
Appendices567

A Experiment Details568

A.1 Architectures and Hyperparameters569

In Section 4, MLP has one hidden layer with 512 hidden units, and AlexNet has five convolution570

layers (conv. 3× 3 (64 filters)→ max-pool 3× 3→ conv. 5× 5 (192 filters)→ max-pool 3× 3→571

conv. 3 × 3 (384 filters) → conv. 3 × 3 (256 filters) → conv. 3 × 3 (256 filters) → max-pool572

3× 3) followed by two fully connected layers both with 4096 units and a 10-way linear layer as the573

output layer. All of the convolution layers and the fully connected layers use standard rectified linear574

activation functions (ReLU).575

The fixed learning rates used for MLP and AlexNet are 0.01 and 0.001, respectively. The batch size576

is set to 60. For the corrupted label experiment, we train the models until the models achieve 100%577

training accuracy. For other cases, we train the neural networks until the training loss converges578

(e.g., < 0.0001). Other settings are either described in Section 4 or apparent in the figures. Standard579

techniques such as weight decay and batch normalization are not used.580

In Section 5, we compare GMP with other advanced regularization methods. The results of other581

methods are reported directly from [83], and we now give their hyperparameter settings here for582

completeness. For Dropout, 10% of neurons are randomly selected to be deactivated in each layer.583

For label smoothing, the coefficient is 0.2. For flooding, the level is set to 0.02. For MixUp, we584

lineally combine random pairs of training data where the coefficient is drawn from Beta(1, 1).585

For adversarial training, the perturbation size is 1 for each pixel and we take one step to generate586

adversarial examples. For AMP, the number of inner iteration is 1, and the L2 norm ball radius values587

are 0.5 for PreActResNet18 and 0.1 for VGG16, respectively.588

A.2 Algorithm of Dynamic Gradient Clipping589

The dynamic gradient clipping algorithm is described in Algorithm 1. For both MLP and AlexNet,590

we let α = 0.1. The start step for clipping, Tc, is also an important hyperparameter. However, it can591

be removed by detecting the evolution of the average gradient norm for each epoch. Specifically,592

whenever the average gradient norm of epoch j is larger than the average gradient norm of epoch593

j − 1, the clipping operation begins.594

Algorithm 1 Dynamic Gradient Clipping

Require: Training set S, Batch size b, Loss function `, Initial model parameter w0, Learning rate λ,
Initial minimum gradient norm G, Number of iterations T , Clipping parameter α, Clipping step
Tc

1: for t← 1 to T do
2: Sample B = {zi}bi=1 from training set S
3: Compute gradient:

gB ←
∑b
i=1∇w`(wt−1, zi)/b

4: if t > Tc then
5: if ||gB||2 > G then
6: gB ← α · G · gB/||gB||2
7: else
8: G ← ||gB||2
9: end if

10: end if
11: Update parameter: wt ← wt−1 − λ · gB
12: end for

From Figure 4 we can see that dynamic gradient clipping effectively alleviates overfitting by conspic-595

uously slowing down the transition of training to the memorization regime, without changing the596

convergence speed of testing accuracy. Unfortunately, the current design of the dynamic gradient597

clipping algorithm does not provide a significant improvement for models trained on a true dataset.598

16

PreActResNet18 Top-1 Acc. (%)

GMP3 97.43±0.037
GMP5 97.40±0.043
GMP10 97.34±0.058

VGG16 Top-1 Acc. (%)

GMP3 97.18±0.057
GMP5 97.17±0.072
GMP10 97.09±0.068

(a) SVHN

PreActResNet18 Top-1 Acc. (%)

GMP3 95.64±0.053
GMP5 95.63±0.073
GMP10 95.71±0.073

VGG16 Top-1 Acc. (%)

GMP3 94.33±0.094
GMP5 94.49±0.118
GMP10 94.45±0.158

(b) CIFAR-10

PreActResNet18 Top-1 Acc. (%)

GMP3 78.05±0.208
GMP5 77.93±0.188
GMP10 78.07±0.170

VGG16 Top-1 Acc. (%)

GMP3 74.45±0.256
GMP5 74.91±0.389
GMP10 75.09±0.285

(c) CIFAR-100

Table 2: Top-1 classification accuracy on (a) SVHN, (b) CIFAR-10 and (c) CIFAR-100. Superscript
denotes the number of sampled Gaussian noises during training.

Designing better regularization algorithms may require understanding the epoch-wise double descent599

curve of gradient dispersion where the model is trained on a true dataset.600

A.3 Discussion on Gradient Dispersion of Models trained on True Dataset601

In the case of no noise injected, Figure 3a shows that the model with good generalization property602

has a exponentially-decaying gradient dispersion. This is consistent with our discussion of Lemma 5603

in Section 3, that is, small I(Gt + Nt;Zi|W̃t−1) indicates good generalization. Notably, gradient604

dispersion of AlexNet trained on the ture CIFAR10 data still has a epoch-wise double descent curve.605

The difference between Figure 3e with Figure 3f-3h is that the testing accuracy does not decrease606

in the second phase/memorization regime for AlexNet trained on the true CIFAR10 data. Loosely607

speaking, we conjugate that memorizing random labels will hurt the performance on unseen true data608

but memorizing true labels will not. This explains why dynamic gradient clipping or preventing the609

training entering the memorization regime cannot improve the performance on a true dataset.610

A.4 Algorithm of Gaussian Model Perturbation611

Algorithm 2 Gaussian Model Perturbation Training

Require: Training set S, Batch size b, Loss function `, Initial model parameter w0, Learning rate λ,
Number of noise k, Standard deviation of Gaussian distribution σ, Lagrange multiplier ρ
while wt not converged do

2: Update iteration: t← t+ 1
Sample B = {zi}bi=1 from training set S

4: Sample ∆j ∼ N (0, σ2) for j ∈ [k]
Compute gradient:
gB ←

∑b
i=1

(
∇w`(wt, zi) + ρ

∑k
j=1 (∇w`(wt + ∆j , zi)−∇w`(wt, zi)) /k

)
/b

6: Update parameter: wt+1 ← wt − λ · gB
end while

The GMP algorithm is given in Algorithm 2. Table 1 shows that our method is competitive to the612

state-of-the-art regularization techniques. Specifically, our method achieves the best performance613

on SVHN for both models and on CIFAR-100 where VGG16 is employed. Particularly, testing614

accuracy is improved by nealy 2% on the CIFAR-100 dataset with VGG16. For other tasks, GMP is615

always able to achieve the top-3 performance. From Table 2, we find that increasing the number of616

sampled noises does not guarantee the improvement of testing accuracy and may even degrade the617

performance on some datasets (e.g., SVHN). This hints that we can use small number of noises to618

reduce the running time without losing performance. Moreover, we observe that GMP with k = 3619

usually takes around 1.76× that of ERM training time, which is affordable.620

One potential extension of GMP is letting the variance of the noise distribution be a function of the621

iteration step t. In other words, using the time-dependent σt instead of a constant σ.622

17

A.5 License of the Assets623

MNIST is made available under the terms of the Creative Commons Attribution-Share Alike 3.0624

license. CIFAR10/CIFAR100 is licensed under the MIT License. SVHN is licensed under the625

GNU General Public License v3.0. Two open source packages used in this paper, BackPACK and626

PyHessian, are licensed under the MIT License.627

B Proofs for Section 3628

B.1 Proof of Lemma 4629

Proof. The proof given here is a simple extension of the proof of [60, Lemma 3.4.2], which is a630

special instance of the (weak) HWI inequality.631

DKL(PX+
√
tN ||PY+

√
tN) ≤DKL(PX,Y,X+

√
tN ||PX,Y,Y+

√
tN) (1)

= E
X,Y

[
DKL(PX+

√
tN |X,Y ||PY+

√
tN |X,Y)

]
(2)

= E
X,Y

[DKL(N (X, t)||N (Y, t))|X,Y] (3)

=
1

2t
E
X,Y

[
||X − Y ||2

]
, (4)

where Eq.1 is by the chain rule of the KL divergence, Eq.3 holds since N is independent of (X,Y)632

and Eq.4 is a special case of the equality633

N (µ1,Σ1)||N (µ2,Σ2)) =
1

2

[
log
|Σ2|
|Σ1|

− d+ Tr
(
Σ−1

2 Σ1

)
+ (µ2 − µ1)TΣ−1

2 (µ2 − µ1)

]
.

Eq.4 holds for any joint distribution of (X,Y), so by the definition of Wasserstein distance, we have634

DKL(PX+
√
tN ||PY+

√
tN) ≤ 1

2t
W2

2(PX , PY). (5)

This completes the proof.635

B.2 Proof of Theorem 1636

Proof. The main parts of the proof follow directly from [49]. We first bound the mutual information637

I(W̃T ;S),638

I(W̃T ;S) =

∫
s

∫
w

dP
W̃T |S=s

(w) log
dP

W̃T |S=s
(w)

dP
W̃T

(w)
dν(s) (6)

=

∫
s

∫
w

dP
W̃T |S=s

(w) log
dP

W̃T |S=s
(w)∫ ′

s
dP

W̃T |S′=s′(w)dν(s′)
dν(s) (7)

≤
∫
s,s′

∫
w

dP
W̃T |S=s

(w) log
dP

W̃T |S=s
(w)

dP
W̃T |S′=s′(w)

dν(s)dν(s′) (8)

= E
S,S′

[
DKL

(
P
W̃T |S=s

||P
W̃T |S′=s′

) ∣∣∣∣S = s, S′ = s′
]

(9)

≤ E
S,S′

[
DKL

(
P
W̃1,W̃2,...,W̃T |S=s

||P
W̃1,W̃2,...,W̃T |S′=s′

) ∣∣∣∣S = s, S′ = s′
]

(10)

=

T∑
t=1

E
S,S′,W̃t−1

[
DKL

(
P
W̃t|W̃t−1=w̃t−1,S=s

||P
W̃t|W̃t−1=w̃t−1,S′=s′

) ∣∣∣∣W̃t−1 = w̃t−1, S = s, S′ = s′
]
,

(11)

where Eq.8 is by Jensen’s inequality, Eq.10 is by the data-processing inequality of the KL divergence639

and Eq.11 is by the chain rule of the KL divergence. The main difference between the above process640

and [49] is that we don’t need to use an independent copy W̃ ′T of W̃T in Eq.6.641

18

Now apply Lemma 4, we have642

DKL

(
P
W̃t|W̃t−1=w̃t−1,S=s

||P
W̃t|W̃t−1=w̃t−1,S′=s′

)
=DKL

(
P
g(w̃t−1−∆t−1,Bt)−Ntλt |W̃t−1=w̃t−1,S=s

||P
g(w̃t−1−∆t−1,B′t)−

Nt
λt
|W̃t−1=w̃t−1,S′=s′

)
(12)

≤ λ2
t

2σ2
t

E
[
||g(w̃t−1 −∆t−1, Bt)− g(w̃t−1 −∆t−1, B

′
t)||22

]
. (13)

Since each instance is independently sampled during training, we have643

E
[
||g(wt−1, Bt)− g(wt−1, B

′
t)||22

]
=2E

[
||g(wt−1, Bt)− E [g(wt−1, Bt)]||22

]
(14)

=
2

b
E
[
||∇w`(wt−1, Z)− E [∇w`(wt−1, Z)]||22

]
. (15)

Plugging Eq.13 and Eq.15 into Eq.11,644

I(W̃T ;S) ≤
T∑
t=1

E
S,S′,Wt−1

[
λ2
t

2σ2
t

||g(Wt−1, Bt)− g(Wt−1, B
′
t)||22

]
(16)

=

T∑
t=1

E
Z,Wt−1

[
λ2
t

bσ2
t

||∇w`(Wt−1, Z)− E
Z

[∇w`(Wt−1, Z)]||22
]

(17)

=

T∑
t=1

λ2
t

bσ2
t

E
Wt−1

[V(Wt−1)]. (18)

Thus,645

|gen(µ, PWT |S)| =
∣∣∣∣gen(µ, P

W̃T |S) + E
WT ,∆T

[
Lµ(WT)− Lµ(W̃T)

]
+ E
WT ,∆T ,S

[
LS(W̃T)− LS(WT)

]∣∣∣∣
(19)

≤

√
2R2I(W̃T ;S)

n
+

∣∣∣∣ E
WT ,S,S′

[γ(WT , S)− γ(WT , S
′)]

∣∣∣∣ (20)

≤

√√√√2R2

nb

T∑
t=1

λ2
t

σ2
t

E
Wt−1

[V(Wt−1)] +

∣∣∣∣ E
WT ,S,S′

[γ(WT , S)− γ(WT , S
′)]

∣∣∣∣ , (21)

where Eq.20 is by Lemma 1 and the triangle inequality. This completes the proof.646

B.3 Proof of Lemma 5647

Proof. Let Zi be used in tth step, the LHS of the inequality can be rewritten as648

I

(
−g(Wt−1, Bt) +

1

λt
Nt;Zi|W̃t−1

)
= E
W̃t−1,Zi

[
DKL

(
P−g(Wt−1,Bt)+

Nt
λt
|Zi=z,W̃t−1=w̃t−1

||P−g(Wt−1,Bt)+
Nt
λt
|W̃t−1=w̃t−1

)]
. (22)

By Lemma 4, we have649

DKL

(
P−g(Wt−1,Bt)+

Nt
λt
|Zi=z,W̃t−1=w̃t−1

||P−g(Wt−1,Bt)+
Nt
λt
|W̃t−1=w̃t−1

)
≤ λ2

t

2σ2
t

W2
2

(
P−g(Wt−1,Bt)|Zi=z,W̃t−1=w̃t−1

, P−g(Wt−1,Bt)|W̃t−1=w̃t−1

)
. (23)

19

Let Z ′i be an independent copy of Zi such that (Wt−1, Z
′
i, Zi) ∼ PWt−1 ⊗ PZi|Wt−1

⊗ PZ′i|Wt−1
.650

We now consider a special coupling: define two random vectors G̃zt and G̃t as follows,651

G̃zt ,−
1

b

 ∑
Zj∈Bt\{Zi}

∇w`(w̃t−1 −∆t−1, Zj) +∇w`(w̃t−1 −∆t−1, z)

 , (24)

G̃t ,−
1

b

 ∑
Zj∈Bt

∇w`(w̃t−1 −∆t−1, Zj))

 . (25)

Thus, G̃zt and G̃t have marginals P−g(Wt−1,Bt)|Zi=z,W̃t−1=w̃t−1
and P−g(Wt−1,Bt)|W̃t−1=w̃t−1

, re-652

spectively. Combining Eq.22, Eq.23 and the definition of Wasserstein distance, we have653

I

(
−g(Wt−1, Bt) +

Nt
λt

;Zi|W̃t−1

)
≤ λ2

t

2σ2
t

E
W̃t−1,Zi,∆t−1,Z′i

[
||G̃zt − G̃t||22

]
(26)

=
λ2
t

2σ2
t

E
Wt−1,Zi,Z′i

[
1

b2
||∇w`(Wt−1, Zi)−∇w`(Wt−1, Z

′
i)||22

]
(27)

=
λ2
t

σ2
t b

2
E

Wt−1

[V(Wt−1)], (28)

where Eq.28 is by654

E
Zi,Z′i

[
||∇w`(wt−1, Zi)−∇w`(wt−1, Z

′
i)||22

]
= 2V(wt−1).

This completes the proof.655

B.4 Proof of Theorem 2656

Since ηi,τ ≤ 1 for every i and τ in Theorem 3, Theorem 2 follows directly from Theorem 3.657

Or alternatively, using the following proof.658

Proof. Given a specific sample path, let the step tK be the last iteration that Zi is used (e.g., see659

Figure 5). By using the data processing inequality, we can easily have660

I(W̃T ;Zi) ≤ I(W̃tK ;Zi). (29)

Then notice that661

I(W̃tK ;Zi) = I
(
W̃tK−1 +GtK +NtK ;Zi

)
(30)

≤ I
(
W̃tK−1, GtK +NtK ;Zi

)
(31)

= I(W̃tK−1;Zi) + I

(
−g(WtK−1, BtK) +

1

λtK
NtK ;Zi|W̃tK−1

)
, (32)

where GtK = −λtKg(WtK−1, BtK), Eq.31 is by I(f(X);Y) ≤ I(X;Y) and Eq.32 is by the chain662

rule of mutual information. The second term in Eq.32 can be upper bounded by using Lemma 5. The663

first term can be upper bounded by following the similar procedure recursively, namely, Eq.29-32.664

Let t1 be the first time that Zi is used in training. Given the fact that Zi is independent of W̃t when665

t < t1, it’s easy to see666

I(W̃T ;Zi) ≤
∑
t∈Ti

λ2
t

σ2
t b

2
E

Wt−1

[V(Wt−1)], (33)

where Ti is the set of all indices of iterations that contain Zi.667

20

Thus, the following bound holds,668

|gen(µ, PWT |S)| =
∣∣∣∣gen(µ, P

W̃T |S) + E
WT ,∆T

[
Lµ(WT)− Lµ(W̃T)

]
+ E
WT ,∆T ,S

[
LS(W̃T)− LS(WT)

]∣∣∣∣
≤ 1

n

n∑
i=1

√
2R2I(W ;Zi) +

∣∣∣∣ E
WT ,S,S′

[γ(WT , S)− γ(WT , S
′)]

∣∣∣∣ (34)

≤ R

nb

n∑
i=1

√√√√∑
t∈Ti

2λ2
t

σ2
t

E
Wt−1

[V(Wt−1)] +

∣∣∣∣ E
WT ,S,S′

[γ(WT , S)− γ(WT , S
′)]

∣∣∣∣ ,
(35)

where Eq.34 is by Lemma 2 and the triangle inequality. This concludes the proof.669

B.5 Proof of Corollary 1670

Proof. To handle the mismatch between the outputs of perturbed SGD and SGD, we apply Taylor671

expansion around ∆T = ~0,672

E
WT ,S,∆T

[LS(WT + ∆T)− LS(WT)] =
1

n

n∑
i=1

E
WT ,Zi,∆T

[`(WT + ∆T , Zi)− `(WT , Zi)] (36)

≈ E
WT ,Z,∆T

[
〈∇w`(WT , Z),∆T 〉+

1

2
∆T
THWT

(Z)∆T

]
(37)

= E
WT ,Z,∆T

[
1

2
∆T
THWT

(Z)∆T

]
(38)

=
1

2
〈 E
WT ,Z

[HWT
(Z)], E

∆T

[
∆T∆T

T

]
〉 (39)

=
1

2
〈 E
WT ,Z

[HWT
(Z)],diag(

T∑
t=1

σ2
t)〉 (40)

=

∑T
t=1 σ

2
t

2
Tr(E

WT ,Z
[HWT

(Z)]), (41)

where Eq.38 is by the zero mean of the perturbation, Eq.40 is by the independence of the coordinates673

of ∆T , 〈·, ·〉 denotes the inner product of two matrices, diag(A) is the diagonal matrix with element674

A and Tr(·) is the trace of a matrix.675

Under the condition E
WT ,S′

[γ(WT , S
′)] ≥ 0, we now bound gen(µ,P

W̃T |S) instead of its absolute676

value, |gen(µ,P
W̃T |S)|. The following is straightforward,677

gen(µ,P
W̃T |S) ≤ R

nb

n∑
i=1

√√√√∑
t∈Ti

2λ2
t

σ2
t

E
Wt−1

[V(Wt−1)] + E
WT ,S,S′

[γ(WT , S)− γ(WT , S
′)] (42)

≤ R
nb

n∑
i=1

√√√√∑
t∈Ti

2λ2
t

σ2
t

E
Wt−1

[V(Wt−1)] + E
WT ,S

[γ(WT , S)] (43)

.
R

nb

n∑
i=1

√√√√∑
t∈Ti

2λ2
t

σ2
t

E
Wt−1

[V(Wt−1)] +

∑T
t=1 σ

2
t

2
Tr(E

WT ,Z
[HWT

(Z)]). (44)

This completes the proof.678

21

B.6 Proof of Lemma 6679

Proof. Notice that if each instance is trained only once for every epoch, it’s easy to see that680 ∑n
i=1

∑
t∈Ti = b

∑T
t=1. By

√∑
i xi ≤

∑
i

√
xi, we have681

R

nb

n∑
i=1

√√√√∑
t∈Ti

2λ2
t

σ2
t

E
Wt−1

[V(Wt−1)] ≤ R

n

T∑
t=1

√
2λ2

t

σ2
t

E
Wt−1

[V(Wt−1)]. (45)

Or alternatively, square root is a concave function. By Jensen’s inequality, we have682

R

nb

n∑
i=1

√√√√∑
t∈Ti

2λ2
t

σ2
t

E
Wt−1

[V(Wt−1)] ≤

√√√√2R2

nb

T∑
t=1

λ2
t

σ2
t

E
Wt−1

[V(Wt−1)]. (46)

This completes the proof.683

B.7 Proof of Corollary 2684

Proof. Recall the smoothness implies f(v) ≤ f(w) + 〈∇f(w),v−w〉+ β
2 ||v−w||2 for all v and685

w. By the triangle inequality, we have686

|E [Lµ(WT)− Lµ(WT + ∆T)] | ≤ |E [〈∇w`(WT , Z),∆T 〉] |+
β

2
E
[
||∆T ||2

]
=
βd
∑T
t=1 σ

2
t

2
(47)

Thus, we can see that |E [Lµ(WT)− Lµ(WT + ∆T)] | + |E [LS(WT + ∆T)− LS(WT)] | ≤687

βd
∑T
t=1 σ

2
t .688

C Background on Strong Data Processing Inequality689

For a Markov chain U → X → Y , the well-known data-processing inequality [18] states that690

I(U ;Y) ≤ I(U ;X). It turns out that this inequality can often be tightened in the form of691

I(U ;Y) ≤ ηI(U ;X) (48)

for some η < 1. Such an inequality is referred to as a strong data-processing inequality (SDPI).692

Note the coefficient η fundamentally depends on the contraction property of the stochastic kernel693

PY |X , characterizing the extent by which the kernel brings two different distributions PX and PX′694

closer after the stochastic mapping. As the reader may refer to [57–59] for a full exposition of this695

subject, here for self-containedness, we here make an modest revision of the settings in [57–59]696

and develop slightly finer results concerning the contraction properties of PY |X . Specifically, the697

contraction coefficient η in our setting will not only depend on the kernel PY |X , it will also depend698

on the “effective input space” which the kernel acts upon.699

To that end, we will denote by U , X , and Y the spaces in which U , X , Y take values, respectively.700

For any distribution P on X , we will use PY |X ◦ P to denote the distribution on Y induced by the701

push-forward of the distribution P by PY |X , namely, for any y ∈ Y ,702 (
PY |X ◦ P

)
(y) ,

∫
PY |X(y|x)P (x)dx

For the Markov chain U → X → Y , we will denote by Ω(U) the support of the distribution PU .703

That is, S(U) is the subset of U on which PU is strictly positive. Let H(U,PX|U) be the convex704

hull of {PX|U=u : u ∈ S(U)}, namely, H(U,PX|U) contains all distributions on X which can be705

expressed as PX|U ◦ P for some distribution P on U whose support is a subset (not necessarily706

proper) of S(U). It is apparent that PX ∈ H(U,PX|U).707

Given the Markov chain, U → X → Y , we now define the contraction coefficient η as708

η(U → X → Y) , sup
P,Q∈H(U,PX|U)

DKL(PY |X ◦ P ||PY |X ◦Q)

DKL(P ||Q)
(49)

22

where DKL denotes the KL divergence. We note that this definition of the contraction coefficient709

differs from the standard definition [57–59] in that the supremization in the latter is over all P,Q710

which are distributions on X , making the contraction coefficient only depends on PY |X . In our711

definition (49), the coefficient η also depends on the “effective input space” of the kernel, namely,712

H(U,PX|U).713

Some standard results concerning the contraction coefficient can be easily extended to this revised714

definition of η in (49), which we state below.715

Lemma 8. For any Markov chain U → X → Y ,716

I(U ;Y) ≤ η(U → X → Y)I(U ;X). (50)
Additionally, if Y = X +N for a Gaussian noise N ∼ N (0, δ2I) independent of (U,X) then717

η(U → X → Y) ≤ 1− 2Q

(
Diam(H(U,PX|U))

2δ

)
(51)

where Diam(H(U,PX|U)) refers to the diameter ofH(U,PX|U), measured under L2-distance, and718

Q is standard Q-function, or the complementary of Gaussian CDF.719

We note that the SDPI (50) follows easily from the definition of mutual information and that of η.720

The inequality (51) is an adaptation, to this context, of the result that the contraction coefficient is721

upper bounded by the Dobrushin’s coefficient of the kernel PY |X [21]. More details about the proof722

of Lemma 8 can be found in [57].723

Concerning the contraction coefficients ηi,t, we note that from a purely theoretical perspective, it is724

rather difficult to estimate them or upper-bound them by a quantity smaller than 1. This is because725

of the Gaussian noise Nt injected at each step t having unbounded support. As a consequence,726

H(Zi, PŴt|Vt) is unbounded, making the restriction of the range of supremization toH(Zi, PŴt|Vt)727

useless.728

D Proofs for Section 6729

In this section, we will prove Theorem 3 that is a stronger version of Theorem 2. To prove Theorem730

2, we only need to let the contraction coefficient η be 1, which means using a weak version of the731

data-processing inequality.732

We first apply the SDPI in Lemma 8 to auxiliary weight process and the SGD weight process.733

For notational convenience, we denote734

Gt , −λtg(Wt−1, Bt), and Vt , W̃t−1 +Gt. (52)

Thus Vt and W̃t differ only by the noise Nt, or W̃t = Vt +Nt.735

W̃0 +· · ·
W̃t1−1

Gt1

+
Vt1

Nt1

+
W̃t1

Gt1+1

· · · +
W̃t2−1

Gt2

+
Vt2

Nt2

+
W̃t2

Gt2+1

· · · +
W̃tK−1

GtK

+
VtK

NtK

+
W̃tK

GtK+1

· · · W̃T

Zi

Figure 5: The relationship between Zi, W̃t’s Vt’s, and Gt’s

Consider a fixed example Zi in the training set S. Let Ti denote the of all batch indices t for which736

Bt contains Zi. We will assume that Ti contains K indices and consider Ti as {t1, t2, . . . , tK}. The737

relationship between Zi, W̃t’s, Vt’s, and Gt’s are shown in Figure 5. It is clear that Zi → Vt → W̃t738

form a Markov chain3. Denote739

ηi,t , η(Zi → Vt → W̃t).

3Note that even for t < t1, in which Zi and Vt are independent, the Markov chain still holds, although it
degenerates.

23

We have the following result.740

Lemma 9. Suppose that I(Gt +Nt;Zi|W̃t−1) ≤ Ct for some positive value Ct. Then741

I(W̃T ;Zi) ≤
K∑
k=1

Ctk
∏
τ∈Γki

ηi,t,

where Γki = {tk + 1, tk + 2, . . . , T} \ Ti.742

Proof. For the step tK , which is the last time Zi appeared in the training process, we have743

I(W̃T ;Zi) ≤ ηi,T I(VT ;Zi) (53)

≤ ηi,T I(W̃T−1;Zi) (54)

≤

(
T∏

τ=tK+1

ηi,τ

)
I(W̃tK ;Zi), (55)

where Eq.53 and Eq.54 is due to Eq.50 and the data processing inequality, respectively. Eq.55 is by744

applying these two steps recursively.745

Notice that746

I(W̃tK ;Zi) = I(W̃tK−1 +GtK +NtK ;Zi) ≤ I(W̃tK−1, GtK +NtK ;Zi) (56)

= I(W̃tK−1;Zi) + I(GtK +NtK ;Zi|W̃tK−1) (57)

≤ I(W̃tK−1;Zi) + CtK , (58)

where Eq.56 is by I(f(X);Y) ≤ I(X;Y) and Eq.57 is by the chain rule of mutual information.747

Combine Eq.55 and Eq.58, we have748

I(W̃T ;Zi) ≤

(
T∏

τ=tK+1

ηi,τ

)(
I(W̃tK−1;Zi) + CtK

)
. (59)

Then we can apply the similar procedure, namely Eq.53-58, to I(W̃tK−1;Zi) and get749

I(W̃tK−1;Zi) ≤

 tK−1∏
τ=tK−1+1

ηi,τ

(I(W̃tK−1−1;Zi) + CtK−1

)
, (60)

where tK−1 is the second-to-last time that Zi is used in the training process. Plugging Eq.60 into750

Eq.59,751

I(W̃T ;Zi) ≤ CtK ·
T∏

τ=tK+1

ηi,τ +
(
CtK−1

+ I(W̃tK−1−1;Zi)
)
·

T∏
τ=tK−1+1
τ 6=tK

ηi,τ . (61)

Finally, we apply this procedure recursively and given the fact that I(W̃t;Zi) = 0 for t < t1, we752

have753

I(W̃T ;Zi) ≤
K∑
k=1

Ctk
∏
τ∈Γki

ηi,τ , (62)

where Γki = {tk + 1, tk + 2, . . . , T} \ Ti.754

D.1 Proof of Theorem 3755

Proof. Let the generalization error of SGD be decomposed by756

gen(µ, PWT |S) = gen(µ, P
W̃T |S) + E

[
Lµ(WT)− Lµ(W̃T)

]
+ E

[
LS(W̃T)− LS(WT)

]
. (63)

24

Then we use Lemma 2 to bound the first term,757

gen(µ, P
W̃T |S) ≤ 1

n

n∑
i=1

√
2R2I(W̃T ;Zi) + E

[
Lµ(WT)− Lµ(W̃T)

]
+ E

[
LS(W̃T)− LS(WT)

]
.

(64)

Given a specific sample path, let the step t be the last iteration that Zi is used. Then the following758

Markov chain holds,759

Zi → Vt → W̃t → Vt+1 → W̃t+1 → · · · → VT → W̃T .760

For mutual information I(W̃T ;Zi) in Eq.64, by using the strong data processing inequality and the761

data processing inequality, we have762

I(W̃T ;Zi) ≤ I(Vt+1;Zi) ·
T∏

τ=t+1

ηi,τ ≤ I(W̃t;Zi) ·
T∏

τ=t+1

ηi,τ . (65)

Further, we would like to bound the term I(W̃t;Zi). Notice that763

I(W̃t;Zi) = I
(
W̃t−1 +Gt +Nt;Zi

)
(66)

≤ I
(
W̃t−1, Gt +Nt;Zi

)
(67)

= I(W̃t−1;Zi) + I

(
−g(Wt−1, Bt) +

1

λt
Nt;Zi|W̃t−1

)
. (68)

Thus, applying Lemma 9 and Lemma 5 (i.e., by letting Ct =
λ2
t

σ2
t b

2 E
Wt−1

[V(Wt−1)]), we have764

I(W̃T ;Zi) ≤
∑
t∈Ti

λ2
t

σ2
t b

2
E

Wt−1

[V(Wt−1)] ·
∏
τ∈Γti

ηi,τ , (69)

where Ti is the set of all indices of iterations that contains Zi. Thus, the following bound holds,765

|gen(µ,P
W̃T |S)| ≤ R

nb

n∑
i=1

√√√√∑
t∈Ti

2λ2
t

σ2
t

E
Wt−1

[V(Wt−1)] ·
∏
τ∈Γti

ηi,τ +

∣∣∣∣ E
WT ,S,S′

[γ(WT , S)− γ(WT , S
′)]

∣∣∣∣ ,
(70)

which concludes the proof.766

E Potential Negative Societal Impacts767

In this paper, we derived information-theoretic generalization bounds for SGD and proposed a768

regularization scheme. Our work is a foundational research and we aim to understand a fundamental769

problem of deep learning, that is, the generalization ability of SGD. Although our work does not have770

direct negative societal impacts, it’s possible to design new algorithms based on the discussion in771

this paper, which could be tied to any particular application. In this case, our work may have some772

unexpected negative societal impacts. For example, if these new algorithms were abused by high-tech773

companies, people’s privacy would be easily violated.774

25

	Introduction
	Preliminaries
	New Generalization Bounds for SGD
	Experimental Study
	A Practical Implication: Gaussian Model Perturbation
	Conclusion and Outlook
	Appendices
	Experiment Details
	Architectures and Hyperparameters
	Algorithm of Dynamic Gradient Clipping
	Discussion on Gradient Dispersion of Models trained on True Dataset
	Algorithm of Gaussian Model Perturbation
	License of the Assets

	Proofs for Section 3
	Proof of Lemma 4
	Proof of Theorem 1
	Proof of Lemma 5
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Lemma 6
	Proof of Corollary 2

	Background on Strong Data Processing Inequality
	Proofs for Section 6
	Proof of Theorem 3

	Potential Negative Societal Impacts

