
Under review as a conference paper at ICLR 2023

A APPENDIX A: FULL REGRET PROOF

A.0 OUTLINE OF PROOF

1. Reduce path planner case to linear dynamical systems case.
2. Extension of Suggala and Natrapalli to Nonconvex FPL with memory (not ours; done in

Ghai et al. (2021)).
3. Argue that our particular nonconvexity has a specific, efficient solver (e.g., Online Eig with

Memory).
4. Justify truncated state history as being equivalent extension to memory setting (again,

straight from Ghai, 2021 Ghai et al. (2021), which is from Agarwal, 2019 Agarwal et al.
(2019a) for first result). There are some subtleties here that are unique to our particular
instantiation.

5. Put everything together at the end.

A.1 REDUCTION OF PATH PLANNED CASE TO STANDARD CONTROLS CASE

Assume that the planner devises a nominal path (denoted with a (̄·)0 notation) in coordinates x and
inputs u: so the path P is fully specified as P = {x̄0

t
, ū0

t
}
T

t=0. Assume that the path is chosen so that
at every x on or near the path, the following dynamics hold around perturbations of the path:

xt � x̄0
t
= A(xt�1 � x̄0

t�1) +B(ut�1 � ū0
t�1) +Dwt�1. (14)

Using this change of coordinates, we can essentially negate the path and study the relevant perturbation
dynamics �xt := xt � x̄0

t
and �ut := ut � ū0

t
, we recover the desired equation:

�xt = A�xt�1 +B�ut�1 +Dwt�1. (15)
For shorthand, we will define x := �x and u = �u to ease exposition, remembering that they
represent perturbations from the nominal path. Intuitively, this seems like a reasonable model
for ‘quasi-static’ systems (e.g., drone or car or aircraft path planning when the maneuvers are
non-aggressive).

A.2 PROOF OF THEOREM 7

Recall that at time t, the algorithm A has access to the state trajectory {xA

⌧
}
t

⌧=1, the disturbance
history {w⌧}

t�1
⌧=1, and the sets of sensed obstacles {pj

⌧
}
t

⌧=1. For any ⌧ 2 {H, ..., t}, the loss
function can be written as an instance of Alg. 2. Concretely, let aj

⌧
= Ãx⌧�1 + Dw⌧�1 � pj

⌧
,

b⌧ = w⌧�H:⌧�1, b0,⌧ = Ãx⌧�1 +Dw⌧�1. Then, for an appropriate c⌧ 2 �k⌧
, the optimization

problems are equivalent. Concatenating over the ⌧ -formulations, we have an instance of Eqn. (9).
Specifically, for some choice of c, we will have an equivalent problem as Eqn. (8); here c is an –
unknown a priori – encoding of the relevant (nearest) obstacles.

Now, we need to demonstrate that Alg. 2 will converge to a pair {cN ,MN} that corresponds to the
optimal solution of Eqn. (8). This follows immediately from Theorem 7, Part II of Hazan (2006). We
have an instance of a repeated game in which, by Lemma 6, an optimization oracle efficiently solves
Eqn. (9), and then the low-regret exponentiated gradient algorithm iteratively updates cn (Eqn. (10)).

A.3 EXTENSION OF NONCONVEX FPL TO NONCONVEX MEMORY FPL

This result is from Ghai et al. (2021), Theorem 13 (Corollary 14 gives an equivalent result to our
setting in the asymptotic regret behavior; our optimal choice of ⌘ and ✏ differs slightly).

A.4 EFFICIENT SOLUTION OF OPT

Consider the relaxed optimization problem

max
M2M

X

j

�jkaj +BMbk22 (16)

We will first describe some useful quantities and (physically-motivated) assumptions. The physical
quantities of interest have the following characteristics: x 2 Rdx , u 2 Rdu , and w 2 Rdw .

14

Under review as a conference paper at ICLR 2023

Assumption 11. B 2 Rdx⇥du , with du  dx, and rank (B) = du. This corresponds to the following
physical assumptions: (1) there are no more inputs than states, and (2) there are no ‘extraneous’
inputs (if there are such inputs, then we can find a minimal realization of B and wlog set extraneous
inputs to always be zero). Similarly, if (1) fails, then we can remove extraneous inputs by again
setting them equal to zero uniformly (just as in (2)).

The dimension of several other variables of interest are: b 2 RHdw and for the decision variable M ,
M 2 Rdu⇥Hdw . We want to show that the optimization in Eqn. 16 is equivalent to a convex trust
region problem, which is efficiently solvable.

Further, let the quantity B
T
B have a singular value decomposition denoted by:

B
T
B = U

T⇤U.

We see that this decomposition has an orthogonal U 2 Rdu⇥du and positive definite ⇤ because
rank(B) = du and thus the symmetric B

T
B 2 Rdu⇥du has BT

B � 0.

Now, consider the problem of Eqn. 16, assuming fixed � 2 �p, B, {aj}
p

j=1,b. We rearrange the
objective as follows:

OBJ =
X

j

�jkaj +BMbk22

=
X

j

�j(aj +BMb)T (aj +BMb)

=
X

j

�j(a
T

j
aj + 2aT

j
BMb+ bT

M
T
B

T
BMb)

⌘

X

j

�j(2c
T

j
Mb+ bT

M
T
U

T⇤UMb)

Here, we are searching for the argmax M
⇤, so the aT

j
aj is irrelevant. Further, we have defined

cT
j
= aT

j
B. Now, let Mr := UM , and decompose Mr = [mT

1 ;m
T

2 ; ...;m
T

du
]. The optimization

objective is now:

OBJ =
X

j

�jkaj +BMbk22

⌘

X

j

�j(2c
T

j
Mb+ bT

M
T
U

T⇤UMb)

=
X

j

�j(2c
T

j
Mb+ bT

M
T

r
⇤Mrb)

= [
X

j

�j(2c
T

j
Mb)] + bT

M
T

r
⇤Mrb

The last simplification follows from the fact that
P

j
(�j) = 1 (because � 2 �du

). Now, using our
knowledge of the diagonal nature of ⇤ and the column partition of Mr, we can see that

M
T

r
⇤Mr =

duX

j=1

�
2
j
mjm

T

j

15

Under review as a conference paper at ICLR 2023

Substituting into the OPT formulation, we can further simplify all the way to the desired form:

OBJ =
X

i

�ikai +BMbk22

⌘

hX

i

�i(2c
T

i
Mb)

i
+ bT

M
T

r
⇤Mrb

=
hX

i

�i(2c
T

i
Mb)

i
+ bT (

duX

j=1

�
2
j
mjm

T

j
)b

=
hX

i

�i(2c
T

i
U

T
Mrb)

i
+ (

duX

j=1

�
2
j
bTmjm

T

j
b)

= 2
hX

i

�i(
X

j

c̃i,jm
T

j
b)

i
+ (

duX

j=1

�
2
j
mT

j
bbTmj)

=
X

j

h
(2

X

i

�ic̃i,j)b
T

i
mj) + (

duX

j=1

mT

j
(�2

j
bbT)mj)

= mT
Pm+ pTm.

where m is a vector concatenation of the transposed rows of Mr. Once we solve for m⇤ using a
trust region solver, we unpack it into M

⇤
r

, and get M⇤ = U
T
M

⇤
r
(= U

T (UM
⇤) = M

⇤) as desired.
Further, we can translate a norm bound on M into an equivalent one on m (at least, for appropriate
choice of norm bound - e.g., the Frobenius norm on M becomes the 2-norm on m).

A.4.1 TECHNICAL NOTES: CONTINUITY AND CONDITIONING PARAMETERS

We begin with an analysis of the Lipschitz constant for the approximate cost functions (this will
follow a similar path to Ghai et al. (2021)).

First, note that the diameter of the decision set is 2DM and that the gradient of the quadratic cost
above is rm`t = (P + P

T)m+ p. As such,

L := max
m,t

{krm`t(m)k1}

 max
m,t

{(kPk1 + kPk1)DM + kpk1}

 2HdwRD +R

We consider as well a bound on the conditioning number of the optimization problem. Because
the size of the optimization grows linearly in time, the condition number grows at most linearly as
well. Therefore, the run-time of the algorithm is polynomial (neither the condition number nor the
dimension grows too rapidly).

Finally, we note bounds on the elements of P and p in the trust region instance. The bounds on costs,
states, inputs, and disturbances together imply that the elements of Pt are bounded by C

2
u

2
⇠, and

the elements of p are bounded by C
2
u

2
⇠� (this again follows Ghai et al. (2021)).

A.5 TRUNCATED STATES

This follows directly from Ghai et al. (2021), except that the truncated state history affects the
resulting vectors aj in the optimization. We will need to show that this does not affect the resulting
cost too much.

Interestingly, there is a bit of an added subtlety here, which arises from the observation that in certain
scenarios, small perturbations in the observed relative obstacle positions could yield large changes in
the optimal policy. For example, imagine that there is one obstacle, located directly on the centerline
of the nominal planned motion. Then a small perturbation of the obstacle to the right makes the
optimal action “Left," while a small perturbation of the obstacle to the left makes the optimal action
“Right."

16

Under review as a conference paper at ICLR 2023

However, this is not a problem in the regret outline, because while the optimal decision is fragile,
the loss incurred of choosing incorrectly is bounded by the quadratic (and therefore, continuous)
nature of the costs. Intuitively, take wlog the case where the vehicle’s maximal deviation from the
centerline is 1 on each side of a centered obstacle. Then, for a "-error in the estimate of the obstacle
position, By choosing optimally we could have achieved (1+ ")2 reward and instead perhaps will get
(1� ")2 reward. This is not a problem for the regret bound because we can accurately control " via
the choice of history length H (and because of the speed that " decays as a function of H); therefore,
this induced regret can be kept small.

For the dynamics and control we have assumed
xt+1 = Axt +But +Dwt

ut = Kxt +Mtw̃t

= Kxt +
HX

i=1

M
[i]
t
wt�i,

(17)

and we can show (as in Ghai et al. (2021)) that the state can be expressed as the sum of disturbance-
to-state transfer function matrices t,i:

xA
t+1 = Ã

H+1xA
t�H

+
2HX

i=0

 t,iwt�i, where

Ã = A+BK and

 t,i = Ã
i
D [i  H] +

HX

j=0

Ã
j
BM

[i�j]
t�j

[i� j 2 {1, ..., H}].

We define the state estimate and cost as

yt+1 :=
2HX

i=0

 t,iwt�i

`t(Mt�H:t) = ct(yt+1(Mt�H:t), ũt)

where ũt = Mtw̃t (the residual input on top of the closed-loop controller).

Now, assume that kÃk  1 � �, that kÃk, kBk, kDk, kKk  �, and that for all t it holds that
kwtk  Cw, kutk  Cu, and kQtk, kRtk  ⇠. Then we can show that the approximation error of
the costs is sufficiently small. Let the condition number be defined as k = kÃkkÃ

�1
k.

A.5.1 BOUND THE STATES

Note that ũt = Mtw̃t; this implies that kũtk  HDCw. This implies further that kBũt +Dwtk 

2�HDCw by the triangle inequality. Assuming that there exists ⌧ such that

kx⌧k2 
2�HDCw

�
,

we have that for every t > H + ⌧ + 1, kxA
t�H�1k2 

2�HDCw

�
. (WLOG, we can assume the initial

state x0 is bounded in this domain - that is, that the assumption is satisfied with ⌧ = 0; the region
defined above is the long-term reachable set of the state xt driven by bounded disturbances wt

and (implicitly bounded) residual inputs ũt [the norm is limited by the stability parameter � of the
closed-loop Ã-matrix]).

A.5.2 BOUND THE CHANGE IN COSTS

Now, we analyze the change in costs

|ct(x
A
t+1, ũt)� `t(Mt�H:t)| = |min

j2[p]
kaj,t +BMtw̃tk

2
2 � min

j2[p]
kâj,t +BMtw̃tk

2
2|

Noting the definition of âj,t and of aj,t, we can bound the difference between them as a function of
the error in approximation of xt (see Ghai et al. (2021)):

17

Under review as a conference paper at ICLR 2023

aj,t := pj,t � xt

=) âj,t � aj,t = (pj,t � x̂t)� (pj,t � xt)

= xt � x̂t

=) kâj,t � aj,tk2 = kxt � x̂tk2

 kCxe
��H

Now, we argue that the loss incurred due to the noise in x̂t is less than simply twice the change in cost
due to the error in âj,t. Let ĵ⇤ := argmin

j2[p]{kâj,t �BMtw̃tk
2
2}. Let j⇤ be defined analogously.

If j⇤ = ĵ
⇤, then the difference in cost is less than or equal to the extra loss incurred by the error in â.

If j⇤ 6= ĵ
⇤, then it is possible that the true ‘binding obstacle’ was biased away, and that the ‘guessed’

binding obstacle was ‘biased towards’; therefore, the cost error is possibly due to deviations up to
twice the error in the âj,t vectors. This means that, defining �t such that k�tk2 = 2kxt � x̂tk2, we
have that the following holds:

� = |ct(x
A
t+1, ũt)� `t(Mt�H:t)| = |min

j2[p]
kaj,t +BMtw̃tk

2
2 � min

j2[p]
kâj,t +BMtw̃tk

2
2|

 max
�t:k�tk22kCxe

��H

n
k(âj,t + �t) +BMtw̃tk

2
2 � kâj,t +BMtw̃tk

2
2

o

= �
T

t
�t + 2�T

t
âj,t � 2�T

t
(BMtw̃t)

 k�tk
2
2 + 2(Cx + k�tk2)k�tk2 + 2k�tk2Cw�DM

= 3k�tk
2
2 + 2Cxk�tk2 + 2Cw�DMk�tk2

 5Cxk�tk2 + 2Cw�DMk�tk2

 5(k2C2
x
e
��H(1 + �DMCw))

.

Letting H = d�
�1 log (5k2Cx(1 + �DMCw)T)e, we have that

� 
Cx

T

Remark 12. Recursive Definition of H and Cx:
Currently, there is a recursive nature to the definition of H and Cx; H :=
d�

�1 log (5k2Cx(1 + �DCw)T)e and Cx := 2�HDCw

�
. However, this is not problematic because

the definitions will have a solution (that can be found efficiently); namely:

H � c1 log (c2Cx)

Cx = k1H

=) H � c1 log (c2k1H)

And for any c1, c2, k1 2 R+ and fixed T > 0, there exists a positive integer H such that the above
result holds (e.g., following from the fact that logH = o(H)). Further, the resulting H will not be
too large wrt T for sufficiently large T (e.g., large enough T to overcome the constants).

18

Under review as a conference paper at ICLR 2023

A.6 PUTTING EVERYTHING TOGETHER

Finally, we use the OTR Solver Algorithm (which acts as an efficient "-oracle) with an approximate
trust region implementation of our desired optimization problem in order to compose the regret
components into a total bound.

Regret(A) := max
M2⇧

TX

t=H

ct(x
M

t
, ũt(M))�

TX

t=H

ct(x
A
t
, ũt(A))

 max
M2⇧

TX

t=H

(ft(M,M, ...,M) +
Cx

T
)�

TX

t=H

(ft(Mt�H:t) +
Cx

T
)

=
h
max
M2⇧

TX

t=H

ft(M,M, ...,M)�
TX

t=H

ft(Mt�H:t)
i
+O(log T)

 Õ(poly(L)
p

T)

(18)

To clarify the steps: the second line incorporates the approximation error from Section A.5 (which is
logarithmic in T , as noted in the third line) and the final line follows from the Suggala and Natrapalli
regret bound Suggala & Netrapalli (2020) extended to the memory setting in Section A.3.

B APPENDIX B: EXPERIMENT HYPERPARAMETERS

In this section, we report the hyperparameters used for the experiments results in the main text. We
implemented our algorithm and environments in JAX. All experiments were carried out on a single
CPU in minutes.

We set the full horizon T to 100 and the history length H to 10. For random perturbation across
environments, we sample noise from Gaussian distribution with mean 0 and standard deviation 0.5.
For directional perturbation, we sample Gaussian noise with mean 0.5 and standard deviation 0.5. A
random seed of 0 is used for all experiments. We obtain the nominal control from LQR with Q set to
0.001 and R set to 1. We then learn the residual obstacle-avoiding parameter M via gradient descent.
The learning rate of gradient descent is 0.008 in the centerline environment and is 0.001 for the other
environments.

Figure 3: Racer backwards reachable set (inside thick black line) and the obstacle (dashed black line).

19

Under review as a conference paper at ICLR 2023

C APPENDIX C: ADDITIONAL EXPERIMENTAL RESOURCES

C.1 RRT⇤ IMPLEMENTATION

An important note for these experiments: we do not implement existing heuristic techniques like
obstacle padding to improve the RRT⇤ collision-avoidance performance. As such, this performance
is not meant to suggest that RRT⇤ cannot work robustly in these settings, only that its nominal
(and theoretically grounded) form does not account for disturbances or uncertainty and is therefore
“optimistic” as compared to HJ methods, etc.

C.2 ADDITIONAL FIGURES AND TRAJECTORIES

This appendix includes sample trajectories and other relevant visualizations for each algorithm.

Figure 4: RRT⇤ Planner trajectories against uniform random disturbances. Obstacle is the gray sphere,
with the nominal trajectory a dashed black (vertical) line.

C.2.1 HJ REACHABILITY PLANNER

For the centerline example, the HJ Reachability planner constructs in Fig. 3 the backwards-reachable
set for a given obstacle (dashed line), subject to the dynamics constraints imposed on the racer.
Note that every positive-value region denotes an unsafe region. The interpretation is that there is a
“pseudo-cone" in front of the obstacle from which the vehicle cannot escape hitting the obstacle if the
disturbances are sufficiently adversarial. Note that this means that HJ planning is independent of the
actual disturbances. For each of the disturbance patterns (random, sinusoid, adversarial), we plot
a collapsed view of sample trajectories around an obstacle for the HJ planner in Fig. 9. Note how
similar each plot is, due to this independence of the control from the actual observed disturbances.

C.2.2 RRT⇤ PLANNER

Here, we demonstrate some sample paths for RRT⇤ in each disturbance regime. Fig. 4 shows uniform
random noise, Fig. 5 shows sinusoidal noise, and Fig. 6 shows adversarial noise. In each case, the
disturbance at the final time (goal position, top of image) causing a horizontal shift in the path should
be ignored.

C.2.3 ONLINE LEARNED PLANNER

The key illustration here is that the trajectories of the online planner follow the structure of the
disturbances, as illustrated by the following comparison of the uniform random and sinusoidal
disturbances in Fig. 7 and Fig. 8.

20

Under review as a conference paper at ICLR 2023

Figure 5: RRT⇤ Planner trajectories against sinusoidal disturbances. Obstacle is the gray sphere, with
the nominal trajectory a dashed black (vertical) line.

Figure 6: RRT⇤ Planner trajectories against adversarial disturbances. Obstacle is the gray sphere,
with the nominal trajectory a dashed black (vertical) line.

C.3 THE SLALOM SETTING

The final key challenge of this work is discussing the effects of the slalom setting: why the online
planner fails on our examples, and what this suggests about our obstacle avoidance framework.

The first answer is relatively direct: in all of our examples, we are implicitly acting in a kind of Frenet
frame, where all obstacle positions and other referencing is to the ego vehicle (racer) position. As
such, the nominal planned trajectory can always be thought of as mapped to a straight line ahead
of the racer. In this context, the second slalom gate in Fig. 1 represents a 20m deviation from the
nominal trajectory. However, this flies in the face of the central modeling intuition of the online
framework – that obstacle avoidance is local, with local sensing, local deviations from the nominal
trajectory, and “reactive" control to disturbances as they arise. In this vein, the nominal slalom is a
challenging task, precisely because it stretches the limits of what can be met by our setup. Concretely:
limited sensing makes each slalom wall a kind of “gradient-less" observation (shifting left and right
yields only a continuation of the wall unless the gap is already sensed), meaning that choosing the
correct Left/Right action is difficult. Additionally, the map displays memory, because going the
wrong way early through one gate can render the next gate infeasible.

21

Under review as a conference paper at ICLR 2023

Figure 7: Collapsed trajectories of the racer
using the online planner with random distur-
bances. Note that the optimal passing side is
essentially random and evenly distributed.

Figure 8: Collapsed trajectories of the racer
using the online planner with sinusoidal dis-
turbances. Note how the racer learns quickly
to always pass on the right, which is the easier
route.

It is in light of these considerations that we argue that the slalom case is actually a case for our model,
because it interpretably creates a setting in which the key assumptions are broken. Just like an actual
skier who overshoots through one gate and cannot recover for the next gate, so too does our obstacle
avoidance algorithm run the risk of “dooming" itself due to a wrong turn – but this is, as described,
fundamental to the hardness of the obstacle avoidance problem! As such, we consider the slalom gate
as a fundamentally hard problem, and consider a case for future work a fuller characterization of how
our planner works for slaloms of varying difficulty, as measured by the sensor range, the distance
between gates (both laterally and longitudinally), and the fundamental “cost memory" as it depends
on these and other parameters.

22

Under review as a conference paper at ICLR 2023

Figure 9: HJ Planner trajectories against (L) uniform random, (C) sinusoid, and (R) adversarial
disturbances. Obstacles are black spheres, with the nominal trajectory a dashed black (vertical) line.

23

	Introduction
	Related Work
	Problem Formulation
	Safety Controller Objective
	Regret Framework for Obstacle Avoidance
	Trust Region Optimization

	Methodology and Algorithm
	Regret Minimization Methodology
	Non-convex Memory FPL for Obstacle Avoidance

	Analysis and Regret Bound
	Convex Obstacle Avoidance: Alg. 2 Efficiently Solves Eqn. (8)
	Towards a Regret Bound: FPL with Memory
	Towards a Regret Bound: State Approximation via Stability and History
	Regret Bound

	Experiments
	Experiment Overview, Baseline Planners, and Setup
	Experimental Results

	Conclusion and Limitations
	Appendix A: Full Regret Proof
	Outline of Proof
	Reduction of Path Planned case to Standard Controls case
	Proof of Theorem 7
	Extension of Nonconvex FPL to Nonconvex Memory FPL
	Efficient Solution of Opt
	Technical Notes: Continuity and Conditioning Parameters

	Truncated States
	Bound the States
	Bound the Change in Costs

	Putting Everything Together

	Appendix B: Experiment Hyperparameters
	Appendix C: Additional Experimental Resources
	RRT* Implementation
	Additional Figures and Trajectories
	HJ Reachability Planner
	RRT* Planner
	Online Learned Planner

	The Slalom Setting

