i, n+1}(x)}{M_{n+1}(x)}>\frac{\pi_{\tau_{n}}}{2}\right) \\
\leq & \sum_{\bar{n}=0}^{n} P_{X^{n}, \mathcal{A}_{N}}\left(\left|\sum_{t=1}^{\bar{n}} \epsilon_{\sigma_{t}} I\left(\| x-X_{\sigma_{t}}| | \leq L h_{\tau_{n}}\right)\right| \geq \bar{n}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right),\right. \\
& \left.\quad \frac{M_{i, n+1}(x)}{M_{n+1}(x)}>\frac{\pi_{\tau_{n}}}{2}, M_{i, n+1}(x)=\bar{n}\right) \\
\leq & \sum_{\left\lceil M_{n+1}(x) \pi_{\tau_{n}} / 2\right\rceil}^{n} P_{X^{n}, \mathcal{A}_{N}}\left(\left|\sum_{t=1}^{\bar{n}} \epsilon_{\sigma_{t}} I\left(\left\|x-X_{\sigma_{t}}\right\| \leq L h_{\tau_{n}}\right)\right| \geq \bar{n}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)\right) \\
\leq & \sum_{\left\lceil M_{n+1}(x) \pi_{\tau_{n}} / 2\right\rceil}^{n} 2 \exp \left(-\frac{\bar{n}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)^{2}}{2 v^{2}+2 c\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)}\right) \\
\leq & 2 N \exp \left(-\frac{M_{n+1}(x) \pi_{\tau_{n}}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)^{2}}{4 v^{2}+4 c\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)}\right) . \tag{S2.5}
\end{align*}
$$

$$
\begin{align*}
& P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon\right) \\
& \quad \leq \exp \left(-\frac{3 M_{n+1}(x) \pi_{\tau_{n}}}{28}\right)+4 N \exp \left(-\frac{c_{5}^{2} M_{n+1}(x) \pi_{\tau_{n}}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)^{2}}{4 c_{4}^{2} v^{2}+4 c_{4} c\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)}\right) . \tag{S2.6}
\end{align*}
$$

43
is given by,

$$
\tilde{\epsilon}_{i, n}=w\left(L h_{q(n)} ; f_{i}\right)+\sqrt{\frac{64 c_{4}^{2} v^{2} \log \left(16 \ell N^{2} / \delta\right)}{c_{5}^{2} \underline{c} \tilde{a}_{1}(2 L)^{d} h_{q(n)}^{d} \pi_{q(n)} q(n)}}
$$

9 Prooffor Lemma S1. Let $Z:=\epsilon-w\left(L h_{q(n)} ; f_{i}\right)$, then S2.7) becomes,

$$
\frac{c_{5}^{2} \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q(n)}\right)^{d} \pi_{q(n)} q(n) Z^{2}}{16 c_{4}^{2} v^{2}+16 c_{4} c Z} \geq \log \left(\frac{16 \ell N^{2}}{\delta}\right)
$$

50
The proof for Lemma 3 will follow the same steps with $\pi_{\tau_{n}}$ replaced by π_{n}. Next, we prove a lemma that would be used to prove Theorem 1

Lemma S1. 4 An ϵ that satisfies,

$$
4 N \exp \left(-\frac{c_{5}^{2} \underline{c} \tilde{a}_{1}\left(2 L h_{q(n)}\right)^{d} \pi_{q(n)} q(n)\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)^{2}}{16 c_{4}^{2} v^{2}+16 c_{4} c\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)}\right) \leq \frac{\delta}{4 \ell N}
$$

is given by

Let $A_{1}=c_{5}^{2} \underline{\underline{\mathrm{c}}} \tilde{a}_{1}(2 L)^{d}, A_{2}=16 c_{4}^{2} v^{2}, A_{3}=16 c_{4} c$.

$$
\begin{equation*}
A_{1} q(n) h_{q(n)}^{d} \pi_{q(n)} Z^{2}-A_{3} \log \left(\frac{16 \ell N^{2}}{\delta}\right) Z-A_{2} \log \left(\frac{16 \ell N^{2}}{\delta}\right) \geq 0 \tag{S2.8}
\end{equation*}
$$

Left hand side is a quadratic polynomial in Z. Solving for Z,

$$
\begin{aligned}
& A_{1} q(n) h_{q(n)}^{d} \pi_{q(n)} Z^{2}-A_{3} \log \left(\frac{16 \ell N^{2}}{\delta}\right) Z-A_{2} \log \left(\frac{16 \ell N^{2}}{\delta}\right)=0 \\
\Rightarrow & Z=\frac{1}{2}\left(\frac{A_{3} \log \left(16 \ell N^{2} / \delta\right)}{A_{1} q(n) h_{q(n)}^{d} \pi_{q(n)}} \pm \sqrt{\frac{A_{3}^{2} \log ^{2}\left(16 \ell N^{2} / \delta\right)}{\left(A_{1} q(n) h_{q(n)}^{d} \pi_{q(n)}\right)^{2}}+\frac{4 A_{2} \log \left(16 \ell N^{2} / \delta\right)}{A_{1} q(n) h_{q(n)}^{d} \pi_{q(n)}}}\right) .
\end{aligned}
$$

This will give two real roots for the quadratic equation. Therefore if we want some value of Z such that $(S 2.8)$ holds, we can use a point that is larger than the roots $-b \pm \sqrt{b^{2}+d^{2}}$ and we know that $d \geq-b \pm \sqrt{b^{2}+d^{2}}$. Therefore, a potential candidate could be,

$$
\begin{aligned}
Z & =\sqrt{\frac{4 A_{2} \log \left(16 \ell N^{2} / \delta\right)}{A_{1} q(n) h_{q(n)}^{d} \pi_{q(n)}}} \\
& =\sqrt{\frac{64 c_{4}^{2} v^{2} \log \left(16 \ell N^{2} / \delta\right)}{c_{5}^{2} \mathrm{c} \tilde{a}_{1}(2 L)^{d} h_{q(n)}^{d} \pi_{q(n)} q(n)}},
\end{aligned}
$$

which means that we want

$$
\tilde{\epsilon}_{i, n}=w\left(L h_{q(n)} ; f_{i}\right)+\sqrt{\frac{64 c_{4}^{2} v^{2} \log \left(16 \ell N^{2} / \delta\right)}{c_{5}^{2} \underline{\mathrm{c}} \tilde{a}_{1}(2 L)^{d} h_{q(n)}^{d} \pi_{q(n)} q(n)}} .
$$

A similar lemma with $\pi_{q(n)}$ replaced by π_{n} could be derived that will be used in the proof of Theorem 2.

Lemma S2. 5 An ϵ that satisfies,

$$
\begin{equation*}
4 N \exp \left(-\frac{c_{5}^{2} \underline{c} \tilde{\tilde{a}}_{1}\left(2 L h_{q(n)}\right)^{d} \pi_{n} q(n)\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)^{2}}{16 c_{4}^{2} v^{2}+16 c_{4} c\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)}\right) \leq \frac{\delta}{4 \ell N} \tag{S2.9}
\end{equation*}
$$

is given by,

$$
\tilde{\epsilon}_{i, n}^{\prime}=w\left(L h_{q(n)} ; f_{i}\right)+\sqrt{\frac{64 c_{4}^{2} v^{2} \log \left(16 \ell N^{2} / \delta\right)}{c_{5}^{2} \underline{\tilde{c}} \tilde{a}_{1}(2 L)^{d} h_{q(n)}^{d} \pi_{n} q(n)}} .
$$

S3 Proof of Theorems

Proof of Theorem 1. By definition of $\hat{i}_{j}, \hat{f}_{i^{*}\left(X_{j}\right), j} \leq \hat{f}_{\hat{i}_{j}, j}\left(X_{j}\right)$, then the regret accumulated after the initial forced sampling period is,

$$
\begin{align*}
& \sum_{j=}^{N}\left(m_{0}+1\right. \\
= & \left.\sum_{j=m_{0}+1}^{N}\left(X_{j}\right)-f_{I_{j}}\left(X_{j}\right)\right) \\
& \left.+f_{\hat{i}_{j}}\left(X_{j}\right)\left(X_{j}\right)-\hat{f}_{i^{*}\left(X_{j}\right), j}\left(X_{j}\right)+\hat{f}_{i^{*}\left(X_{j}\right), j}\left(X_{j}\right)\right)-f_{\hat{i}_{j}}\left(X_{j}\right) \\
\leq & \sum_{j=m_{0}+1}^{N}\left(f_{i^{*}\left(X_{j}\right)}\left(X_{j}\right)-\hat{f}_{i^{*}\left(X_{j}\right), j}\left(X_{j}\right)+\hat{f}_{\hat{i}_{j}, j}\left(X_{j}\right)-f_{\hat{i}_{j}}\left(X_{j}\right)\right. \\
& \left.+f_{\hat{i}_{j}}\left(X_{j}\right)-f_{I_{j}}\left(X_{j}\right)\right) \\
\leq & \sum_{j=m_{0}+1}^{N}\left(2 \sup _{1 \leq i \leq l}\left|\hat{f}_{i, j}\left(X_{j}\right)-f_{i}\left(X_{j}\right)\right|+A I\left\{I_{j} \neq \hat{i}_{j}\right\}\right) \tag{S3.1}
\end{align*}
$$

Here the first term corresponds to the regret incurred due to estimation error and the second term corresponds to the randomization error.

We will first find an upper bound for the estimation error. Note that Lemma 2 gives a probability inequality for the estimation error conditional on \mathcal{A}_{N} and X^{n}. Therefore, in order to get a probability (not conditional) bound on the estimation error, we first remove this condition on X^{n} and then remove the condition on \mathcal{A}_{N} in (5). Given arm i, for a large enough n satisfying $n \geq m_{0}+1$ and $\epsilon>w\left(L h_{\tau_{n}} ; f_{i}\right)$ a.s., consider,

$$
\begin{align*}
& P_{\mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon\right) \\
&= P_{\mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon, M_{n+1}\left(X_{n+1}\right) \leq \frac{\mathrm{c}\left(2 L h_{\tau_{n}}\right)^{d} \tau_{n}}{2}\right) \\
&+P_{\mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon, M_{n+1}\left(X_{n+1}\right)>\frac{\mathrm{c}\left(2 L h_{\tau_{n}}\right)^{d} \tau_{n}}{2}\right) \tag{S3.2}\\
& \leq P_{\mathcal{A}_{N}}\left(M_{n+1}\left(X_{n+1}\right) \leq \frac{\mathrm{c}\left(2 L h_{\tau_{n}}\right)^{d} \tau_{n}}{2}\right) \\
& \quad+P_{\mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon, M_{n+1}\left(X_{n+1}\right)>\frac{\mathrm{c}\left(2 L h_{\tau_{n}}\right)^{d} \tau_{n}}{2}\right) \\
& \leq \exp \left(-\frac{3 \underline{\mathrm{c}}\left(2 L h_{\tau_{n}}\right)^{d} \tau_{n}}{28}\right)+\exp \left(-\frac{3 \underline{\mathrm{c}}\left(2 L h_{\tau_{n}}\right)^{d} \tau_{n} \pi_{\tau_{n}}}{56}\right) \\
& \quad+4 N \exp \left(-\frac{c_{5}^{2} \underline{\mathrm{c}}\left(2 L h_{\tau_{n}}\right)^{d} \tau_{n} \pi_{\tau_{n}}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)^{2}}{8 c_{4}^{2} v^{2}+8 c_{4} c\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)}\right) \tag{S3.3}
\end{align*}
$$

where, the above inequality follows from Lemma 2 and S6.2, and the fact that $\mathrm{E}\left(M_{n+1}\left(X_{n+1}\right) \mid \mathcal{A}_{N}\right) \geq \underline{\mathrm{c}}\left(2 L h_{\tau_{n}}\right)^{d} \tau_{n}$.

Now, we want to remove the condition on \mathcal{A}_{N} from the conditional probability above. Recall that $d_{j} \stackrel{\text { ind }}{\sim} G_{j}$, for $j \geq 1$. Therefore, for the known visiting times $\left\{s_{j}, j \geq 1\right\}, P\left(t_{j} \leq n\right)=P\left(d_{j}+s_{j} \leq\right.$ $n)=P\left(d_{j} \leq n-s_{j}\right)=G_{j}\left(n-s_{j}\right)$, hence,

$$
\begin{align*}
& P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon\right) \\
& =P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon, \tau_{n} \leq \frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right) \\
& \\
& \quad+P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon, \tau_{n}>\frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right) \\
& \leq \\
& \quad P\left(\tau_{n} \leq \frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right) \\
& \\
& \quad+P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon, \tau_{n}>\frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right) \\
& \leq P\left(\tau_{n} \leq \frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right) \tag{S3.4}\\
& \\
& \quad+P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon, \tau_{n}>\frac{a_{1} q(n)}{2}\right) \\
& =P\left(\tau_{n} \leq \frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right) \\
& \\
& \\
& \quad+\mathrm{E}\left[P_{\mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon, \tau_{n}>\frac{a_{1} q(n)}{2}\right)\right]
\end{align*}
$$

for large enough n, where a_{1} is a positive constant arising from Assumption 7. Also, note that the second term in the last equality $(\overline{S 3.4})$ is due to the law of iterated expectation. Let $q_{1}(n)=q(n) / 2$.

For $\tau_{n}>a_{1} q_{1}(n)$, since we have the condition that $h_{q(n)}^{d} \pi_{q(n)} q(n) / \log n \rightarrow \infty$, for large enough n , we can assume that $h_{\tau_{n}}^{d} \tau_{n} \geq \tilde{a}_{1} h_{q_{1}(n)}^{d} q_{1}(n)$ and $h_{\tau_{n}}^{d} \pi_{\tau_{n}} \tau_{n} \geq \tilde{a}_{1} h_{q_{1}(n)}^{d} \pi_{q_{1}(n)} q_{1}(n)$, where \tilde{a}_{1} is a constant that is function of constant a_{1}, which depends on the user determined choice of sequences $\left\{\pi_{n}\right\}$ and $\left\{h_{n}\right\}$. For large enough $n, \epsilon-w\left(L h_{q(n)} ; f_{i}\right)>0$, and we have using S3.3) and S6.2 in (S3.4),

$$
\begin{align*}
& \leq \exp \left(-\frac{3 a_{1} q_{1}(n)}{14}\right)+\exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q_{1}(n)}\right)^{d} q_{1}(n)}{28}\right) \\
& \quad+\exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q_{1}(n)}\right)^{d} q_{1}(n) \pi_{q_{1}(n)}}{56}\right) \\
& \quad+4 N \exp \left(-\frac{c_{5}^{2} \mathrm{c} \tilde{a}_{1}\left(2 L h_{q_{1}(n)}\right)^{d} q_{1}(n) \pi_{q_{1}(n)}\left(\epsilon-w\left(L h_{q_{1}(n)} ; f_{i}\right)\right)^{2}}{8 c_{4}^{2} v^{2}+8 c_{4} c\left(\epsilon-w\left(L h_{q_{1}(n)} ; f_{i}\right)\right)}\right) \\
& \leq \\
& \\
& \quad \exp \left(-\frac{3 a_{1} q(n)}{28}\right)+\exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q(n)}\right)^{d} q(n)}{56}\right) \tag{S3.5}\\
& \\
& \quad+4 N \exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q(n)}\right)^{d} q(n) \pi_{q(n)}}{112}\right) \\
&
\end{align*}
$$

Given $0<\delta<1$, we want to bound the right hand side above by δ. To do that for the first three terms, given total time horizon N, we define a special time point n_{δ}^{\prime} as in (7) by,

$$
\begin{equation*}
n_{\delta}^{\prime}=\min \left\{n>m_{0}: \exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q(n)}\right)^{d} \pi_{q(n)} q(n)}{112}\right) \leq \frac{\delta}{4 \ell N}\right\} \tag{S3.6}
\end{equation*}
$$

For the fourth term in the right hand side of S3.5, we want to choose an ϵ such that,

$$
4 N \exp \left(-\frac{c_{5}^{2} \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q(n)}\right)^{d} \pi_{q(n)} q(n)\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)^{2}}{16 c_{4}^{2} v^{2}+16 c_{4} c\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)}\right) \leq \frac{\delta}{4 \ell N}
$$

One such value for ϵ as shown in LemmaS1 is given by,

$$
\begin{equation*}
\tilde{\epsilon}_{i, n}=w\left(L h_{q(n)} ; f_{i}\right)+\sqrt{\frac{64 c_{4}^{2} v^{2} \log \left(16 \ell N^{2} / \delta\right)}{c_{5}^{2} \underline{\mathrm{c}} \tilde{a}_{1}(2 L)^{d} h_{q(n)}^{d} \pi_{q(n)} q(n)}} . \tag{S3.7}
\end{equation*}
$$

By (S3.5), S3.6) and (S3.7), for $n \geq n_{\delta}^{\prime}$, we have that,

$$
P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \tilde{\epsilon}_{i, n}\right) \leq \frac{\delta}{4 \ell N}+\frac{\delta}{4 \ell N}+\frac{\delta}{4 \ell N}+\frac{\delta}{4 \ell N}=\frac{\delta}{\ell N}
$$

which implies that,

$$
\begin{equation*}
P\left(\sum_{n_{\delta}^{\prime}+1}^{N} 2 \sup _{1 \leq i \leq \ell}\left|\hat{f}_{i, n}\left(X_{n}\right)-f_{i}\left(X_{n}\right)\right| \geq \sum_{n_{\delta}^{\prime}+1}^{N} 2 \max _{1 \leq i \leq \ell} \tilde{\epsilon}_{i, n-1}\right) \leq \delta \tag{S3.8}
\end{equation*}
$$

Now we want to get a bound for the randomization error.
Let $\sigma_{t}=\min \left\{\bar{n}: \sum_{j=n_{\delta}^{\prime}+1}^{\bar{n}} I\left(t_{j} \leq N\right) \geq t\right\}$, for $t \in \mathbb{Z}$. Recall that for strategy η_{2}, we update only when a new reward is observed that is at every $\sigma_{t}, t \geq 1$. In between the time points corresponding to two consecutive reward observations, $\left\{\pi_{t}\right\}$ takes the same as the value for the previous observed case. In other words, we have $\sigma_{t+1}-\sigma_{t}$ same values $(\ell-1) \pi_{t}$ for the exploration probability for each t, hence $\sum_{n=n_{\delta}^{\prime}+1}^{N} P\left(I_{n} \neq \hat{i}_{n}\right)=\sum_{n=n_{\delta}^{\prime}+1}^{N}(\ell-1) \pi_{\tau_{n}}=\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}$, and w.l.o.g., assume that $\sigma_{\tau_{N}+1}=N$.

$$
\begin{equation*}
P\left(\tau_{N} \geq \mathrm{E}\left(\tau_{N}\right)+\epsilon_{1}(N, \delta)\right) \leq \delta \tag{S3.14}
\end{equation*}
$$

$$
\begin{align*}
& P\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \epsilon\right) \\
& =P\left(\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \frac{\epsilon}{A}, \max _{t}\left(\sigma_{t+1}-\sigma_{t}\right) \geq M_{\delta}\right) \\
& +P\left(\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \frac{\epsilon}{A}, \max _{t}\left(\sigma_{t+1}-\sigma_{t}\right)<M_{\delta}\right) \\
& \leq P\left(\max _{t}\left(\sigma_{t+1}-\sigma_{t}\right) \geq M_{\delta}\right) \\
& +P\left(\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \frac{\epsilon}{A}, \max _{t}\left(\sigma_{t+1}-\sigma_{t}\right)<M_{\delta},\right. \\
& \left.\tau_{N} \geq E\left(\tau_{N}\right)+\frac{\epsilon}{A}\right) \\
& +P\left(\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \frac{\epsilon}{A},\right. \\
& \left.\max _{t}\left(\sigma_{t+1}-\sigma_{t}\right)<M_{\delta}, \tau_{N}<E\left(\tau_{N}\right)+\frac{\epsilon}{A}\right) \\
& \leq P\left(\max _{t}\left(\sigma_{t+1}-\sigma_{t}\right) \geq M_{\delta}\right)+P\left(\tau_{N} \geq E\left(\tau_{N}\right)+\frac{\epsilon}{A}\right) \\
& +P\left(\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \frac{\epsilon}{A},\right. \\
& \left.\max _{t}\left(\sigma_{t+1}-\sigma_{t}\right)<M_{\delta}, \tau_{N}<E\left(\tau_{N}\right)+\frac{\epsilon}{A}\right) \\
& \leq \delta+\exp \left(-\frac{2 \epsilon^{2}}{A^{2} N}\right) \\
& +E\left[P _ { \mathcal { A } _ { N } , X ^ { N } } \left(\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \frac{\epsilon}{A},\right.\right. \\
& \left.\left.\max _{t}\left(\sigma_{t+1}-\sigma_{t}\right)<M_{\delta}, \tau_{N}<E\left(\tau_{N}\right)+\frac{\epsilon}{A}\right)\right], \tag{S3.15}
\end{align*}
$$

where the first term follows from S3.11) and the definition of M_{δ} S3.12, the second term from S3.13) and last inequality follows from law of iterated expectation.
Then using (S3.9) we have that,

$$
\begin{aligned}
& P_{\mathcal{A}_{N}, X^{N}}\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \epsilon\right. \\
& \left.\quad \max _{t}\left(\sigma_{t+1}-\sigma_{t}\right)<M_{\delta}, \tau_{N}<E\left(\tau_{N}\right)+\frac{\epsilon}{A}\right) \\
& \leq\left\{\begin{array}{lc}
\exp \left(-\frac{\epsilon^{2}}{2 A^{2} M_{\delta}\left(\mathrm{E}\left(\tau_{N}\right)+\epsilon\right) / 4+\epsilon / 3}\right), & \text { if } \max _{t}\left(\sigma_{t+1}-\sigma_{t}\right)<M_{\delta} \\
0, & \tau_{N}<\mathrm{E}\left(\tau_{N}\right)+\epsilon / A
\end{array}\right. \\
& \text { otherwise }
\end{aligned}
$$

Using this in S3.15, we get,

$$
\begin{gather*}
\mathrm{E} P_{\mathcal{A}_{N}, X^{N}}\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \epsilon,\right. \\
\left.\max _{t}\left(\sigma_{t+1}-\sigma_{t}\right) \leq M_{\delta}, \tau_{N}<E\left(\tau_{N}\right)+\epsilon / A\right) \\
\leq \exp \left(-\frac{\epsilon^{2}}{2 A^{2} M_{\delta}\left(\mathrm{E}\left(\tau_{N}\right)+\epsilon\right) / 4+\epsilon / 3}\right) . \tag{S3.16}
\end{gather*}
$$

Therefore, combining S3.15 and S3.16, we get that with probability at least 1- δ,

$$
\begin{aligned}
& P\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \epsilon\right) \\
& \quad \leq \delta+\exp \left(-\frac{2 \epsilon^{2}}{A^{2} N}\right)+\exp \left(-\frac{\epsilon^{2}}{2 A^{2} M_{\delta}\left(\mathrm{E}\left(\tau_{N}\right)+\epsilon\right) / 4+\epsilon / 3}\right)
\end{aligned}
$$

In order to bound the right hand side by 2δ, let,

$$
\epsilon_{N, \delta}=\max \left\{A \sqrt{M_{\delta} \frac{E\left(\tau_{N}\right)}{2} \log \left(\frac{2}{\delta}\right)}, A \sqrt{\frac{N}{2} \log \left(\frac{2}{\delta}\right)}\right\}
$$

For this chosen ϵ, we have that,

$$
\begin{align*}
& P\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \epsilon_{N, \delta}\right) \leq 2 \delta \\
\Rightarrow & P\left(A \sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right) \geq A \sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}+\epsilon_{N, \delta}\right) \leq 2 \delta \tag{S3.17}
\end{align*}
$$

121
Note that,

$$
\begin{align*}
& P\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \epsilon_{N, \delta}\right) \\
& \geq P\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \epsilon_{N, \delta}\right. \\
& \left.\tau_{N} \leq \mathrm{E}\left(\tau_{N}\right)+\epsilon_{1}(N, \delta), \max _{t}\left(\sigma_{t+1}-\sigma_{t}\right) \leq M_{\delta}\right) \\
& =P\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \epsilon_{N, \delta} \mid \tau_{N} \leq \mathrm{E}\left(\tau_{N}\right)\right. \\
& \left.\quad+\epsilon_{1}(N, \delta), \max _{t}\left(\sigma_{t+1}-\sigma_{t}\right) \leq M_{\delta}\right) \times \\
& \geq P\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\mathrm{E}\left(\tau_{N}\right)+\epsilon_{1}(N, \delta)} M_{\delta}(\ell-1) \pi_{t}\right) \geq \epsilon_{N, \delta}\right)(1-\delta)^{2},
\end{align*}
$$

where the last inequality follows from (S3.12) and S3.14. Now, from S3.17) and (S3.18), we get,

$$
\begin{aligned}
& P\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\mathrm{E}\left(\tau_{N}\right)+\epsilon_{1}(N, \delta)} M_{\delta}(\ell-1) \pi_{t}\right) \geq \epsilon_{N, \delta}\right)(1-\delta)^{2} \\
& \quad \leq P\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\tau_{N}}\left(\sigma_{t+1}-\sigma_{t}\right)(\ell-1) \pi_{t}\right) \geq \epsilon_{N, \delta}\right) \\
& \quad \leq 2 \delta
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow P\left(A\left(\sum_{n=n_{\delta}^{\prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{t=1}^{\mathrm{E}\left(\tau_{N}\right)+\epsilon_{1}(N, \delta)} M_{\delta}(\ell-1) \pi_{t}\right) \geq \epsilon_{N, \delta}\right) \leq \frac{2 \delta}{(1-\delta)^{2}} \tag{S3.20}
\end{equation*}
$$

From (S3.8) and (S3.20), we get that with probability at least $1-2 \delta /(1-\delta)^{2}$, the cumulative regret for strategy η_{2} satisfies,

$$
\begin{aligned}
R_{N}\left(\eta_{2}\right)< & A n_{\delta}^{\prime}+\sum_{n=n_{\delta}^{\prime}+1}^{N} 2\left(\max _{1 \leq i \leq \ell} w\left(L h_{q(n)} ; f_{i}\right)+\sqrt{\frac{64 c_{4}^{2} v^{2} \log \left(12 \ell N^{2} / \delta\right)}{c_{5}^{2} \underline{\mathrm{c}}(2 L)^{d} h_{q(n)}^{d} \pi_{q(n)} q(n)}}\right) \\
& +A \sum_{t=1}^{N^{*}(\delta)} M_{\delta}(\ell-1) \pi_{t}+\max \left\{A \sqrt{M_{\delta} \frac{E\left(\tau_{N}\right)}{2} \log \left(\frac{2}{\delta}\right)}, A \sqrt{\left(\frac{N}{2}\right) \log \left(\frac{2}{\delta}\right)}\right\}
\end{aligned}
$$

where, the above inequality follows from Lemma 3 and S6.2.
Now, we want to remove the condition on \mathcal{A}_{N} from the above conditional probability inequality. Recall that $d_{j} \stackrel{\text { ind }}{\sim} G_{j}$, for $j \geq 1$. Therefore, for the known visiting times $\left\{s_{j}, j \geq 1\right\}, P\left(t_{j} \leq n\right)=$
$P\left(d_{j}+s_{j} \leq n\right)=P\left(d_{j} \leq n-s_{j}\right)=G_{j}\left(n-s_{j}\right)$, and hence,

$$
\begin{aligned}
& P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon\right) \\
& \quad=P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon, \tau_{n} \leq \frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right) \\
& \quad+P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon, \tau_{n}>\frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right) \\
& \quad \\
& \quad \leq P\left(\tau_{n} \leq \frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right)+P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon,\right. \\
& \\
& \quad \leq P\left(\tau_{n} \leq \frac{\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)}{2}\right)+\mathrm{E} P_{\mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon\right. \\
& \\
& \left.\quad \tau_{n}>\frac{a_{1} q(n)}{2}\right)
\end{aligned}
$$

where $\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right)=\Omega(q(n))$ from Assumption 7 that is, for large enough n, we would have that $\sum_{j=1}^{n} G_{j}\left(n-s_{j}\right) \geq a_{1} q(n)$ for some positive constant a_{1}. Let $q_{1}(n)=a_{1} q(n) / 2$, we get, for $\tau_{n}>q_{1}(n)$, since we have the condition that $h_{q(n)}^{d} \pi_{n} q(n) / \log n \rightarrow \infty$, for large enough n , we can assume that $h_{\tau_{n}}^{d} \tau_{n} \geq \tilde{\tilde{a}}_{1} h_{q_{1}(n)}^{d} q_{1}(n)$ and $h_{\tau_{n}}^{d} \pi_{n} \tau_{n} \geq \tilde{\tilde{a}}_{1} h_{q_{1}(n)}^{d} \pi_{n} q_{1}(n)$, where $\tilde{\tilde{a}}_{1}$ is a positive constant depending on a_{1} and the choice of hyperparameter sequences $\left\{h_{n}\right\}$ and $\left\{\pi_{n}\right\}$. For large enough n, we have that $\epsilon-w\left(L h_{q(n)} ; f_{i}\right)>0$. Now, using S4.1) and S6.2, we get,

$$
\begin{align*}
& \leq \exp \left(-\frac{3 q_{1}(n)}{14}\right)+\exp \left(-\frac{3 \underline{\mathrm{c}}\left(2 L h_{q_{1}(n)}\right)^{d} q_{1}(n)}{28}\right) \\
& \quad+\exp \left(-\frac{3 \underline{\mathrm{c}}\left(2 L h_{q_{1}(n)}\right)^{d} q_{1}(n) \pi_{n}}{56}\right) \\
& \quad+4 N \exp \left(-\frac{c_{5}^{2} \underline{\mathrm{c}}\left(2 L h_{q_{1}(n)}\right)^{d} q_{1}(n) \pi_{n}\left(\epsilon-w\left(L h_{q_{1}(n)} ; f_{i}\right)\right)^{2}}{8 c_{4}^{2} v^{2}+8 c_{4} c\left(\epsilon-w\left(L h_{q_{1}(n)} ; f_{i}\right)\right)}\right) \\
& \leq \exp \left(-\frac{3 a_{1} q(n)}{28}\right)+\exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{\tilde{a}}_{1}\left(2 L h_{q(n)}\right)^{d} q(n)}{56}\right) \\
& \quad+\exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{\tilde{a}}_{1}\left(2 L h_{q(n)}\right)^{d} q(n) \pi_{n}}{112}\right) \\
& \quad+4 N \exp \left(-\frac{c_{5}^{2} \mathrm{c} \tilde{\tilde{a}}_{1}\left(2 L h_{q(n)}\right)^{d} q(n) \pi_{n}\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)^{2}}{16 c_{4}^{2} v^{2}+16 c_{4} c\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)}\right) \tag{S4.2}
\end{align*}
$$

Given $0<\delta<1$, we want to bound the R.H.S. above by δ. To do that for the first three terms, given total time horizon N, we define a special time point $n_{\delta}^{\prime \prime}$ as in (9),

$$
\begin{equation*}
n_{\delta}^{\prime \prime}=\min \left\{n>m_{0}: \exp \left(-\frac{3 \underline{c} \tilde{\tilde{a}}_{1}\left(2 L h_{q(n)}\right)^{d} \pi_{n} q(n)}{112}\right) \leq \frac{\delta}{4 \ell N}\right\} . \tag{S4.3}
\end{equation*}
$$

For the fourth term in the R.H.S. of (S4.2), we want to choose an ϵ such that,

$$
4 N \exp \left(-\frac{c_{5}^{2} \underline{\mathrm{c}} \tilde{\tilde{a}}_{1}\left(2 L h_{q(n)}\right)^{d} \pi_{n} q(n)\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)^{2}}{16 c_{4}^{2} v^{2}+16 c_{4} c\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)}\right) \leq \frac{\delta}{4 \ell N}
$$

which implies that,

$$
\begin{equation*}
P\left(\sum_{n_{\delta}^{\prime \prime}+1}^{N} 2 \sup _{1 \leq i \leq \ell}\left|\hat{f}_{i, n}\left(X_{n}\right)-f_{i}\left(X_{n}\right)\right| \geq \sum_{n_{\delta}^{\prime \prime}+1}^{N} 2 \max _{1 \leq i \leq \ell} \tilde{\epsilon}_{i, n-1}^{\prime}\right) \leq \delta \tag{S4.5}
\end{equation*}
$$

148 Now we want to get a bound for the randomization error regret. Given $\epsilon>0$, since $P\left(I_{n} \neq \hat{i}_{n}\right)=$ $(\ell-1) \pi_{n}$, we have by the Hoeffding's inequality that,

$$
P\left(A\left(\sum_{n=n_{\delta}^{\prime \prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right)-\sum_{n=n_{\delta}^{\prime \prime}+1}^{N}(\ell-1) \pi_{n}\right) \geq \epsilon\right) \leq \exp \left(-\frac{2 \epsilon^{2}}{N A^{2}}\right) .
$$

Take $\epsilon=A \sqrt{N / 2} \log (1 / \delta)$, we get,

$$
\begin{equation*}
P\left(A \sum_{n=n_{\delta}^{\prime \prime}+1}^{N} I\left(I_{n} \neq \hat{i}_{n}\right) \geq A \sum_{n=n_{\delta}^{\prime \prime}+1}^{N}(\ell-1) \pi_{n}+A \sqrt{\frac{N}{2}} \log \left(\frac{1}{\delta}\right)\right) \leq \delta \tag{S4.6}
\end{equation*}
$$

151 Therefore, from $(\mathbf{S 4 . 5}$ and $\mathbf{S 4 . 6}$, we get that with probability at least $1-2 \delta$, the cumulative regret satisfies,

$$
\begin{aligned}
R_{N}\left(\eta_{1}\right)<A n_{\delta}^{\prime \prime} & +\sum_{n=n_{\delta}^{\prime \prime}+1}^{N} 2\left(\max _{1 \leq i \leq \ell} w\left(L h_{q(n)} ; f_{i}\right)+\frac{C_{N, \delta}}{\sqrt{h_{q(n)}^{d} \pi_{n} q(n)}}+A(\ell-1) \pi_{n}\right) \\
& +A \sqrt{\left(\frac{N}{2} \log \left(\frac{1}{\delta}\right)\right)}
\end{aligned}
$$

153 where $C_{N, \delta}=\sqrt{64 c_{4}^{2} v^{2} \log \left(12 \ell N^{2} / \delta\right) / c_{5}^{2} \mathrm{c} \tilde{\tilde{a}}_{1}(2 L)^{d}}$. Hence the desired result.
154 Proof of Theorem ST. Since a lot of steps remain the same as Theorems 1 and 2, we outline the steps 155 that change here. Firstly, in lemma $\$ 2.1$, recall,

$$
\begin{aligned}
& P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon\right) \\
& \quad \stackrel{a}{\leq} \exp \left(-\frac{3 M_{n+1}(x) \pi_{\tau_{n}}}{28}\right)+P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon, \frac{M_{i, n+1}(x)}{M_{n+1}(x)}>\frac{\pi_{\tau_{n}}}{2}, B_{i, n}\right) \\
& \quad+P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon, \frac{M_{i, n+1}(x)}{M_{n+1}(x)}>\frac{\pi_{\tau_{n}}}{2}, B_{i, n}^{c}\right) \\
& \quad=: \exp \left(-\frac{3 M_{n+1}(x) \pi_{\tau_{n}}}{28}\right)+A_{1}+A_{2} .
\end{aligned}
$$

156 For A_{1}, by applying using lemma S9. S2.3) will become,

$$
A_{1} \leq \begin{cases}2 N \exp \left(-\frac{c_{5}^{2} M_{n+1}(x) \pi_{\tau_{n}}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)^{2}}{4 C^{2} \nu^{2}}\right) & \text { if } 0<\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)<\nu^{2} C / \alpha \\ 2 N \exp \left(-\frac{c_{5} M_{n+1}(x) \pi_{\tau_{n}}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)}{4 C \alpha}\right) & \text { if } \epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)>\nu^{2} C / \alpha\end{cases}
$$

Similarly,

$$
A_{2} \leq \begin{cases}2 N \exp \left(-\frac{M_{n+1}(x) \pi_{\tau_{n}}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)^{2}}{4 C^{2} \nu^{2}}\right) & \text { if } 0<\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)<\nu^{2} C / \alpha \\ 2 N \exp \left(-\frac{M_{n+1}(x) \pi_{\tau_{n}}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)}{4 C \alpha}\right) & \text { if } \epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)>\nu^{2} C / \alpha\end{cases}
$$ Therefore, Lemma 2 gets modified to the following,

$$
\begin{align*}
& P_{X^{n}, \mathcal{A}_{N}}\left(\left|\hat{f}_{i, n+1}(x)-f_{i}(x)\right| \geq \epsilon\right) \tag{S4.7}\\
& \leq \begin{cases}\exp \left(-\frac{3 M_{n+1}(x) \pi_{\tau_{n}}}{28}\right) \\
\quad+4 N \exp \left(-\frac{c_{5}^{2} M_{n+1}(x) \pi_{\tau_{n}}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)^{2}}{4 C^{2} \nu^{2}}\right), & \text { if } 0<\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)<\nu^{2} C / \alpha \\
\exp \left(-\frac{3 M_{n+1}(x) \pi_{\tau_{n}}}{28}\right) \\
& +4 N \exp \left(-\frac{c_{5} M_{n+1}(x) \pi_{\tau_{n}}\left(\epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)\right)}{4 C \alpha}\right), \\
\text { if } \epsilon-w\left(L h_{\tau_{n}} ; f_{i}\right)>\nu^{2} C / \alpha\end{cases}
\end{align*}
$$

Following through with the same logic, we get that (S3.5) in proof of 1 would become, for large enough n,

$$
\begin{aligned}
& P\left(\left|\hat{f}_{i, n+1}\left(X_{n+1}\right)-f_{i}\left(X_{n+1}\right)\right| \geq \epsilon\right) \\
& \quad \leq\left\{\begin{array}{l}
\exp \left(-\frac{3 a_{1} q(n)}{28}\right)+\exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q(n)}\right)^{d} q(n)}{56}\right)+\exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q(n)}\right)^{d} q(n) \pi_{q(n)}}{112}\right) \\
\quad+4 N \exp \left(-\frac{\left.c_{5 \underline{\mathrm{c}} \tilde{\mathrm{c}}_{1}\left(2 L h_{q(n)}\right)^{d} q(n) \pi_{q(n)}\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)^{2}}^{8 C^{2} \nu^{2}}\right), \text { if } \epsilon-w\left(L h_{q(n)} ; f_{i}\right)<\nu^{2} C / \alpha}{}\right. \\
\exp \left(-\frac{3 a_{1} q(n)}{28}\right)+\exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q(n)}\right)^{d} q(n)}{56}\right)+\exp \left(-\frac{3 \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q(n)}\right)^{d} q(n) \pi_{q(n)}}{112}\right) \\
\quad+4 N \exp \left(-\frac{c_{5}^{2} \underline{\mathrm{c}} \tilde{a}_{1}\left(2 L h_{q(n))^{d} q(n) \pi_{q(n)}\left(\epsilon-w\left(L h_{q(n)} ; f_{i}\right)\right)}^{8 C \alpha}\right), \text { if } \epsilon-w\left(L h_{q(n)} ; f_{i}\right)>\nu^{2} C / \alpha}{}\right.
\end{array}\right.
\end{aligned}
$$

Then, bounding the above terms by $\delta>0$, we would get a version of LemmaS1.

$$
\begin{aligned}
Z & :=\tilde{\epsilon}_{i, n}-w\left(L h_{q(n)} ; f_{i}\right) \\
& = \begin{cases}\sqrt{\frac{8 C^{2} \nu^{2} \log \left(16 \ell N^{2} / \delta\right)}{c_{5}^{2} \mathrm{c} \tilde{a}_{1}(2 L)^{d} h_{q(n)}^{d} \pi_{q(n)} q(n)}} & \text { if } Z<\nu^{2} C / \alpha \\
\frac{8 C \alpha \log \left(16 \ell N^{2} / \delta\right)}{c_{5}^{2} \underline{\mathrm{c}} \tilde{a}_{1}(2 L)^{d} h_{q(n)}^{d} \pi_{q(n)} q(n)} & \text { if } Z>\nu^{2} C / \alpha\end{cases}
\end{aligned}
$$

The above conditions then imply, case one $Z<\nu^{2} C / \alpha$ is the same as,

$$
h_{q(n)}^{d} q(n) \pi_{q(n)}>\frac{8 \log \left(16 \ell N^{2} / \delta\right) \alpha^{2}}{\nu^{2} c_{5} \underline{\mathrm{c}} \tilde{a}_{1}(2 L)^{d}}
$$

while case 2, that is, $Z>\nu^{2} C / \alpha$ is the compliment of this,

$$
h_{q(n)}^{d} q(n) \pi_{q(n)}<\frac{8 \log \left(16 \ell N^{2} / \delta\right) \alpha^{2}}{\nu^{2} c_{5} \underline{\mathrm{c}} \tilde{a}_{1}(2 L)^{d}}
$$

Note that the modification of sub-exponential errors does not effect the randomization error, we get the final result for 1 as follows, Then for $0<\delta \leq 1 / 4$, we have that, with probability at least $1-\frac{32 \delta}{9}$,
the cumulative regret for η_{2} satisfies,

$$
R_{N}\left(\eta_{2}\right)<\left\{\begin{array}{c}
A n_{\delta}^{\prime}+\sum_{n=n_{\delta}^{\prime}+1}^{N} 2\left(\max _{1 \leq i \leq \ell} w\left(L h_{q(n)} ; f_{i}\right)+\frac{C_{N, \delta}^{\prime}}{\sqrt{h_{q(n)}^{d} \pi_{q(n)} q(n)}}\right) \\
+A \sum_{t=1}^{N^{*}(\delta)} M_{\delta}(\ell-1) \pi_{t}+\max \left\{A \sqrt{M_{\delta} \frac{E\left(\tau_{N}\right)}{2} \log \left(\frac{2}{\delta}\right)}, A \sqrt{\left(\frac{N}{2}\right) \log \left(\frac{2}{\delta}\right)}\right\}, \\
\text { if } h_{q(n)}^{d} q(n) \pi_{q(n)}>\frac{8 \log \left(16 \ell N^{2} / \delta\right) \alpha^{2}}{\nu^{2} c_{5} \tilde{c}_{1} \tilde{a}_{1}(2 L)^{d}}, \\
A n_{\delta}^{\prime}+\sum_{n=n_{\delta}^{\prime}+1}^{N} 2\left(\max _{1 \leq i \leq \ell} w\left(L h_{q(n)} ; f_{i}\right)+\frac{C_{N, \delta}^{\prime \prime}}{h_{q(n)}^{d} \pi_{q(n)} q(n)}\right.
\end{array}\right), \begin{gathered}
\\
+A \sum_{t=1}^{N^{*}(\delta)} M_{\delta}(\ell-1) \pi_{t}+\max \left\{A \sqrt{M_{\delta} \frac{E\left(\tau_{N}\right)}{2} \log \left(\frac{2}{\delta}\right)}, A \sqrt{\left(\frac{N}{2}\right) \log \left(\frac{2}{\delta}\right)}\right\}, \\
\text { if } h_{q(n)}^{d} q(n) \pi_{q(n)}<\frac{8 \log \left(16 \ell N^{2} / \delta\right) \alpha^{2}}{\nu^{2} c_{5} \underline{c} \tilde{a}_{1}(2 L)^{d}},
\end{gathered}
$$

$$
\text { where, } \quad C_{N, \delta}^{\prime}=\sqrt{8 C^{2} \nu^{2} \log \left(16 \ell N^{2} / \delta\right) / c_{5} \underline{\alpha} \tilde{a}_{1}(2 L)^{d}} \quad \text { and } \quad C_{N, \delta}^{\prime \prime} \quad=
$$

$$
8 \alpha C \log \left(16 \ell N^{2} / \delta\right) /\left(c_{5} \underline{\underline{c}} \tilde{a}_{1}(2 L)^{d}\right) .
$$

S5 More simulation results

Here, we display plots for the three simulation settings for different combinations of hyperparameter sequences, $\left\{\pi_{n}=(\log n)^{-2}, h_{n}=n^{-1 / 4}\right\}$ in figure 1 and $\left\{\pi_{n}=(\log n)^{-2}, h_{n}=(\log n)^{-1}\right\}$ in figure 2 respectively. Again, we used $\lambda_{1}=1$ for strategy $\eta_{\text {adap }}$ for all simulation setups and also, $\lambda_{2}=I$ for both setups 2 and 3 , but $\lambda_{2}=3$ for $\eta_{\text {adap }_{2}}$ in setup 1 . A thorough investigation may be needed for the selection of λ_{1} and λ_{2} for easy applicability in practical real-world decision making problems. In our simulation study, we get promising results from these adaptive strategies as they perform better (or at par) than both η_{1} and η_{2}.

Figure 1: Strategy $\eta_{\text {adap }_{1}}$ and $\eta_{\text {adap }_{2}}$ have lower (or at par) cumulative average regret than η_{1} and η_{2} for the three simulation settings.

We also consider another extreme setup, where one of the functions has a big spike and the other is constant.

Figure 2: Strategy $\eta_{\text {adap }_{1}}$ and $\eta_{\text {adap }_{2}}$ have lower (or at par) cumulative average regret than η_{1} and η_{2} for the two simulation settings.

Setup 3: Consider a setup where one arm dominates over majority of the covariate space, except for a small area where it incurs a considerably high regret.

$$
g_{1}(x)=1, \text { for all } x \in[0,1] ; g_{2}(x)= \begin{cases}0 & 0 \leq x<0.5,0.505 \leq x \leq 1 \\ 100000 x-50000 & 0.5 \leq x<0.502 \\ 200 & 0.502 \leq x<0.503 \\ -100000 * x+50500 & 0.503 \leq x<0.505\end{cases}
$$

We look at both the setup $d=2$, when $f_{1}\left(x_{1}, x_{2}\right)=g_{1}\left(x_{1}\right) * x_{2}$ and $f_{2}\left(x_{1}, x_{2}\right)=g_{2}\left(x_{1}\right) * x_{2}$. outperform η_{1} and η_{2} in this setting.

Figure 3: Strategy $\eta_{\text {adap }_{1}}$ and $\eta_{\text {adap }_{2}}$ have lower (or at par) cumulative average regret than η_{1} and η_{2} for Setting 3.

S6 Appendix

In this section, we enlist some well-known technical tools that are used in the paper. We first state the famous Borel-Cantelli Lemma.

Lemma S3 (A.1). [Borel-Cantelli] Let $\left(A_{1}, A_{2}, \ldots\right)$ be a sequence of events in a common probability space (Ω, \mathcal{F}, P) and set $A=\lim \sup _{n \rightarrow \infty} A_{n}$. If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P(A)=0$.

This result is useful in assessing almost sure convergence and is often used in the analysis presented in the following chapters. Next, we define the modulus of continuity, which quantifies the maximum differences in functional values for a given function on a given domain.

Definition 1. Let $x_{1}, x_{2} \in[0,1]^{d}$. Then $w(h ; f)$ denotes a modulus of continuity defined by, $w(h ; f)=\sup \left\{\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|:\left|x_{1 k}-x_{2 k}\right| \leq h\right.$ for all $\left.1 \leq k \leq d\right\}$.

It can be seen that if f is continuous then $w(h ; f) \rightarrow 0$ as $h \rightarrow 0$.
Next, we review some concentration inequalities, which are quite standard results and will be used in the following chapters.

S6.1 Concentration inequalities

Lemma $\mathbf{S 4}$ (Hoeffding's Inequality). Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent real-valued random variables such that for each $i=1, \ldots, n$ there exists some $a_{i} \leq b_{i}$ such that $P\left[a_{i} \leq X_{i} \leq b_{i}\right]=1$. Then for every $\epsilon>0$,

$$
P\left[\sum_{i=1}^{n} X_{i}-E \sum_{i=1}^{n} X_{i}>\epsilon\right] \leq \exp \left(-\frac{2 \epsilon^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

More such inequalities with their proofs can be found in Hoeffding (1994).
The martingale version of Hoeffding inequality has also been derived and is known as the AzumaHoeffding inequality.

Lemma $\mathbf{S 5}$ (Azuma-Hoeffding Inequality). Suppose $\mathcal{F}_{j}, j=1,2, \ldots$ is an increasing filtration of σ fields. For each $j \geq 1$, let X_{j} be \mathcal{F}_{j}-measurable such that $X_{j} \geq 0$ almost surely, and $a_{j} \leq X_{j} \leq b_{j}$, then for all $\epsilon>0$, we have,

$$
P\left[\sum_{j=1}^{n} X_{j}-\sum_{j=1}^{n} E\left(X_{j} \mid \mathcal{F}_{j-1}\right)>\epsilon\right] \leq \exp \left(-\frac{2 \epsilon^{2}}{\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)^{2}}\right)
$$

One if referred to McDiarmid (1998) for more details and a proof of the inequality.
Lemma S6. A.4[Bernstein's Inequality] Let X_{1}, \ldots, X_{n} be independent real-valued random variables with zero mean, and assume that $X_{1} \leq 1$ with probability 1. Let $V_{j}=\operatorname{Var}\left(X_{j}\right)$ and $\sigma^{2}=\sum_{j=1}^{n} V_{j}$. For any $\epsilon>0$,

$$
\begin{equation*}
P\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}>\epsilon\right] \leq \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}+2 \epsilon / 3}\right) \tag{S6.1}
\end{equation*}
$$

Proofs of these inequalities can be found in Cesa-Bianchi and Lugosi (2006).
Corollary S1. Suppose $\tilde{W}_{1}, \tilde{W}_{2}, \ldots, \tilde{W}_{n}$, are independent Bernoulli random variables with success probability β_{j}. By Bernstein's inequality in (S6.1),

$$
P\left(\sum_{j=1}^{n} \tilde{W}_{j} \leq\left(\sum_{j=1}^{n} \beta_{j}\right) / 2\right) \leq \exp \left(-\frac{3 \sum_{j=1}^{n} \beta_{j}}{28}\right)
$$

The proof follows by substituting $\epsilon=\left(\sum_{j=1}^{n} \beta_{j}\right) / 2$ and $X_{j}=\beta_{j}-\tilde{W}_{j}$ in S6.1). Note that the same inequality holds for any Bernoulli random variable where W_{j} takes values $a_{j} \leq 1, \forall j \geq 1$ and 0 .
The Bernstein's inequality has been extended to the case of martingales.
Lemma $\mathbf{S 7}$ (Bernstein's Inequality for Martingales). Let (Ω, \mathcal{F}, P) be a probability space. Let $\mathcal{F}_{j}, j=1,2, \ldots$, be an increasing filtration of sub- σ-fields of \mathcal{F}. Let X_{1}, X_{2}, \ldots be random variables on (Ω, \mathcal{F}, P), such that X_{j} is \mathcal{F}_{j}-measurable. Assume $\left|X_{j}\right| \leq K$ with probability 1, for all $j \geq 1$. Let $V_{j}=\operatorname{Var}\left(X_{j} \mid \mathcal{F}_{j-1}\right)$ and denote the sum of conditional variances by, Then for all positive real numbers ϵ and v,

$$
P\left(\sum_{j=1}^{n}\left(X_{j}-E\left(X_{j} \mid \mathcal{F}_{j-1}\right)\right)>\epsilon, \sum_{j=1}^{n} V_{j} \leq v\right) \leq \exp \left(-\frac{\epsilon^{2}}{2(v+K \epsilon / 3)}\right)
$$

The proof of this inequality can be found in Freedman (1975).
Corollary $\mathbf{S 2}$ (Extended Bernstein Inequality). Suppose $\left\{\mathcal{F}_{j}, j=1,2, \ldots\right\}$ is an increasing filtration of σ-fields. For each $j \geq 1$, let W_{j} be an \mathcal{F}_{j}-measurable Bernoulli random variable whose conditional success probability satisfies

$$
P\left(W_{j}=1 \mid \mathcal{F}_{j-1}\right) \geq \beta_{j}
$$

for some $\beta_{j} \in[0,1]$. Then given $n \geq 1$,

$$
\begin{equation*}
P\left(\sum_{j=1}^{n} W_{j} \leq\left(\sum_{j=1}^{n} \beta_{j}\right) / 2\right) \leq \exp \left(-\frac{3 \sum_{j=1}^{n} \beta_{j}}{28}\right) \tag{S6.2}
\end{equation*}
$$

The proof for this can be found in Qian and Yang (2016).
Lemma S8. Suppose $\left\{\mathcal{F}_{j}, j=1,2, \ldots\right\}$ is an increasing filtration of σ-fields. For each $j \geq 1$, let ϵ_{j} be an \mathcal{F}_{j+1}-measurable random variable that satisfies $E\left(\epsilon_{j} \mid \mathcal{F}_{j}\right)=0$, and let W_{j} be an \mathcal{F}_{j} measurable random variable that is upper bounded by a constant $C>0$ in absolute value almost surely. If there exists positive constants v and c such that for all $k \geq 2$ and $j \geq 1, E\left(\left|\epsilon_{j}\right|^{k} \mid \mathcal{F}_{j}\right) \leq$ $k!v^{2} c^{k-2} / 2$, then for every $\epsilon>0$ and every integer $n \geq 1$,

$$
\begin{equation*}
P\left(\sum_{j=1}^{n} W_{j} \epsilon_{j} \geq n \epsilon\right) \leq \exp \left(-\frac{n \epsilon^{2}}{2 C^{2}\left(v^{2}+c \epsilon / C\right)}\right) \tag{S6.3}
\end{equation*}
$$

Proof of Lemma S8 LemmaS8 is the same as Lemma 1 in Qian and Yang (2016) and the proof for the same can be found there.

A simplified version of Lemma S 8 can be stated as follows.
Corollary S3. Let $\epsilon_{1}, \epsilon_{2}, \ldots$ be independent random variables satisfying the refined Bernstein condition, that is, if there exists positive constants v and c such that for all $k \geq 2$ and $j \geq 1$, $E\left|\epsilon_{j}\right|^{k} \leq k!v^{2} c^{k-2} / 2$. Let I_{1}, I_{2}, \ldots be Bernoulli random variables such that I_{j} is independent of $\left\{\epsilon_{l}: l \geq j\right\}$ for all $j \geq 1$. For any $\epsilon>0$,

$$
\begin{equation*}
P\left(\sum_{j=1}^{n} I_{j} \epsilon_{j} \geq n \epsilon\right) \leq \exp \left(-\frac{n \epsilon^{2}}{v^{2}+c \epsilon}\right) . \tag{S6.4}
\end{equation*}
$$

The proof for this lemma can be found in Yang and Zhu (2002).
Lemma S9. Suppose $\left\{\mathcal{F}_{j}, j=1,2, \ldots\right\}$ is an increasing filtration of σ-fields. For each $j \geq 1$, let ϵ_{j} be an \mathcal{F}_{j+1}-measurable random variable that satisfies $E\left(\epsilon_{j} \mid \mathcal{F}_{j}\right)=0$, and let W_{j} be an $\mathcal{F}_{j}-$ measurable random variable that is upper bounded by a constant $C>0$ in absolute value almost surely. If $\epsilon_{j} \sim \operatorname{sub}-\operatorname{Exp}\left(\nu^{2}, \alpha\right)$, then for every $\epsilon>0$ and every integer $n \geq 1$,

$$
P\left(\sum_{j=1}^{n} W_{j} \epsilon_{j} \geq n \epsilon\right) \leq \begin{cases}\exp \left(-\frac{n \epsilon^{2}}{2 C^{2}\left(v^{2}+c \epsilon / C\right)}\right) & , \text { when } 0<\epsilon<\frac{\nu^{2} C}{\alpha} \tag{S6.5}\\ \exp \left(-\frac{n \epsilon}{2 \alpha C}\right) & \text { when } \epsilon>\frac{\nu^{2} C}{\alpha}\end{cases}
$$

References

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press.

Freedman, D. A. (1975). On tail probabilities for martingales. the Annals of Probability, pages 100-118.

Hoeffding, W. (1994). Probability inequalities for sums of bounded random variables. In The Collected Works of Wassily Hoeffding, pages 409-426. Springer.

McDiarmid, C. (1998). Concentration. In Probabilistic methods for algorithmic discrete mathematics, pages 195-248. Springer.

Qian, W. and Yang, Y. (2016). Kernel estimation and model combination in a bandit problem with covariates. Journal of Machine Learning Research, (1):5181-5217.

Yang, Y. and Zhu, D. (2002). Randomized allocation with nonparametric estimation for a multi-armed bandit problem with covariates. Annals of Statistics, pages 100-121.

