w

Supplementary material: Regret Rates for
Randomized Allocation Strategies for Nonparametric
Bandits with Delayed Rewards

Anonymous Author(s)
Affiliation
Address

email

S1 Results with sub-exponential errors

In this section, we extend the finite-time regret rates for the two proposed strategies in Section [3|to
the case with sub-exponential errors.

Assumption S1. We assume that €; ~ Sub-Exponential(v?, o), i.e.,

2,2
E(exp(Agj)) < exp{A v

},V)\:|/\\<é.

Theorem S1. Suppose assumption |SI|and assumptions in the paper are satisfied and {r,}

is a decreasing sequence. Assume that N > ngg) and the kernel estimator as defined in @) and
kernel chosen as described in (3)). Then with probability larger than 1 — 26, the cumulative regret for
strategy ns satisfies,
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(SL.1)

where, Cys = V/8C2210g(16¢N2/6) /cscar (2L)¢  and Cys =
8aC'log(16¢N2/68)/(cscar (2L)%).

Note that the modification of sub-exponential errors does not effect the randomization error, however
the estimation error changes depending upon the amount of delay and choice of the hyperparameters

{hy} and {m,}. Note that, we will get a similar result for strategy 7;. The proof can be found in
section[S3]
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S2  Proof of Lemmas

Proof of Lemmal[l} Recall, 7, = >77_ I{t; < n}. Then, E(r,) = EQC[_, I{t; < n}) =
Z;’L=1 P(t; <n)= Z?Zl Gj(n — s;j). Now, by Assumptionwe have, for large enough n, there
exists a positive integer a1, such that, 2?21 Gj(n — sj) > a1q(n). Then using the inequality in
Corollary [S2] we get,

It is easy to see that the upper bound is summable in n under the condition (T0) and (8). By the
Borel-Cantelli lemma, the event {7,, > a1q(n)/2} happens infinitely often, therefore 7,, =3 oc.
Note that, by construction this implies that h,, *¥ 0, and 7,, *¥ 0 asn — occ. As an immediate
consequence of this along with continuity of f, we get that w(h._; f) 20, asn — 0. O

S2.1 Proof of Lemma 2

Proof of Lemma[2] Recall that Qpq1(z) = {1 < j < n:1 <t; < n,llz—X;|| < Lhy,}
and Qi ni1(z) = {1 < j<n:j€ Quui(z),I; =i} Let My 1(x) and M, ,,41(z) be the
size of Qp+1(z) and Q; ,,41(z), respectively. It can be seen that if M,,1(z) = 0, (3) trivially
holds. Therefore, without loss of generality we can assume M, 1(x) > 0. For the event B;n =

1 z—X;
{7%,%1(90) > iedini K( hmj) > 05}. Note that,

P ay (|funir(@) = fi@)] 2 €)

= Pxn 4y (|fi,n+1($) — filx)| > e, —Lnt 2]

+ Pxn Ay <|fzn+1(x) — fi()

Mi n+1(x) r, r Mz n+1(x) Tr,
< Pyn Mint 1) T ) | po (n — fi@)] > €, it ) )
< Preoa (28 < T ) b Py (o (0) = )] 2 @ ) >
a 3My i1 (@) T 2 Minii(z) _ 7
< _—_ Pxn ( i — Ji > ,’7 naBin)
€ oxp (-2 ) Py (a0 )] 2 ¢ 3 > Ty
r Min-i—l(x) Tr,
Pxn ,mn — Ji Z 377 ”73?
+ Px JAN (f, +1(.Z') f(.]?)‘ € Mn—o—l(x) > 2 i,n
3M, T
—: exp (—*2155‘””) Ay + Ao, (S2.1)



30 where the first term in the inequality in step a comes from the extended Bernstein inequality (S6.2).
st By Assumption[5]and the definition [T]of the modulus of continuity, we have,
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(82.2)

s2  Under B; ,

| fin+1(2) = fi(2)] < w(Lhr,: fi) + B " Y gK (x f: Xj) :
)

C5Mi,n+1(x) JEQi n+1(z "

33 Using this, we will construct an upper bound for A;. Define oy = inf{n : Z?:l HI; =i,t; <
s n,l|lz —X;|| < Lh,, } > t},t > 1. Then, for large enough n, by Lemma e > w(Lh,,, f;) as.
35 and we have,
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s where the last inequality follows from Lemma|[S8|and the upper boundedness of the kernel function
37 (assumption[S). Now, to find the bound for A5, under Bf, we run into technical problems since the

i,n

38 denominator of the Nadaraya-Watson estimator can be extremely small, hence we will replace the



so  kernel K(-) in (2) with a uniform kernel I (||u||s < L). That is for the case when,

Bi, = Z K(xhXj

J€Jin+1 ™

)<c5 Z I(||lz = Xjlls < Lhs,) ¢, (S2.4)

JE€EJin+1

a0 for some small positive constant 0 < ¢5 < 1, we will use the uniform kernel. Therefore, using (S2.2)),

41 (S24) and (S6.3) (Lemma|[S8)), we get that,

A2 < Pna (| X0 eIl = X511 < Ly, )| = M (@)(e = w(Lha, ),
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< E 2 exp ( n
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< 2N — n n . S2.5

S ( 22 + de(e = w(Lh,; fi)) (529
42 Therefore, using the fact that 0 < ¢5 < 1 < ¢y, (S2.3) and (S2.3) in (S21)), we get,

P ay (|finia (@) = fi(@)] = ¢)
3Mp 41 ()77 c%MnH(m)wT (e —w(Lh.,; fi))?

< - AN — = L . S2.6

= oxp ( 28 +aNexp 4c3v? + degc(e — w(Lhy, 5 fi)) (52.6)
43 O

44 The proof for Lemma@ will follow the same steps with 7, replaced by 7,,. Next, we prove a lemma
45 that would be used to prove Theorem [I]
46

47 Lemma S1. 4 An ¢ that satisfies,

_ C%le(Qth(n))dﬂq(n)Q(n) (6 - w(th(n)a fl))2 < 0
— AN’

(S2.7)

4N e
*p ( 16c302 + 16¢4c(e — w(Lhg(ny; fi))

48 is given by,

64c2v?1og(16¢N2/5)
gi,’n:u}(Lh’ n 7f1)+ ~ . .
am cicar (2L) g, mq(nya(n)

a9 Proof for Lemmal[S1} Let Z := € — w(Lhg(y); i), then becomes,

ngal(2th(n))dﬂ'q(n)q(n)Z2 > 1o 16€N2
16c3v2 + 16c4cZ =108 5 '

so Let Ay = c2cay(2L)%, Ay = 16c2v?, Az = 16¢4c.

1 2 2
A1q(n)h3(n)wq(n)Z2 — Aslog ( 6§N ) Z — Aslog (16?\7 ) > 0. (S2.8)
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Left hand side is a quadratic polynomial in Z. Solving for Z,

16¢N? 16¢N?
Arg(n) (o) 2% — Aslog ( 5 > Z = Azlog ( s ) -

! Aslog(16¢N2/5) N A21og?(16(N?/5)  4Aylog(16¢N?/6)
Alq(n)h;i(n)wq(n) (Alq(n)hg(n)7rq(n))2 Alq(n)hg(n)wq(n)

2

This will give two real roots for the quadratic equation. Therefore if we want some value of Z such
that (S2.8) holds, we can use a point that is larger than the roots —b & v/b? + d? and we know that
d > —b £ v/b% + d2. Therefore, a potential candidate could be,

g 4A5log(16¢N2?/9)
Alq(n)hg(n) Tq(n)

B 64c3v? log(16¢/N?2/6)
ciear (2L)*hy,, mq(nyq(n)’

which means that we want

gi,n = w(th(n)7 fL) + \/

64c3v? log(16¢N2/5)
ngal (2L)dh3(n)ﬂ-q(n)Q(n) '

O

A similar lemma with 7,(,,) replaced by 7, could be derived that will be used in the proof of Theorem

2

Lemma S2. 5 An € that satisfies,

2 = d _ . £))2
AN exp <C5ca1(2LhQ(n)) WnQ(n)(e w(LhQ(n)afz)) ) < é (2.9)

16¢3v% 4 16¢4¢(e — w(Lhgeny; fi)) ~ 4N’

is given by,

64c3v? log(16¢N?/4)
ngzll (2L)dh3(n)7rnq(n) .

€in = w(Lhgm)s fi) + \/

S3 Proof of Theorems

Proof of Theorem([l] By definition of i s fi* X < fZ] J (X), then the regret accumulated after the
initial forced sampling period is,

N
> (X)) - fr,(X))
j=mo+1
N ~ A
= > U (X5) = forx) (X0) + firx )5 (X5) = i, (X5)
j=mo+1
+ 13, (X5) = f1;,(X5))
N
< Y (X)) = firx (X)) + £, (X)) = £, (X5)
Jj=mo-+1
+ [, (X5) = f1,(X5))
N
< > (QIiupl\fi,j(Xj)—fi(Xj)|+AI{Ij#%j}) (S3.1)
Jj=mo+1 sis
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Here the first term corresponds to the regret incurred due to estimation error and the second term
corresponds to the randomization error.

We will first find an upper bound for the estimation error. Note that Lemma [2] gives a probability
inequality for the estimation error conditional on Ay and X ™. Therefore, in order to get a probability
(not conditional) bound on the estimation error, we first remove this condition on X" and then
remove the condition on Ay in (3). Given arm ¢, for a large enough n satisfying n > mg + 1 and
e > w(Lh,,_; fi) as., consider,

Pay (Ifin1(Xn41) = fiXns1)| = )
< C(2Lh-,—n)d7'n>

= Pay <|fz‘,n+1( Xnt1) = filXnt1)| 2 € Mpy1(Xng1) <

2
A c(2Lh, )21,
+ Pay <|fi,n+1< ) = S| 2 € My (Kpg) > 2T ) $32)
c(2Lh, )1,
< Puy (Mn+1(Xn+l) < (2)>
A c(2Lh, )or,
+ Pay <|fz',n+1( nt1) = fi(Xnt1)] > € M1 (Xng1) > (2"))

28 56
ctc(2Lh,,) i, m,, (e —w(Lh,, ; fi))?
8c2v? + 8cyc(e — w(Lh,,; f;))

where, the above inequality follows from Lemma [2] and (S6.2), and the fact that
E(Mp41(Xnt1) | An) > c¢(2Lhs, ) 7.

d d
< exp (_30(2Lh>7> e (_Sc(ZLhm) Tnmn)

+ 4N exp (— (S3.3)

Now, we want to remove the condition on Ay from the conditional probability above. Recall that
d; £ Gj, for j > 1. Therefore, for the known visiting times {s;,j > 1}, P(t; <n) = P(d; +s; <
n) P(d; <n—s;)=Gj(n—s;),hence,

P(| fin1(Xns1) = fi(Xns1)| =€)
:P<fi,n+1( n+1) fZ( nJrl)|26»7—nS

E; 1 Gj(n—s;)
2

Z?:l Gj(n— SJ)>

+P<|fi,n+1( Xnt1) = filXnt1)| > 6,70 >

<p (Tn < Z?:l Gj("“%’))

2

2

+ P

e

+ P

|fi,n+1(Xn+1 z Xn+1)‘ > €,Tn >

i 1G )
(

|fi,n+1( n+1 f2 XnJrl | > €T > a1(I(n)>

2
ol E)
+E |:PAN <fz 7L+1(X7L+1) ft( n+1)| > €, Tn > alq(n)):l ) (S34)

2

for large enough n, where a; is a positive constant arising from Assumption |/} Also, note that the
second term in the last equality (S3.4) is due to the law of iterated expectation. Let ¢; (n) = g(n)/2.

2

/N

21 Gi(n — 5j)>
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For 7, > a1¢1(n), since we have the condition that hg(n)wq(n)q(n) /logn — oo, for large enough
n, we can assume that h¢ 7, > dlhgl (m@1(n) and he w7 > Ezlhgl(n)wa(n)ql(n), where @, is a

constant that is function of constant a;, which depends on the user determined choice of sequences
{m,} and {h,, }. For large enough n, € — w(Lhy(ny; fi) > 0, and we have using (S3.3) and (S6.2) in
34

a1(2Lh d
§ exp (_ 3@13&(“)) + exp <_ 39@1( ;18(71)) ql(”))

+exp (- 39&1(2th1<%)gdq1(n)wa(n) )

8civ? + 8cac(e — w(Lhg, (n); fi))
a1 (2L d
<exp (_ 301(](n)> + exp <— 3ca1(2Lhg(n)) q(n))

+ 4N exp < ngdl(QLh‘h(’ﬂ))dql (TL)?qu (n) (e — w(Lhm (n)s f7>)2>

28 56

3¢y (2Lhg(n)) q(n)7q(n
+ exp (_ q(ll)2 a(n)

(S3.5)

AN exp [ — B0 CLhyn)) a(m)Ty( (€ — w(Lhgin; 1:))°
16¢3v? 4 16¢4c(e — w(Lhgeny; fi)) '

Given 0 < 6 < 1, we want to bound the right hand side above by §. To do that for the first three
terms, given total time horizon IV, we define a special time point nj as in (7)) by,

3¢y (2Lhy () ) T
njs = min {n > myg : exp (— cax Q(ll)g T )q(n)> < 42\7} . (S3.6)

For the fourth term in the right hand side of (S3.3)), we want to choose an € such that,

4N exp _ c3ear (2Lhy(m)) "mg(n)4(n) (¢ — w(Lhyen); £:)) <0
16civ? + 16cac(e — w(Lhyeny; fi)) = 4N’

One such value for € as shown in Lemma|[ST]is given by,

- 64c2v? log(16¢N? /6
Eim = w(Lhgmyi f1) + 1| e dgg /0 (S3.7)
cgear (2L)hg , Tamya(n)
By (S3:3), (S3.6) and (S3.7), for n > nj;, we have that,
N ) 1) 0 ) 1)
: —f >a. )< -2
P (I (Xoen) = iXon) 2 €n) < o+ 0w * 1w + 108 = I8
which implies that,
N A N
. _ f. > €, < 9. .
P Z 2 sup |fz,n(Xn) fz(Xn)| = Z 2 112?%(2 €in—1] = 5 (S3.8)

1<i<e

ns+1 ng—&-l

Now we want to get a bound for the randomization error.

Let o0y = min{n : Z;L:né“ I(t; < N) >t} fort € Z. Recall that for strategy ., we update only
when a new reward is observed that is at every o4, ¢ > 1. In between the time points corresponding to
two consecutive reward observations, {r; } takes the same as the value for the previous observed case.
In other words, we have 0,1 — o, same values (¢ — 1), for the exploration probability for each ¢,

hence Zi\[:ng-s-l P(I, #i,) = ij:néﬂ(f — D, =3 % (0441 — 00)(€ — 1)my, and w.Lo.g.,
assume that o, 11 = N.
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Given € > 0 and the set of observed indices by time N, Ay, we have by the Bernstein’s inequality

(S6.1) that,

N TN
PAN’XN A Z I(In 75 ’Ln) — Z(O’t+1 — O‘t)(é — 1)7Tt Z €
n=nj+1 t=1

2

= o (‘2A2<zzf1<at+l o) Dmll— ((— Dm & e/3>> - 639

Next, for some positive constant M > 0, we study the event B; := {0441 — oy > M} fort > 1.
Note that, the event By is contained in the event that the first M /2 cases in [0y, o4 1] are delayed by
more than M/2, that is,

M M
{O’t+1 — o > M} C {dUH—l > ?,...,dgt_;'_]w/g > 2} .

Therefore, using this fact and by independence of delays, we have that,

M M
P(Ut—i-l — 0 > M) <P (dgt_H > ?,...,d6t+M/2 > 2)

M/2
M
<IIP (dms > 2)
s=1

M/2

11 (1 Gt (f)) (53.10)
s=1

(M/2 CYMR G, (M2 ) e
< = L
M2

M/2
a1q(M/2)
<(1-——-—+= forallt=1,... 11
_< M/2 , 1ora t ) » TN (S3 )

where the second to last inequality comes from AM-GM inequality and the last inequality follows
from Assumption [7|and ¢(M/2) < M /2 for all M, by construction. We see that the above upper
bound decays at an exponential rate as M grows. As the above right hand side is free of ¢ (by
independence of delays), we have that,

a1q<M/2>>M/2

P(m?X(GtH—Ut)ZM) < (l_ M/2

We can choose M such that, for a given 9,

(1 B a1q<M/2>)M/2 s

M2 (S3.12)

Given ¢ and a1, we can solve for M in the above equation. Consequently, since M will depend on 6,
we denote it as M. Depending on what ¢ is for a given problem, we will always be able to find a
corresponding M.

Also, note that using Hoeffding’s inequality (S4)), we have that,

€ 2¢?
P (TN > E(ry) + Z) < exp <—A2N> . (S3.13)

We can choose €1 (N, §) = 1/(IV/2) log(1/0) such that this probability is less that ¢, that is,
P(TN ZE(TN)+€1(N,5)) <. (83.14)



114 Now consider,

P(a( i I(I, # i) — TZN(Ut'H —o)(E=1)m) =€)
n=nf+1 t=1
=P(( X I A - i(ml —o)(E—1)m) > < max(oir — 01) > ;)
n=nf+1 t=1
+ P(( i I(In # in) - TZN(O—t+1 — O—t)(g — 1)7Tt) Z %7mtax(0—t+1 — O—t) < M(5>
n:ng-&-l t=1

< P(m?X(UH»l —o0y) > Ma)

N TN
v p(( S I #in) =S (01 — o)l - 1)7rt) Z ax(0041 — 1) < M,
n=nj+1 t=1
™ > E(TN) + i)
N TN
—|—P(( Z I(In#%n)_Z(Ut—i—l_Ut)(€_1)7t> Z i,
n=nj+1 t=1
mtax(otH —o0y) < Mg, 7nv < E(Tn) + %)
< P(max(op1 — o) 2 My ) + Py 2 B(ry) + )
N TN
n P(( N I #in) = (o0 — o) (0 - 1)7rt) Z
n:ng-&-l t=1

mtax(JtH - Gt) < Ms, v < E(TN) + %)
2¢?
<o+ew (- )
TN

+ E[Py, XN<( XN: I(I, #in) _Z(Ut+1_0t)(€_1)77t) 2%’

n=n/, 51 t=1

€
max(oy41 — 01) < M, 7 < E(ry) + Z)]’ (S3.15)

115 where the first term follows from (S3.11)) and the definition of M (S3.12), the second term from
116 (S3:13) and last inequality follows from law of iterated expectation.

117 Then using (S3:9) we have that,

N ™~
Pay (ALY 10 #52) =Y (001 00— )m) >
n=nf+1 t=1

€
mtax(0t+1 —oy) < Ms, v < E(7n) + Z)

62 .
I (_2A2M5(E(TN) Teo/dt 6/3) i maxy(op —oy) < Ms,
= T~ < E(7n) + €/4;
0, otherwise.



118 Using this in (S3:13)), we get,

N ™
EPgyxn (A D IIn#in) =Y (0141 — o)) (0= D)m | > e,
n=nf+1 t=1

mtax(crtH —o1) < Ms,7n < E(7n) + e/A)

62
< exp (_2A2M5(E(TN) T/ e/3> ‘ (83.16)

119 Therefore, combining (S3.13)) and (S3.16)), we get that with probability at least 1-,

N TN
PlA Z I(I, # i) — Z(UtH —a)l—Dm | >¢
n=nf+1 t=1
2 2
< — .
S0 fexp ( A2N> +exp ( 2A20M,(E(rv) + €)/4 + 6/3)

In order to bound the right hand side by 24, let,

€N,5 = Max {A

120 For this chosen €, we have that,

TN

N
PlA Z I(I, # in) - Z(Ut+1 —o)(l—Dm | >ens | <260

n:n:ﬁ»l t=1

N TN
=P (A S Iy #in) =AY (o041 — o)L — Dy + eN75> < 26. (S3.17)

n:ng+1 t=1
121 Note that,
N TN
Z I 'Ln Z(Ut-i-l - O'f)(g - 1) > EN,§
n=nf+1 t=1

t=1
(tn) + €1(V,9), max(ot_,_l —oy) < M5>

N TN
ZP(A< Z IIn?’é in _Z(Ut-‘rl_at)(g_l)ﬂ-t) EGN,éa
N <E
N

TN

( ( Z I(I, # in) Z(atH — o)l — 1)7Tt) > EN,(S‘TN < E(ry)

+ €1 (N, 6),mtax(at+1 —o4) < M(;) X

P(TN < E(7n) + €e1(IV, 5))P(m§%x(at+1 —oy) < M(;)

N E(rn)+e€1(N,5)
>PlA[ > I #in)— Y, M{—1)m | >ens | (1-0)% (S3.18)
n=nf+1 t=1

10



122 where the last inequality follows from (S3.12)) and (S3.14). Now, from (S3.17) and (S3.18), we get,

N E(Tn)+e€1(N,9)
n=nf+1 t=1
N ™
SPlA[ > IIn#in) =) (01— o)l —Dm | > ens (S3.19)
n=nf+1 t=1
<2
123
N E(TN)+61(N,5) 25
=PlA Z+1I(In #in) — ; Ms(t —Dm, | >ens | < T (S3.20)
'fL:’FL(S [=

124 From (S3.8)) and (S3:20), we get that with probability at least 1 — 25/(1 — §)?, the cumulative regret
125 for strategy 1 satisfies,

N
RN(UQ) < ATLZ; + Z 2 (max w(th(n) fz)

<</t
n:ng—o—l

64c3v? log(12¢N2/6)
3 C(QL)dhq(n) a(mya(n)

N*(3)
N 2
#43 Mit = D+ {4 Diog (2). ay/ (X 10e (2},
126 for N*(6) = E(7n) + €1(V, d). Let § < 1/4 and we get the desired result. O

12z S4 Proof of Theorem 2

128 Proof of Theorem[)] l Similar to Theorem [I] we will first find an upper bound for the estimation error.
129 In order to do so, in (6) of Lemma 3] we first remove condition on X™ and then remove the condition
130 on Ay from the conditional probability statement of the Lemma. Given arm 4, and n large enough
131 such that, n > mg + 1 and € > w(Lh,, ; f;) a.s. (such n exists from Lemma , consider,

Pay (|fi,n+1 — filXp41)| = 6)

A c(2Lh, )T,
< Pyy <fi,n+1 — [ilXng1)| > €, M1 (Xng1) < (2")>

c(2Lh., )dTn)

 Pas (1Fio = 5G| 2 € Mya () > SEE5

c(2Lh,, )dTn>

< PAN <Mn+1(Xn+1) < 9

c(2Lh,, )dTn)

+ Pay (|fvﬁ,n+1 — fi(Xnt1)| > € My (Xpgr) > 5

SQ(QLth )dTn SQ(QLth )dTnﬂ'n
S exp | — T + exXp | — T

c2c(2Lh., ) 1y (€ — w(Lhy,; £i))?
8c3v? + 8cac(e — w(Lhy,; fi)) ’

+ 4N exp (— (S4.1)

132 where, the above inequality follows from Lemma [3|and (S6.2).

133 Now, we want to remove the condition on Ay from the above conditional probability inequality.
134 Recall that d; g G, for j > 1. Therefore, for the known visiting times {s;,j > 1}, P(t; < n) =

11



135 P(d;j +s; <n)=P(dj <n—s;j)=Gj(n—s;),and hence,

P <|fi,’rb+1 (X7L+1) - fi(X7z+1)| Z 6)

=P <|fi7n+1(Xn+1) — (X)) = €m0 < 21 G;(n—sﬂ)

. " Gin— s,
+P (fi,nH(XnH) — fi(X 1) = €m0 > di-1 2(71 s ))

7_17 G _ g R
S P(Tn S Zj_l ]2(” SJ)) +P(|fi,n+1(Xn+1) - fZ(Xn+1)| Z €,
Enﬂ Gj(n—s;)
R )

- 21 Giln—s5)
- 2

< P(Tn ) +EP4,y (|fi,n+1(Xn+1) — fi(Xnt1)| 2 €

a1q(n
Tn > 72( )>7
136 where >37_, Gj(n — s;) = Q(q(n)) from Assumption that is, for large enough n, we would have
137 that Z?:1 Gj(n — s;) > a1g(n) for some positive constant a;. Let ¢1(n) = a1¢(n)/2, we get, for
138 T, > g1(n), since we have the condition that hg(n)wnq(n) /logn — oo, for large enough n, we
130 can assume that hﬂnTn > élhgl(n)ql (n) and hﬁnjrnTn > (:11hgl(n)7rnq1 (n), where ap is a positive

140 constant depending on a; and the choice of hyperparameter sequences {h,,} and {m, }. For large
141 enough n, we have that € — w(Lhg(,); fi) > 0. Now, using (S4.T) and (S6.2), we get,

< exp (_W> + exp <_ 36(2th1(n))dq1(n)>

14 28
39(2th1 (n) )d(h (n)ﬂ-n
+ exp ( 56
N e [ LG ) a1 ()T (e = w(Lhay : £3))?
P 8c3v? 4 8cac(e — w(Lhg, (n); fi))

a1 (2L d
<exp (—3(”;8(71)) + exp <— 8cas( Z‘gn)) q(”))

39a1 2Lh n )dq(n)ﬂ-n
oy (R

(54.2)

AN exp (_ c2car (2Lhg(n)) q(n)mn (€ — w(Lhgny; fz))2> -

16¢3v? 4 16¢4c(e — w(Lhgeny; fi))

142 Given 0 < 0 < 1, we want to bound the R.H.S. above by 4. To do that for the first three terms, given
143 total time horizon IV, we define a special time point ng as in (]Q[),

3cay (2Lhg () )?
njs = min {n > myg : exp ( can a ) ﬂn(I(n)) < 0 } . (54.3)

112 — 4N

144 For the fourth term in the R.H.S. of (S4.2), we want to choose an € such that,

AN o [ B8 (2LA () Tra(n) (e — w(Lhywys i)\ 0
P 16602 1 Wescle — wilhy: ) ) = HN

12



145 One such value for € is given in Lemma[S2]as,

- 64c3v? log(16¢/N? /6
& n = w(Lhoeny; fi) + | 5= f(d /9 (S4.4)
cscaq(2L) hq(n)wnq(n)

1s By (S4.2), (S4.3) and (S4.4), for n > n}, we have that,

A ) 1) 0 ) 0
P . > ¢l < + + + = —
('f””“( Kni1) = filXni1)| 2 6“‘) — 4N AN AN 4N IN’

147 which implies that,

Z 2 sup. |fin(Xn) — fi(X,)| > 2 max &, , | <4 (S4.5)

1<i<t
,,+1 1<’L n:S/J'_l

14 Now we want to get a bound for the randomization error regret. Given € > 0, since P(I,, # %n) =
149 (¢ — 1)7,, we have by the Hoeffding’s inequality that,

N N
~ 262
PlA| Y II.#in)— Y ((—Dm, | >e <exp<—w>.
n:ng/+1 n:ng'Jrl

150 Take e = A\/N/2log(1/6), we get,

N N
PlA D> IUn#in)>A > E—1wn+A\/J§1og<(15> <. (S4.6)

n:ng'—&-l n= n”+1

151 Therefore, from (S4.3) and (S4.6), we get that with probability at least 1 — 24, the cumulative regret
152 satisfies,

C
Ry (m) < Anj§ Z ax w (Lhgmy; fi) + NN FN— Al —D)my,
n= ng/Jrl h;i(n)ﬂ—nq(n)
N 1
Ay =1 =
(5 (5) )’
153 where Cy 5 = \/6404211;2 log(12¢N2/6)/c2ca; (2L)4. Hence the desired result. O

154 Proof of Theorem[S1] Since a lot of steps remain the same as Theorems [[|and 2} we outline the steps
155 that change here. Firstly, in lemma[S2.] recall,

Pxnay (funsi (@) = fil@)] = €)

a 3Myi1(x)my, A M; . Tr,
< exp <+1<)> + Pxn Ay <fi,n+1( ) — fix)| > 7;1() > »Bi,n>

28 Mn+1( ) 2
7 Mz n 7TTn c
+PmAN(nwam—ﬁunz Mini (@) Bm)
MnJrl(
3M, -
=: exp (—J;éx)?r") + A + As.

156 For Ay, by applying using lemma[S9} (S2.3) will become,

2 _ . £))2
2N exp 7C5Mn+1(x)7r71g2 2w(Lth, ) ) if0 < e—w(Lh,,; f;) <v*Cla
A < Z Cf
2N exp _CsMnJrl(m)ﬂ—n;L(Ce’ w(Lh, ; fZ))> if e —w(Lhy,; fi) > V2C/a.
@
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157 Similarly,

- My (2)7r, (6 —w(Lhy,; fi))?

1 < 2N exp 1022 if 0 < e —w(Lh,,; fi) < v*C/a
2N exp _ Muni (@), Efc_aw(LhT"; fZ))> if e — w(Lh,,; f;) > v*C/a.

158 Therefore, Lemma@] gets modified to the following,

Pxoay (Ifini(@) = i) =€) (54.7)
exp (_3Mn+218(x)7r‘rn
2Mn )T, - Lh'r yJi 2 .
AN exp (— EMnL ()T Z(ce%;u( i fi)) ) if 0 < e — w(Lhy,; f;) < V2C/a
= 3My i1 (7)7r,
exXp | — 28
4N exp (_ C5Mn+1(x)7rﬂil(é; w(Lhy,; fz))) ,ife—w(Lhs: f;) > 12C/a.

159 Following through with the same logic, we get that (S3.5) in proof of [T would become, for large
160 enough n,

P(| fin1(Xnt1) = fi(Xns1)| =€)

3&16](71) 3961(2th(71))dQ(n) 3g61(2th(ﬂ))dq(n)ﬂq(n)
P ( 38 ) TP 56 +exp 112
2¢a 2Lh n d n - Lh n)s Ji 2
) 4N exp _659a1( a( )) Q(n;z?éy)z(e w( a(n) ) ) , if e—w(th(n);fi) < VQO/Oé
- 3a1q(n) 39&1(2th(n))dq(n) 3g&1(2th(n))dq(n)7rq(n)
P ( 28 ) TP 56 e 112
2¢a 2Lh n d n - Lh n)s Ji
+4N exp <_ c5ea1(2Lhg(n)) q(n)87r((;( ) (€ = w(Lhg(n) f))> , if € —w(Lhyy; fi) > V2C/a
«

161 Then, bounding the above terms by § > 0, we would get a version of Lemma[ST|

Z =& 5 — w(Lhy(n); fi)

8C?v2 log(16¢N2/9) it 7 < v2Cla
cdear (L) 0, mo(mya(n)
8Calog(164N?/5) if Z>12C/a

cicay (2L)dh;i(n)7rq(n)q(n)
162 The above conditions then imply, case one Z < v2C /v is the same as,

8log(16¢/N?2/8)a?
v2escap (20)4 7

h;i(n)q(n)ﬂq(n) >

163 while case 2, that is, Z > v2C /a is the compliment of this,

8log(16¢/N?2/8)a?
1/2652&1 (QL)d

hg(n)q(n)wq(n) <

164 Note that the modification of sub-exponential errors does not effect the randomization error, we get

165 the final result foras follows, Then for 0 < ¢ < 1/4, we have that, with probability at least 1 — %,
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166

167

168

169

170
171
172
173
174
175
176

177
178

the cumulative regret for 7, satisfies,

Ang + Zg=n3+1 2 maxi<i<¢ w(th(n)

;fi)

hq(n Tq(n) q

+AYN L M5(61)m+max{A\/M Bn) jog (2), A

ﬂ
2
2

8log(16¢N?% /5
i () > SN ) ’
RN(le) < v ngal(QL)
N N
Anf+ >0 0 2 | maxy<i<pw(Lhgny; fi) + ——————
5T e L+ ( 1<i<e W(Lhgys fi) + hg(n)ﬂq(n)Q(“)
+ASN L M5(€—1)7rt+max{A\/M Bl 1og (2 A\/ )1og (3) }
810g(16€N2/5)
if
1 h’q(n ( )TrQ(”) < I/2C5QC~L1(2L)d ’
where, Clv s = V/8C2121og(16(N?/5) /cscar (2L)¢ and  Cf 4 =

8aC'log(16¢N?/8)/(cscar (2L)9).

S5 More simulation results

Here, we display plots for the three simulation settings for different combinations of hyperparameter
sequences, {m, = (logn)~2,h, = n~/*} in ﬁgureand {7, = (logn)~2 h, = (logn)~1} in

figure
Ay =

respectively. Again, we used A\; = 1 for strategy Thadap, for all simulation setups and also,
for both setups 2 and 3, but Ay = 3 for 7),44p, in setup 1. A thorough investigation may be

needed for the selection of A; and A, for easy applicability in practical real-world decision making
problems. In our simulation study, we get promising results from these adaptive strategies as they
perform better (or at par) than both n; and 7.

Setup 1: g; and g,

w >

Function values
N

1
I' TEVIRL |l
ol WU w oy

0.00 0.25

0.50
X

Setup 2: g; and g,

Function values
[N w
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Setup 1: 1, = (log(n)) 2, hy=n""/* Delay 1

Setup 1: 1, = (log(n)) 2, hy=n""/*  Delay 2
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o.0o| ! 0.00{ !
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Time Time
= Nadapt ==  Nadapz = = ' M1 N2 = Nadapt == Madapz = = M1 n2
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CotamnTi
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>
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Time
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Time

6000 8000

Figure 1: Strategy magap, and 1agap, have lower (or at par) cumulative average regret than 7; and 7,

for the three simulation settings.

We also consider another extreme setup, where one of the functions has a big spike and the other is

constant.
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Setup 1: g; and g,

Setup 1: m, = (log(n)) 2, hy = (log(n)) ™, Delay 1
15

Setup 1: m, = (log(n)) 2, h, = (log(n)) ™, Delay 2
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Figure 2: Strategy agap, and 7aqap, have lower (or at par) cumulative average regret than 7; and 7,

for the two simulation settings.

Setup 3: Consider a setup where one arm dominates over majority of the covariate space, except for
a small area where it incurs a considerably high regret.

g1(z) =1, forall z € [0, 1]; go ()

0
~} 100000z — 50000
) 200

—100000 * z 4+ 50500

0<2<05,0505<z<1
0.5 <2 <0.502

0.502 < z < 0.503

0.503 < z < 0.505.

We look at both the setup d = 2, when f1(z1,22) = g1(x1) * 2 and fo(z1,22) = go(x1) * xo.
The corresponding regret plots are in FigureE} Note that the adaptive strategies 7ugap, and 7adap,
outperform 7; and 7, in this setting.
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Figure 3: Strategy 7agap, and 7aqap, have lower (or at par) cumulative average regret than 7; and 7,
for Setting 3.

S6 Appendix

In this section, we enlist some well-known technical tools that are used in the paper. We first state the
famous Borel-Cantelli Lemma.

Lemma S3 (A.1). [Borel-Cantelli] Let (A1, Aa, . . .) be a sequence of events in a common probability
space (0, F, P) and set A = limsup,,_, ., A,. If Y.~ | P(A,) < oo, then P(A) = 0.

This result is useful in assessing almost sure convergence and is often used in the analysis presented
in the following chapters. Next, we define the modulus of continuity, which quantifies the maximum
differences in functional values for a given function on a given domain.

Definition 1. Let x1,25 € [0,1]% Then w(h; f) denotes a modulus of continuity defined by,
w(h; f) =sup{|f(x1) — f(x2)| : |x1x — 2| < hforalll <k < d}.

It can be seen that if f is continuous then w(h; f) — 0as h — 0.

Next, we review some concentration inequalities, which are quite standard results and will be used in
the following chapters.

S6.1 Concentration inequalities
Lemma S4 (Hoeffding’s Inequality). Let X;, Xo,..., X, be independent real-valued random

variables such that for each i = 1, ..., n there exists some a; < b; such that Pla; < X; < b;] = 1.
Then for every € > 0,

- - 2¢2
P X;—E) X;>¢| <exp (—n)
; ; 21:1(@' — a;)?

More such inequalities with their proofs can be found in|Hoeffding| (1994).

The martingale version of Hoeffding inequality has also been derived and is known as the Azuma-
Hoeffding inequality.
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Lemma S5 (Azuma-Hoeffding Inequality). Suppose F;,j = 1,2,...is an increasing filtration of -
fields. For each j > 1, let X; be Fj-measurable such that X; > 0 almost surely, and a; < X; < b;,
then for all € > 0, we have,

X, S EX | F) el <exp| et
; i 2B " < > (bj—aj)2>

7j=1 j=1

One if referred to McDiarmid| (1998)) for more details and a proof of the inequality.

Lemma S6. A.4[Bernstein’s Inequality] Let X1, . .., X,, be independent real-valued random vari-
ables with zero mean, and assume that X1 < 1 with probability 1. Let V; = Var(Xj) and
o2 = Z};l Vj. For any e > 0,

%iXi>€

P 202 + 2¢/3

2
< exp (—”6) (S6.1)

Proofs of these inequalities can be found in |Cesa-Bianchi and Lugosi| (2006).

Corollary S1. Suppose Wl, Wg, ce W, are independent Bernoulli random variables with success
probability 3;. By Bernstein’s inequality in (S6.T),

P ZWJS(ZBJ)/Q Sexp(—?’%;@).

The proof follows by substituting e = (3°7_, 8;)/2 and X; = 5; — W; in (S6.1). Note that the same
inequality holds for any Bernoulli random variable where W; takes values a; < 1, Vj > 1 and 0.

The Bernstein’s inequality has been extended to the case of martingales.

Lemma S7 (Bernstein’s Inequality for Martingales). Let (Q, F, P) be a probability space. Let
Fi, g = 1,2,..., be an increasing filtration of sub-o-fields of F. Let X1, Xo,... be random
variables on (0, F, P), such that X; is Fj-measurable. Assume |X ;| < K with probability 1, for
all j > 1. Let V; = Var( i—1) and denote the sum of conditional variances by, Then for all
positive real numbers ¢ and v,

n n 62
P Z(Xj — E(X;|Fj-1)) > €, ZV} <wv | <exp (2(1}—|—K6/3))

Jj=1 Jj=1

The proof of this inequality can be found in Freedman| (1975).

Corollary S2 (Extended Bernstein Inequality). Suppose {F;,j =1,2,...} is an increasing filtration
of o-fields. Foreach j > 1, let W; be an F;-measurable Bernoulli random variable whose conditional
success probability satisfies

PW; =1|Fj-1) = B;
for some B; € [0, 1]. Then givenn > 1,

ZW < Zﬁj )/2 <exp< E;glﬁj> (S6.2)

The proof for this can be found in|Qian and Yang| (2016).

Lemma S8. Suppose {F;,j = 1,2,...} is an increasing filtration of o-fields. For each j > 1,
let €; be an Fi1-measurable random variable that satisfies E(e;|F;) = 0, and let W be an F;-
measurable random variable that is upper bounded by a constant C > 0 in absolute value almost
surely. If there exists positive constants v and c such that for all k > 2 and j > 1, E(|¢;|*|F;) <

klw2ck=2 /2, then for every € > 0 and every integer n > 1,

- nEQ

j=1
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Proof of Lemma @ Lemma@] is the same as Lemma 1 in|Qian and Yang|(2016) and the proof for
the same can be found there. O

A simplified version of Lemma[S&]can be stated as follows.

Corollary S3. Let €1,¢€s,... be independent random variables satisfying the refined Bernstein
condition, that is, if there exists positive constants v and c such that for all k > 2 and j > 1,
Ele;|* < kWw?cF=2/2. Let Iy, I, . . . be Bernoulli random variables such that I; is independent of
{e1:1>j}forall j > 1. Foranye >0,

n 2
P leej >ne | <exp (— qﬂnj Ce) . (S6.4)

Jj=1

The proof for this lemma can be found in|Yang and Zhu| (2002).

Lemma S9. Suppose {F;,j = 1,2,...} is an increasing filtration of o-fields. For each j > 1,
let €; be an F;.1-measurable random variable that satisfies E(e;|F;) = 0, and let W; be an F;-
measurable random variable that is upper bounded by a constant C > 0 in absolute value almost
surely. If €; ~ sub-Exp(v%, o), then for every € > 0 and every integer n > 1,

n€2

- exp <_22
P> Wiej >ne| < 2nc6 (v2 + ce/C)
j=1

exp BEYYe ,when € >

) ,when 0 < e < ViTC
(S6.5)
viC

x
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