Published as a conference paper at ICLR 2024

SCALABLE NEURAL NETWORK KERNELS

Arijit Sehanobish* Krzysztof Choromanski* Yunfan Zhao*
Independent Researcher Google DeepMind & Harvard University
Columbia University

Avinava Dubey* Valerii Likhosherstov*
Google Research Waymo
ABSTRACT

We introduce the concept of scalable neural network kernels (SNNKs), the re-
placements of regular feedforward layers (FFLs), capable of approximating the
latter, but with favorable computational properties. SNNKs effectively disentangle
the inputs from the parameters of the neural network in the FFL, only to connect
them in the final computation via the dot-product kernel. They are also strictly
more expressive, as allowing to model complicated relationships beyond the func-
tions of the dot-products of parameter-input vectors. We also introduce the neural
network bundling process that applies SNNKs to compactify deep neural network
architectures, resulting in additional compression gains. In its extreme version,
it leads to the fully bundled network whose optimal parameters can be expressed
via explicit formulae for several loss functions (e.g. mean squared error), open-
ing a possibility to bypass backpropagation. As a by-product of our analysis, we
introduce the mechanism of the universal random features (or URFs), applied to
instantiate several SNNK variants, and interesting on its own in the context of
scalable kernel methods. We provide rigorous theoretical analysis of all these
concepts as well as an extensive empirical evaluation, ranging from point-wise
kernel estimation to Transformers’ fine-tuning with novel adapter layers inspired
by SNNKSs. Our mechanism provides up to 5x reduction in the number of trainable
parameters, while maintaining competitive accuracy.

1 INTRODUCTION

Consider a kernel function: K : R? x R¢ — R, taking as input two feature vectors encoding latent
embeddings of their corresponding objects and returning their similarity. Kernel methods are among
the most theoretically principled approaches to statistical machine learning (ML) and have proven
effective in numerous real-world problems (Scholkopf & Smolal 2002} [Kontorovich et al.l [2008).
Despite their theoretical guarantees and applicability in a rich spectrum of ML settings, the main
drawback of these techniques is a high computational complexity, at least quadratic in the size N of
the training dataset. For example, the kernel regression has time complexity O(N?).

To address this issue, [Rahimi & Recht| (2007) proposed to construct a random feature (RF) map
® : R? — R™ that transforms an input point z to a finite-dimensional feature vector ®(z) € R™
such that: K(x,y) = E[®(x) T ®(y)] (effectively approximately linearizing kernel function). Ap-
proximating general kernels K(x, y) via linear (dot-product) kernels K(x,y) ~ X'y for z = ®(z)
drastically changes computational complexity landscape, which is now dominated by the number m
of random features, thus providing computational gains if m < N. Since their seminal work, there
has been a variety of works proposing random features for a broad range of kernels like Gaussian,
Matern (Choromanski et al.,[2018) and polynomial (Kar & Karnickl 2012} [Wacker et al.,[2022afb).

In the meantime, with the advances in: the optimization algorithms for deep ML architectures and
the accelerators’ hardware, neural network (NN) models (Goodfellow et al., 2016; [Schmidhuber,
2014;|LeCun et al.,|2015)) have become predominant in machine learning.

*Equal Contribution

Published as a conference paper at ICLR 2024

The feedforward layer (FFL) is the p—— (@) T @ (b)
core computational module of NNs - Z D -
and is of the following form: ! - v
7
x — f(Wx +b) (1) e

for x € REW € R>X4 b ¢
R! (bias) and an activation function
f : R — R (applied element-wise).
The expressiveness of deep NN, far

. (©
- X X >
surpassing standard kernel methods, B[E
comes from stacking together sev- I3
eral FFLs, each encoding non-linear e

mapping with learnable W b.

(IO
|
% JEEE

mn
|

Figure 1: Pictorial representation of different NN layers discussed
in the paper. Pink arrays represent NN weight matrices and grey
ones, Gaussian projections matrices applied in SNNKs. Nonlin-
ear transformations applied in mappings ® and ¥ are symbolically
ector of dot-products of: (1) the la- represepted as fur}ctlons g and h respectively. Uppe.r left: Regular
Zent embeddir?gs (;lf the in[()u)t % and FFL with activation f. Upper right: SNNK applied to a single
(2) the parameters: W, b of the FFL FFL. Bottom: Bundling process using SNNKs and applied to a
.) k
effectively disentangling input from deep neural network.

model’s parameters in the computational graph, only to connect them in the final computation via
the dot-product kernel. To be more specific, we think about the FFL as the following transformation:

In this work, we draw a deep connec-
tion between scalable kernel methods
and neural networks. We reinterpret
the FFL as outputting the expected

(@)

def

{Kf<x, (W, b)) (K (x, (W, bo), oy Ky (3, (W' b))
Ky(x, (w,) = E[@f(x)" Vs (w,0)],

where mappings: ®; : R? — R™, ¥, : RIXR — R™ satisfy: f(w'x+b) = E[®;(x) ¥/ (w,b)]
and w®, ...w!~! are the transposed rows of W. Then, in the instantiation of the layer the expecta-
tions are dropped out. Rewriting an FFL in terms of two towers: one corresponding to the input and
one to its learnable parameters has several advantages:

1. network compression: in the above formulation, instead of transforming layer parameters with
W, one can directly learn vectors ¥ f(Wi, b;) fori = 0, ...,1 — 1. Then the number of trainable
parameters becomes O(Im) rather than O(ld) and for m < d the layer effectively has a reduced
number of parameters.

2. computational savings: if RFs can be constructed in time o(dl) per point and m < d, the
overall time complexity o(dl) of the FFL (given pre-computed embeddings ¥ ¢(w*, b;)) is sub-
quadratic in layers’ dimensionalities,

3. deep NN bundling process: a two-tower representation can be used iteratively to compactify
multiple FFLs of NNs, the process we refer to as neural network bundling (Sec. [3.3); this also
leads to the computational gains.

4. deep NNs as scalable kernels: the extreme version of the bundling procedure, involving all the
layers, provides a two-tower factorization of the entire deep NN with several potential practical
and theoretical implications (Sec. [3.3). In particular, it leads to an explicit formula for the optimal
parameters of the fully-bundled network under several loss objectives (e.g. mean squared loss),
opening a possibility to bypass backpropagation.

In order to find mappings: ®f, ¥ from Eq. [2} we develop a new bounded random feature map
mechanism, called universal random features (or URFs) that leads to the unbiased estimation of
f(wTx+b)aslong as f has a well-defined Fourier Transform (FT), either in the classical Rieman-
nian or distributional sense. To derive URFs, we combine Fourier analysis techniques with recent
methods for softmax-kernel estimation from |Likhosherstov et al. (2022).

Note: We do not put any additional assumptions regarding f, in particular f is not required to be
differentiable. Furthermore, function K; does not need to be positive semi-definite. This is critical
for applications in neural networks, where the activation function f usually does not correspond to
a positive semi-definite kernel.

To summarize, our main contributions in this paper are as follows:

Published as a conference paper at ICLR 2024

* We introduce the scalable neural network kernel module (SNNK) as a replacement of a traditional
FFL (Sec. [3), providing the disentanglement of the network’s input and its parameter-set before
final dot-product computation, as given in Eq. [2|(see also: Fig. [I).

* We accompany SNNKs with our universal random features mechanism (URFs) to efficiently: (1)
construct mappings ®; and ¥, from Eq. and consequently: (2) implement SNNKs (Sec. .
We provide explicit formulae for URFs for trigonometric maps. Those produce SNNK-based
replacements of the SIREN networks from |Sitzmann et al.[(2020).

* We propose new NN-layers corresponding to the specific SNNK instantiation, called ReLLU-
SNNK (Sec. [3.2), that we found particularly effective in downstream applications (see: Sec.
M.3.2). We show that they are related to the class of the arc-cosine kernels (Cho & Saull 201T).
We also demonstrate using them that SNNKs are strictly more expressive than regular FFLs, as
allowing to compute the functions of the inputs and parameters that cannot be defined as point-
wise transformed vectors of their dot-products.

* We introduce the neural network compactification process, that we refer to as neural network
bundling, leveraging SNNKs (see: Sec. [3.3]and Fig. [I).

* We provide an exhaustive empirical evaluation of SNNKs, from point-wise kernel estimation to
the adapter-based Transformers’ fine-tuning, providing about 5x reduction of the number of train-
able parameters (Sec.).

Commonly used methods for compressing neural networks are pruning (Liang et al.| 2021)), distil-
lation (Gou et al.,|2021)) and quantization (Gholami et al.,2021). Compressing neural networks via
SNNKs is novel and completely orthogonal to these methods and can be combined with such.

2 RELATED WORK

The literature on random features is vast, yet most of the works focus on approximating positive

definite kernels. The results on dimensionality reduction and the so-called Johnson-Lindenstrauss
Transform (or JLT) (Dasgupta & Guptal 2003; Dasgupta et al., 2010; |Ailon & Liberty, [2013)) for
the dot-product kernel marked the birth of the subject as as an archetype mechanism that Rahimi
& Recht| (2007) extended from linear to non-linear shift-invariant kernels. A substantial effort was
made to further improve the accuracy of RF-methods by entangling projections used to construct
RFs (Choromanski et al.l [2017;|Yu et al., [2016; Choromanski et al., [2018; [Rowland et al.,[2018)).

For certain classes of functions f, RF-mechanisms leading to the linearization of Ky have been
already developed. In addition to the rich recent literature on the approximation techniques for the
softmax-kernel Ky, (x,y) = exp(x'y) (Likhosherstov et al., 2022} 2023; Choromanski et al.,
2021])), algorithms for analytic f with positive coefficients of their Taylor series expansion were
given (Kar & Karnickl 2012). Other RF-methods assume that kernel inputs are taken from the
unit-sphere (Scetbon & Harchaouil 2021; [Han et al.| 2022). Both assumptions are unrealistic for
the neural network applications as far as inputs x are concerned (interestingly, the latter one would
be however more justifiable for the parameter-tower as long as bounded-norm weight matrices are
considered, e.g. orthogonal neural networks (Helfrich et al. 2018). We would like to emphasize
that our two-tower mechanism, effectively leading to the linearization of the FFLs from Eq. [2 can
in principle work with various RF-algorithms, and not only our proposed URFs.

The kernels applied in connection to neural networks have been widely studied (Bengio & Lecun,
2007). Such kernels are generally constructed using dot-products of outputs of the shallow neural
networks with various non-linearities like ReLU (Cho & Saull 2009; Bresler & Nagaraj, [2020) and
tanh (Williams| [1996)) or the gradients of the network like the NTK kernel (Jacot et al.,[2020). Most
of the work 1n linearizing NNs via kernels have been done in the case of a 2-layer network where

N
J(x;0) = Zavﬁf(XTWi)y 0=(a1,....,an;w", .., w") e RNED 3)
i=1

It is assumed that w® and f (non-linear activation) are fixed and scalars and a; are trainable. Under
various assumptions, one can write a compact linearized form of this neural network (Cho & Saul,
2009; 20115 (Ghorbani et al.l [2020). Moreover, in the above setting, J(x; @) corresponds to the
first-order Taylor expansion of J with respect to the top-layer weights a; which was first explored
by (Neall [1996). Even though our setting is fundamentally different, as our goal is to linearize
single layers to disentangle the weights and the inputs, we build on the above intuition to create our
SNNK-layers (see also: discussion in Appendix [C). Note that NTK-based analysis, as leveraging
Taylor-based linearization of the NN, is valid only for the mature stage of training/finetuning when

Published as a conference paper at ICLR 2024

weights do not change much and thus such a linearization is accurate (Malladi et al.| [2022)). SNNKs
do not rely on this assumption. Furthermore, SNNKs can be used also in the context of non-positive
definite (Ong et al., |2004) and asymmetric (He et al., [2023)) kernels since mappings ¢ and ¥ in
principle are different (on expectation they can produce both symmetric and asymmetric functions).

Arc-cosine kernels were studied in the context of deep NNs before (Cho & Saul, 2009). However,
in (Cho & Saul,2009), the weights are still entangled with the FFL-input, as the initial latent repre-
sentations of the inputs (for random parameters) are interpreted as RFs for the arc-cosine kernel.

3 SCALABLE NEURAL NETWORK KERNELS (SNNKS)

The scalable neural network kernel (SNNK) computational module is defined as follows:

{SNNKf(x, (W, b)) & (SNNK ;(x, (W°, bo)), ..., SNNK (x, (W', b-1))) |,

4
SNNK 4 (x, (w, b)) % & (x) T ¥ (w, b), @

for, x € RY, some mappings: ®; : R? — R™, Uy : R x R — R™ and transposed rows of
W € R>¥4: w9 . .w!=!. As we show in Sec. functions ®f, ¥, can be constructed in such a
way that the SSNK module approximates a particular FFL, i.e.. SNNK¢(x, (W, b)) ~ f(Wx+Db),
but mechanisms that do not imitate known FFLs are also of interest (see: Sec. [3.2).
Time complexity: If we denote by ¢,,,(d) time complexity for constructing an embedding: ® ;(x),
then time complexity for constructing SNNK ¢ (x, (W, b)) (given the pre-computed ¥ ¢(w*, b;) for
i=0,..,l=1)is: Tpp, ;(d) = ml+t,(d). In Sec. We show an algorithms for constructing URFs
in time ¢,,, (d) = O(md) and thus computational gains are provided as compared to the regular FFL
(with time complexity O(Id)) as long as m < min(l, d).
FFL compression: As already mentioned in Sec. the key observation is that in the setting,
where the layer is learned (and thus w°, ..., w!~! are learnable), mapping ¥ s does not even need

to be applied, since vectors w’ Ll f(wj ,b)for j = 0,...,1 — 1 can be interpreted as unstructured
learnable vectors. Thus the number of trainable parameters of the SNNK layer is O(ml), instead of
O(dl) and consequently, the FFL is effectively compressed if m < d.

3.1 UNIVERSAL RANDOM FEATURES (URFS)

In this section, we show how to construct embeddings @ ;(x) and ¥ ;(w, b) (additional intuition is
provided in Sec. . We denote by F'T ¢ the Fourier Transform of f, where i € C satisfies: i* = —1:

FT;(€) = /R F(2) exp(~2mitz)dz)

If the integral does not exist in the classical Riemannian sense, we use its distributional in-
terpretation. We rewrite FTy as: FT; = F‘Trfe’+ — FT}eﬁ —+ iFTlfm’Jr — iFTlfm’*, where:
FTPH FTS FTP Y FTP™" R — Ryo. Without loss of generality, we will assume that
all four functions are not identically zero.

Let us denote by Py, P1, P2, P3 some probabilistic distribution on R (e.g. Gaussian) and by
Do»P1,D2,P3 : R — Ry their corresponding density functions. Furthermore, denote by
Po, P1, P2, P3 probabilistic distributions of densities: pg, p1,p2,p3 : R — R>(proportional to:

Fij’J“7 FTE?’_7 FTifm’+, FTifm’_ respectively. We can then write:

pi(§)
p; (&)

f(z) = /R FT /() exp(2mi€z)de = 3 /R ggg exp(2mi€z) ||

3
XP(2RIEND, ()€ = 3 csFep, |
=0

(0)
where: ¢g = [, FT}e’+(T)dT, cp =~ [pFTY (1)dr, e =i [y FT}m’+(T)dT, and furthermore
cs=—i g FTi;n’_(T)dT. For x,w € R%, b € R, let us denote:
p;(§)
p;(&)

for 5;(€,b) = EA{§ exp(2mich), X(§) = p(€)x, W(E) = n(§)w, where p(€),n(¢) € C sat-
isfy: p(&)n(§) = 2mi€. Inside the expectation in Eq. 7| we recognize the softmax-kernel value

E(x,w,m:cﬂg@[exp (2ms<xTw+b>)]=cﬂE@j[Sj@,b)exp(f(sm(s))])

Published as a conference paper at ICLR 2024

Kexp(X(€),W(€)) = exp(XT(§)W(€)). We thus disentangle X(£) from W there, by applying
softmax-kernel linearization mechanism from |[Likhosherstov et al| (2022): exp(X' (£)w(¢)) =
Egn(0.1,)[Ag(X)Ag(W)], where Ag : R? — R is defined as follows for A < 0:

2
Aglz) = (1 44)% exp(Alg]} + VI~ 14g 2 — I22) ®)
Thus f;(%,w,0) = B¢ o 5 en(o.nn The (T ¢ (W, b)] for TL ((x), T2 ¢(w, b) given as:
Tg.e(x) = Ag(p(€)x), Tge(w,b) = ¢;55(€, b)Ag(n(§)w) ©

That observation directly leads to the RF mechanism for the estimation of fj(x,w, b). We can
rewrite: f;(x,w,b) = E[®7(x) "W/ (w,b)] for (&1,81)s s (Em, &m) ~ P; @ N(0,14) and:

1 i 1
ﬁ(r}zl,sl(x)v o Tgen (x) T, W (w,b) = ﬁ(rél,gl (W.0), . TG, 6, (WD) (10)

Several strategies can be used to construct samples (£1,81), -+, (§m, &m), €.g. iid sampling or
block-iid sampling with a fixed £ used within a block, but constructed independently for different
blocks. In the experiments, we also choose: p(§) = 2mi€ and n(£)=1.

¥’ (x) =

The case of discrete P; with finite number of atoms: Assume that (¢!, ..., £X) is a sequence of
atoms with the corresponding positive probabilities: (p1, ..., pr). Then one can also construct K
pairs of RF-vectors (97 (x; k), U9 (w, b; k))X_,, each obtained by replacing P; with a distribution
corresponding to a deterministic constant pj, and get ®7 (x), W/ (w, b) by concatenating vectors from
(®7(x; k))E_| and (U7 (w, b; k))&, respectively. This strategy is effective if K is small.

Note that: f(x"w + b) = Z?:O fj (x,w,b) and thus ®¢(x) and ¥ ¢(w, b) can be defined as:
®¢(x) = concat ((CIJj (x))?zo) , Uy(w,b) = concat ((\Ifj(w, b))?:o) (11
for the vector concatenation operation concat, completing the description of the URF mechanism.

Remark 3.1 (boundedness) We observe that for upper-bounded ||x||2, ||W||2, |b|, the entries of
O (x) and Uy(w,b) are also upper-bounded as long as A < 0. This follows directly from the
formula for Ag(z) in Eq. ES’]

Trigonometric activation functions: Let us assume now that f(z) = sin(z) or f(z) = cos(z).
Note that even though none of them has a Fourier Transform in the classical Riemannian sense, both
have trivial Fourier Transforms in the broader distributional sense. To see that, we can rewrite both

activations as: sin(z) = W and cos(z) = w. Therefore the correspond-

ing distributions used in the URF derivations above become binary distributions over {*iv % .
This observation has interesting practical consequences, since it leads to the conceptually simple

linearization of the FFLs applied in SIREN networks (see: Sec. [4.2).

3.2 BEYOND REGULAR FFLS: THE CURIOUS CASE OF THE RELU-SNNK LAYER

We also propose another SNNK layer which is not directly inspired by any known FFL, but turns
out to work very well in practice (see: Sec. 4.3.2). In this case, the mappings ¢ and W are defined
as: ¢(x) = ReLU(%Gx), U(w,b) = ReLU(\—[IGw) for the Gaussian matrix: G € R!*? with
entries sampled independently at random from N(0,1). One can ask a question what kernel does
this pair of maps correspond to. It turns out that the answer is particularly elegant.

Theorem 3.2 (arc-cosine kernels; (Cho & Saul|(2011)) The nth-order arc-cosine kernel K,
R? x R? — R is defined as: Ky, (x,y) = =||x[|5[ly[|5 Jn(ox,y), where ax.y € [0, 7] stands for an

angle between x and 'y and J(6) 2 (—1)"(sin(#))"+1 5307; (ﬁ). Then, K,, can be linearized
def

= ReLU((vTw)") and w ~ N(0,1,).

as: K (x,y) = 2E[[,(x) "T,,(y)] for T (v)

We conclude that our proposed ReLU-SNNK layer is a scalable version of the FFL defined as:
x, W € R*4 b — (1K (wl,x), ..., 2K (w!, x)) .

Published as a conference paper at ICLR 2024

Remark 3.3 The ReLU-SNNK layer is not a regular FFL since the values of its output dimen-
sions cannot be re-written as f(x"w' +b;) for some f : R — R (interestingly, after I'-base pre-
processing, it can be still interpreted as a dot-product kernel). This shows that the SSNK mechanism
is capable of modeling relationships beyond those of regular FFLs.

3.3 BUNDLING NEURAL NETWORKS WITH SNNKS

We are ready to propose the neural network bundling process, relying on the SSNK-primitives.
Consider the following deep NN module with input x = x5 € R% and output y = x;, € R%:

{X¢+1 = fir1i(Wix; +b;);4=0,...,L — 1,

Xo =X

12)

for: (1) matrices W; € R%+1%4:_(2) bias vectors: b; € R%+1_ and (3) activations: f; : R — R.

To understand how the bundling process works, we start by replacing first FFL in Eq. with its
SNNK analogoue. We obtain the following computational block:
Xiy1 = ﬁ+1(wz§1 + Bz) fori =0,...,L —2,
Xo = @y, (x0),
Wo = WiT, (Wo,bo): W; = Wiy, fori=1,...,L — 2,
ﬁ‘+1 = fiyo, b, = bi1fori=0,...,L —2

13)

In the system of equations above, ¥ (W, bg) is a matrix with transposed rows of the form:
\Ilf(Wg,bg), where Wg for j = 0,...,dy — 1 are the transposed rows of Wy and by =
(bY, ..., bgl_l)T. We have thus successfully replaced a module of L feedforward layers with a
module of (L — 1) feedforward layers. By continuing this procedure, we can ultimately get rid of
all the FFLs and obtain an estimator y of y, given as: ¥ = WX, where

i: (I)fL (q)fL71('“(I)f1 (XO))) (14)
W = \IlfL (WL_l\I/fL_l(...WQ\I/f2 (Wl\I/fl (VVQ,b()),bl)...7),bL)) c R4Lxm

This has several important consequences. In inference, replacing matrices Wy, ..., W _; with one
matrix W is a effectively a compression scheme (that does not necessarily need to be applied to all
the layers, but a particular consecutive set of layers of interest). If we apply bundling process to
the entire deep neural network, we effectively provide its two-tower factorization with input disen-
tangled from the parameters. In training, we can treat W as an unstructured parameter matrix and
directly learn it (see results in Appendix[J.3] table[5). Since the output ¥ is now modeled as an action
of the unstructured learnable matrix W on the pre-processed input X, for several loss functions there
exists an explicit formula for the optimal W. This is the case in particular for the standard regression
loss (see discussion in Appendix[J.3). If bundling is applied to a particular module, backpropagation
through it is not necessary since there exists an explicit formula for the corresponding Jacobian.

4 EXPERIMENTS

We present an extensive empirical evaluation on SNNK on a wide range of experiments. More
details on each of the experiments can be found in the Appendix

4.1 POINTWISE KERNEL ESTIMATION

As a warm-up, we test the accuracy of the applied RF-mechanisms on synthetic data. We take
d = 2000 and I = 1. We consider: (a) a SIREN-FFL with the activation function f(u) = sin(u)
and bias b = 0.5, (b) an arc-cosine-FFL from Sec. The entries of the weight vectors w and the
inputs to the layers are taken independently from ﬁUnif(O, 1). We report the mean relative error
of the NN output (by averaging over s = 500 instantiations of the RF-mechanism) made by the RF-
based estimator as well as the empirical standard deviation as a function of the number of random
projections. This setup corresponds to quantifying the accuracy of the kernel estimator pointwise.
The results are presented in Fig.[2|(g and h). Our SNNK provided an accurate approximation with a
much smaller number of random projections than the dimensionality d of the input vectors.

4.2 ToYy EXPERIMENTS

Published as a conference paper at ICLR 2024

. 1 . 1 ! - . -
o’ - S
r : h
]
° [SNNK-Adpt] [SNNK-Adpt J 5
I ® 03
2
b(x) T I =
e
I g 02
[o] [o] o '8
18
1 Mew(W,b)]
. nt 180
SN W “ |
1
a < Norm oo
) 20 40 60 a0 100 120
!) # of random projections
* i
Linear Y]
-
SNNK-Adpt SNNK-Adpt !
1
° = 08
'8
e
@
1306
“ £
I's
2
| Hos
1 8
12
: ’ o
SNNK-Adpt I - 1 - i :
00
b) d)) f) : 10 20 30 40 50 60
H h) # of random projections

Figure 2: Architecture for (a) SNNK layer (see Section EI) (b) SNNK-Adpt layer (c) image fitting (SIREN),
MNIST and UCI experiments, (d) SNNK-QPNN model, (¢) SNNK-inspired Adapter-ViT layer, (f) SNNK-
inspired Adapter-BERT layer. (g,h): The relative error (obtained by averaging over s = 500 instantiations of
the RF-mechanism) made by the RF-based estimator on the particular entry of the output of the: (g) SIREN-FFL
and (h) arc-cosine-FFL as a function of the number of random projections p (see: Sec. @ The maximum p
for (g) is larger than for (h), as (g) in theory produces larger variance per random projection. The corresponding
standard deviations are negligible: (g) 5-1078,107'2,5.1078, 1078,107'2, 2.5 -107°, 1072, 5. 1079,
107'%,107"2,107'°, 107 "2, (h) 107'%,3-107%,3-107%,2- 1075, 107 "%, 5 - 1077,

SNNKs are versatile and can be ,
used as a drop-in replacement for I @@
FFLs in a wide variety of NNs ‘
like the SIREN network
(2020), QPNN - a Physics-
inspired Neural Network (PINN) to
solve the Hamiltonian for quantum
physical systems (Sehanobish et al.| ‘
and a simple multi-layer per- .
ceptron (MLP) for classification on T
MNIST (].LeCun. & 'CortesL.ZOIOI). We Figure 3: (1) Left column : Injecting SNNK in a PINN network
use the sine activation variant for the ¢, approximate the potential energy of the 2-body sytem. Top to
first two experiments and the ReLU bottom : Ground truth potential, Learned potential by QPNN
variant for MNIST. 32 random fea- |hanobish et all 2021) and QPNN-SNNK. QPNN-SNNK can learn
tures are used for the solution of the the potential function perfectly even using less trainable parame-
2-body problem and MNIST and 64 ters than the baseline QPNN. (2) Rightmost three column : Siren
random features for the image fitting network on the first row, fitting not only the image, but also the
problem. We match the performance gradients. SNNK on the bottom row produces an accurate approx-

of the baseline NNs on the 2-body imation of the above.
and the image fitting problem (see figure [3) and outperform the baseline on MNIST (Figure [9),
while incurring lower training costs. For additional details regarding these experiments, see Ap-

pendix [G.1]

4.3 FINETUNING EXPERIMENTS

In this subsection, we show how SNNKs can be used for parameter efficient finetuning. For NLP
experiments, we use the GLUE benchmark consisting of 8 different natural language understanding
tasks (Wang et al.,[2018)). For vision tasks, we use CiFAR-10, CiFAR-100 (Krizhevsky et al., 2009)
and ImageNet-1k (Deng et al.} [2009). BERT-base (Devlin et al., 2019) is used as a backbone for
text experiments and ViT (Kolesnikov et al, |2021)) for image experiments. Our code is built on top

Published as a conference paper at ICLR 2024

ADAPTER CIFAR-10 ADAPTER CIFAR-100
93 84

92.11%

ADAPTER ImageNet
ADAPTER 100
~1789K

N
=

83.44%

EY
@
&

83.21%

©
~

15M 99.10%

98.87%

83

Accuracy
©
©
©
<

Accuracy
Accuracy

=4
%]
=

~313K

4
2
]
£
e
&
s
#*

IS
o
&
of Parameters
=
=

Baseline SNNK 98 Baseline ~ SNNK

©
o

82

2e5

Baseline SNNK Baseline SNNK

Baseline SNNK

Figure 4: Comparison of trainable parameters between various layers/modules and the drop in replacement
NNK layers. Results for CiFar-10, CiFar-100 and ImageNet are for SNNK-Adapter models.

of Transformers (Wolf et al.,|2020) and adapter Transformer library (Pfeiffer et al.,[2020). Detailed
comparisons with various baselines can be found in Appendix [K] and additional experiments in
Appendix[I}

4.3.1 LINEARIZING THE POOLER LAYER IN TRANSFORMERS

For text classification tasks, a SNNK layer can be used as a drop-in replacement for the pooler layer
which is a linear layer with a tanh activation. For these set of experiments, the base model is frozen
and only the pooler and the classifier weights are tuned. We get computational gains as the number
of random features employed by SNNK is smaller than that of the hidden size of the Transformers.
More details are presented in Appendix [G.2}

On GLUE dev set, our SNNK-linearized pooler models outperform the baselines on 5 out of 8 tasks
(Table |I| (top half)). Additional results can be found in Appendix m

In this setting, the linearized pooler weights can be merged with the classifier weights to create a
weight matrix of size (# number of random features x number of classes) and then one can simply
store the newly merged layer instead of separately storing the trained classifier and pooler layers.
This dramatically reduces the storage from 18.92 Megabit to only .02 Megabit leading to a compres-
sion factor of 1/1000. More details are presented in Appendix @ Ablation studies on the number
of random parameters for this experimental setting are presented in Appendix[I|

Table 1: SNNK experiments on GLUE benchmarks. MCC score is reported for CoLA, F1 score is reported for
MRPC and QQP, Spearman correlation is reported for STSB. Accuracy scores are reported for the other tasks.
All results are obtained by averaging over 5 seeds.

Dataset RTE MRPC QNLI QQP SST-2 MNLI STSB COLA
Bert-baseline (Lee et al.}2019} 57.5 81.5 74.5 72.0 84.9 56.4 78.1 29.4
Cosine-SNNK-pooler (ours) 61.36 £1.15 82.07+1.07 73.5+0.22 70.43+0.17 85.21+0.34 52.69+0.32 78.93+0.37 35.81+0.96
Adapter-baseline (Moosavi et al.|2022) 63.83 £ 1.4 84.8 £1.07 90.63+£0.26 88.12+0.14 91.74+0.36 83.53+0.19 8848+0.14 56.51+£0.84
AA (Moosavi et al.[[2022] 64.25+1.72 85.09+1.06 89.96+0.25 88.09+0.16 91.31+0.51 82.89+0.43 88.25+0.17 51.44+1.82
ReLU-SNNK-Adapter (ours) 69.68+£1.24 91.26+1.39 9044+0.16 85.82+0.23 92.31+0.27 82.06+0.17 88.81+0.14 58.21+0.63

4.3.2 SNNK-INSPIRED ADAPTER LAYERS

Adapters in Transformers were first introduced in (Houlsby et al. |2019) and there has been a
lot of work designing different architectures (Pfeiffer et al.l 2020; Karimi Mahabadi et al., 2021}
Moosavi et al., [2022)) and unifying various paradigms (Moosavi et al. 2022; He et al., 2022a).
Adapters are bottleneck MLPs which are (generally) added twice to each Transformer layer. In our
work, we replace each adapter block by a single SNNK layer (Figure [2] (e) and (f)) using only 16
random features resulting in a big drop of training parameters (see Figure). Figure[d](b) shows the
architecture of SNNK-inspired adapter layers. Additional details are presented in Appendix

As is customary for adapter experiments, base model is frozen and only the adapters and classifier
are tuned. Table [I] (bottom half) shows our results on using SNNK layers in place of adapters on
the GLUE dev set. We outperform the baseline on 5 out of 8 datasets while employing only 1/3 of
the training parameters. On MNLLI, it is noted in (Houlsby et al., 2019)), that using smaller adapter
size causes worse performance and performance boost can be achieved by increasing the size of the
adapter (256 is used in their case). Similar to this observation, we note that we can improve per-
formance and match the baselines on large datasets (ex. MNLI, QNLI) as we increase the number
of random features (see Figure [5). Our method also produces competitive performance on image
datasets including Cifar-10, Cifar-100 and ImageNet.(see Figure [(right 3 figures)). Detailed com-
parisons with SOTA parameter efficient finetuning methods can be found in Table [7) (vision tasks)
and in Table 8] (GLUE tasks).

Published as a conference paper at ICLR 2024

70 RTE

< —8— SNNK-Adapter

—— SNNK-Adapter <
~=- Bert-Adapter

Q0P

—=— SNNK-Adapter
-+ Bert-Adapter

8
8 —m— SNNK-Adapter

@ ~-- Bert-Adapter

2 2
Random Features

STSB _m— SNNK-Adapter
Bert-Adapter

—=— SNNKAdapter

g —=— SNNK-Adapter
-~ Bert-Adapter Esss

_______________________ =+ Bert-Adapter

B3 % > > 7 P % %
Random Features

Fa z 2

2 2 2
Random Features

Figure 5: Ablation with different number of random features for the ReLU-SNNK-adapter experiments on the
GLUE dev set. AA is the reported adaptable adapter numbers in[Moosavi et al|(2022).

0.32

\ RTYPE -
N COVERTYPE - 581K HIGGS - 11M A
\

HEPMASS - 11M

o

>
°
o
&

°
o
IS
°
w

\ = SNNK
\ —=- MLP

- SNNK
—=- MLP

\ - SNNK
N \ ——- MLP
053] % RSN

Cross Entropy Loss
°
&
ross Entropy Loss
Cross Entropy Loss
°
&
g

o
IS
*
/
C
o
N
©
]

0-28 20000 30000 40000 50000

of Trainable Parameters

0.52

30000 40000 50000 50000

of Trainable Parameters

20000 30000 40000
of Trainable Parameters

Figure 6: Comparison of CE loss for SNNK vs different sizes of MLP on UCI datasets.

Moreover, we note that our methods are completely orthogonal to techniques such as gating mecha-
nism in (Mao et al.,|2022) or algorithms relying on dropping suitable adapter layers (Moosavi et al.,
2022; Riicklé et al., [2021)). Thus it can be easily combined with them.

4.4 UPTRAINING TRANSFORMERS

In this section, we report results of replacing part of the Feed-Forward Network (FFN) block in
Transformers with SNNKs. Details are in the Appendix [I:4] for brevity, here we summarize our
findings. We observe from Table[6] that replacing FFL blocks with SNNK layers reduces the number
of parameters and FLOPS for both training and inference. This followed by our bundling process
leads to a large reduction in size and inference time of the bundle. For example, for BERT and ViT
models, replacing top-6 Transformer layer’s MLP block with SNNK reduces the size of the model
from 440 Mb to 226.71, and 346 Mb to 176.42 Mb respectively. Figures[I2]and[I3]demonstrate that
reducing the model size and inference speed by 40-50% has minimal impact on accuracy for both
NLP and Image classification tasks.

4.5 EXPERIMENTS ON UCI DATASETS

We have conducted experiments with a variety of real-world datasets found in the UCI Machine
Learning Repository (UCI MLR)E We trained a three-layer MLP model as baseline (see Appendix
Sec.[H:3|for details). We varied the output of the middle-layer to train MLPs with different sizes. For
our method, we replace the middle-layer with SNNK (Figure 2] (c)). SNNK matches or outperforms
the baseline while using only a fraction of the training parameters (Figure [6)).

5 CONCLUSION

We present scalable neural network kernels (SNNK), a novel efficient NN computational model
that can be used to replace regular feedforwards layers in MLPs, where inputs and parameters are
disentangled and connected only in the final computation via a dot-product kernel. We introduce
a general mechanism of the universal random features (URFs) to instantiate SNNKs, show that
SNNKSs are capable of encoding subtle relationships between parameter- and input-vector beyond
functions of their dot-products and finally, explain how they lead to the compactification of the NN
stack via the so-called bundling process. We complement our theoretical findings with the exhaustive
empirical analysis, from pointwise kernel estimation to training Transformers with adapters.

'"https://archive.ics.uci.edu/ml/index.html

https://archive.ics.uci.edu/ml/index.html

Published as a conference paper at ICLR 2024

ETHICS STATEMENT

This paper focuses mostly on the algorithmic properties of the techniques linearizing kernels as-
sociated with feedfoward layers’ calculations for the computational gains. The experiments with
adapter-based fine-tuning of Transfomers are presented to illustrate the main concepts. It should be
noted though that Transformers should be used cautiously given their considerable computational
footprint (improved though while adapters are applied) and the corresponding carbon footprint.

AUTHOR CONTRIBUTIONS

AS and KC led the project. AS ran several empirical studies on GLUE, CiFar-10 and CiFar-100
datasets and proposed several strategies for efficiently using SNNK-layers within Transformer mod-
els. KC proposed FFL linearization-schemes, URFs, the bundling mechanism and implemented all
linearization-schemes. YZ ran empirical studies on GLUE, CiFar-10 and CiFar-100 datasets. AD
implemented and ran all UCI experiments, helped with GLUE/image experiments, proposed strat-
egy for efficiently using SNNK-layers and created all figures in experiments. VL proposed an idea
to linearize FFLs by disentangling inputs from weights. All authors contributed to the writing of the
manuscript.

REPRODUCIBILITY STATEMENT

Hyperparameters to reproduce each experiment is detailed in section [H The code is provided at
https://github.com/arijitthegame/neural-network—kernelsl

REFERENCES

Nir Ailon and Edo Liberty. An almost optimal unrestricted fast johnson-lindenstrauss transform.
ACM Trans. Algorithms, 9(3):21:1-21:12, 2013. doi: 10.1145/2483699.2483701. URL https:
//doi.org/10.1145/2483699.2483701.

Yoshua Bengio and Yann Lecun. Scaling learning algorithms towards ai. In L. Bottou, O. Chapelle,
D. DeCoste, and J. Weston (eds.), Large-scale kernel machines. MIT Press, 2007.

Guy Bresler and Dheeraj Nagaraj. A corrective view of neural networks: Representation, memoriza-
tion and learning. In Jacob Abernethy and Shivani Agarwal (eds.), Proceedings of Thirty Third
Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research,
pp- 848-901. PMLR, 09-12 Jul 2020. URL https://proceedings.mlr.press/v125/
bresler20a.htmll

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. arXiv preprint
arXiv:2205.13535, 2022.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta (eds.), Advances in Neu-
ral Information Processing Systems, volume 22. Curran Associates, Inc., 2009. URL
https://proceedings.neurips.cc/paper_files/paper/2009/file/
5751lec3e9adfeabb75962e78e006250d-Paper.pdf.

Youngmin Cho and Lawrence K. Saul. Analysis and extension of arc-cosine kernels for large margin
classification. CoRR, abs/1112.3712,2011. URL http://arxiv.org/abs/1112.3712.

Krzysztof Choromanski, Mark Rowland, Tamas Sarlés, Vikas Sindhwani, Richard E. Turner, and
Adrian Weller. The geometry of random features. In Amos J. Storkey and Fernando Pérez-
Cruz (eds.), International Conference on Artificial Intelligence and Statistics, AISTATS 2018,
9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, volume 84 of Proceedings
of Machine Learning Research, pp. 1-9. PMLR, 2018. URL http://proceedings.mlr.
press/v84/choromanskil8a.htmll

10

https://github.com/arijitthegame/neural-network-kernels
https://doi.org/10.1145/2483699.2483701
https://doi.org/10.1145/2483699.2483701
https://proceedings.mlr.press/v125/bresler20a.html
https://proceedings.mlr.press/v125/bresler20a.html
https://proceedings.neurips.cc/paper_files/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
http://arxiv.org/abs/1112.3712
http://proceedings.mlr.press/v84/choromanski18a.html
http://proceedings.mlr.press/v84/choromanski18a.html

Published as a conference paper at ICLR 2024

Krzysztof Choromanski, Haoxian Chen, Han Lin, Yuanzhe Ma, Arijit Sehanobish, Deepali Jain,
Michael S Ryoo, Jake Varley, Andy Zeng, Valerii Likhosherstov, Dmitry Kalashnikov, Vikas
Sindhwani, and Adrian Weller. Hybrid random features, 2022.

Krzysztof Marcin Choromanski, Mark Rowland, and Adrian Weller. The unreasonable effective-
ness of structured random orthogonal embeddings. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pp. 219-228, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
bf8229696f7a3bb4700cfddefl9faz23f-Abstract.htmll

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlés, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with per-
formers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=Uabzuk OWRH.

Anirban Dasgupta, Ravi Kumar, and Tamds Sarlés. A sparse johnson-lindenstrauss transform.
CoRR, abs/1004.4240, 2010. URL http://arxiv.org/abs/1004.4240.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lin-
denstrauss. Random Struct. Algorithms, 22(1):60-65, 2003. doi: 10.1002/rsa.10073. URL
https://doi.org/10.1002/rsa.10073.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423|

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. CoRR, abs/2103.13630,
2021. URL https://arxiv.org/abs/2103.13630.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers
neural networks in high dimension, 2020.

Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adaptive com-
putation and machine learning. MIT Press, 2016. ISBN 978-0-262-03561-3. URL http:
//www.deeplearningbook.org/.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation: A
survey. Int. J. Comput. Vision, 129(6):1789-1819, jun 2021. ISSN 0920-5691. doi: 10.1007/
s11263-021-01453-z. URL https://doi.org/10.1007/s11263-021-01453—-z!

Insu Han, Amir Zandieh, and Haim Avron. Random gegenbauer features for scalable kernel meth-
ods, 2022.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022a. URL https://openreview.net/forum?id=0RDcd5Axok,

Mingzhen He, Fan He, Lei Shi, Xiaolin Huang, and Johan A. K. Suykens. Learning with asymmetric
kernels: Least squares and feature interpretation. IEEE Trans. Pattern Anal. Mach. Intell., 45(8):
10044-10054, 2023. doi: 10.1109/TPAMI.2023.3257351. URL https://doi.org/10.
1109/TPAMI.2023.3257351l

11

https://proceedings.neurips.cc/paper/2017/hash/bf8229696f7a3bb4700cfddef19fa23f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/bf8229696f7a3bb4700cfddef19fa23f-Abstract.html
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
http://arxiv.org/abs/1004.4240
https://doi.org/10.1002/rsa.10073
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2103.13630
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://doi.org/10.1007/s11263-021-01453-z
https://openreview.net/forum?id=0RDcd5Axok
https://doi.org/10.1109/TPAMI.2023.3257351
https://doi.org/10.1109/TPAMI.2023.3257351

Published as a conference paper at ICLR 2024

Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang, and Xin Eric Wang. Parameter-efficient
model adaptation for vision transformers. arXiv preprint arXiv:2203.16329, 2022b.

Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled
cayley transform. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmdssan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 1974—1983.
PMLR, 2018. URL http://proceedings.mlr.press/v80/helfrichl8a.htmll

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2790-2799. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.
press/v97/houlsbyl9a.htmll

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYfO.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks, 2020.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision (ECCV),
2022.

Purushottam Kar and Harish Karnick. Random feature maps for dot product kernels. In Neil D.
Lawrence and Mark Girolami (eds.), Proceedings of the Fifteenth International Conference
on Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine Learning Re-
search, pp. 583-591, La Palma, Canary Islands, 21-23 Apr 2012. PMLR. URL https:
//proceedings.mlr.press/v22/karl2.htmll

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In Annual Meeting of
the Association for Computational Linguistics, 2021.

Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob Uszkoreit,
Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Sylvain Gelly, Thomas Un-
terthiner, and Xiaohua Zhai. An image is worth 16x16 words: Transformers for image recognition
at scale. In Ninth International Conference on Learning Representations. ICLR, 2021.

Leonid Kontorovich, Corinna Cortes, and Mehryar Mohri. Kernel methods for learning languages.
Theor. Comput. Sci., 405(3):223-236, 2008. doi: 10.1016/.tcs.2008.06.037. URL https:
//doi.org/10.1016/7.tcs.2008.06.037.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search), 2009. URL http://www.cs.toronto.edu/~kriz/cifar.htmll

Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nat., 521(7553):436-444,
2015. doi: 10.1038/mature14539. URL https://doi.org/10.1038/naturel4539.

Jaejun Lee, Raphael Tang, and Jimmy Lin. What would elsa do? freezing layers during transformer
fine-tuning, 2019.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization
for deep neural network acceleration: A survey, 2021.

12

http://proceedings.mlr.press/v80/helfrich18a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.mlr.press/v22/kar12.html
https://proceedings.mlr.press/v22/kar12.html
https://doi.org/10.1016/j.tcs.2008.06.037
https://doi.org/10.1016/j.tcs.2008.06.037
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1038/nature14539

Published as a conference paper at ICLR 2024

Valerii Likhosherstov, Krzysztof Marcin Choromanski, Kumar Avinava Dubey, Frederick Liu,
Tamas Sarlés, and Adrian Weller. Chefs’ random tables: Non-trigonometric random features. In
NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
df2d62b96a4003203450cf89cd338bb7-Abstract-Conference.html.

Valerii Likhosherstov, Krzysztof Choromanski, Avinava Dubey, Frederick Liu, Tam4s Sarlés, and
Adrian Weller. Favor#: Sharp attention kernel approximations via new classes of positive random
features. CoRR, abs/2302.00787, 2023. doi: 10.48550/arXiv.2302.00787. URL https://
doi.org/10.48550/arXiv.2302.00787.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. arXiv preprint arXiv:2210.05643, 2022.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning,
2022.

Nafise Moosavi, Quentin Delfosse, Kristian Kersting, and Iryna Gurevych. Adaptable adapters. In
Proceedings of the 2022 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 3742-3753, Seattle, United States, July
2022. Association for Computational Linguistics. URL https://aclanthology.org/
2022 .naacl-main.274.

Radford M. Neal. Priors for infinite networks, 1996. URL https://api.semanticscholar.
org/CorpusID:118117602.

Cheng Soon Ong, Xavier Mary, Stéphane Canu, and Alexander J. Smola. Learning with non-positive
kernels. In Carla E. Brodley (ed.), Machine Learning, Proceedings of the Twenty-first Interna-
tional Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004, volume 69 of ACM
International Conference Proceeding Series. ACM, 2004. doi: 10.1145/1015330.1015443. URL
https://doi.org/10.1145/1015330.1015443.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya Kamath, Ivan Vuli¢, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transform-
ers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2020): Systems Demonstrations, pp. 46-54, Online, 2020. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.
emnlp—-demos. 7.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural In-
formation Processing Systems, volume 20. Curran Associates, Inc., 2007. URL
https://proceedings.neurips.cc/paper_files/paper/2007/file/

013a006f03dbc5392effeb8f18fda’/55-Paper.pdf.

Mark Rowland, Krzysztof Choromanski, Francois Chalus, Aldo Pacchiano, Tamds Sarlds,
Richard E. Turner, and Adrian Weller. Geometrically coupled monte carlo sampling. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolo Cesa-Bianchi, and Ro-
man Garnett (eds.), Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 195-205, 2018. URL |https://proceedings.neurips.cc/
paper/2018/hash/b3e3e393c77e35a4a3f3cbdled429b5dc—Abstract.htmll

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers, 2021.

Meyer Scetbon and Zaid Harchaoui. A spectral analysis of dot-product kernels, 2021.
Jirgen Schmidhuber. Deep learning in neural networks: An overview. CoRR, abs/1404.7828, 2014.
URL http://arxiv.org/abs/1404.7828.

13

http://papers.nips.cc/paper_files/paper/2022/hash/df2d62b96a4003203450cf89cd338bb7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/df2d62b96a4003203450cf89cd338bb7-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2302.00787
https://doi.org/10.48550/arXiv.2302.00787
https://aclanthology.org/2022.naacl-main.274
https://aclanthology.org/2022.naacl-main.274
https://api.semanticscholar.org/CorpusID:118117602
https://api.semanticscholar.org/CorpusID:118117602
https://doi.org/10.1145/1015330.1015443
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper/2018/hash/b3e3e393c77e35a4a3f3cbd1e429b5dc-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/b3e3e393c77e35a4a3f3cbd1e429b5dc-Abstract.html
http://arxiv.org/abs/1404.7828

Published as a conference paper at ICLR 2024

Bernhard Scholkopf and Alexander J. Smola. Learning with kernels : support vector machines, reg-
ularization, optimization, and beyond. Adaptive computation and machine learning. MIT Press,
2002. URL http://www.worldcat.org/oclc/48970254.

Arijit Sehanobish, Hector H. Corzo, Onur Kara, and David van Dijk. Learning potentials of quantum
systems using deep neural networks, 2021.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. In Proc. NeurIPS, 2020.

Jonas Wacker, Motonobu Kanagawa, and Maurizio Filippone. Improved random features for dot
product kernels. arXiv preprint arXiv:2201.08712, 2022a.

Jonas Wacker, Ruben Ohana, and Maurizio Filippone. Complex-to-real random features for poly-
nomial kernels. arXiv preprint arXiv:2202.02031, 2022b.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 353-355, Brussels, Belgium, November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Christopher K. I. Williams. Computing with infinite networks. In Proceedings of the 9th Interna-
tional Conference on Neural Information Processing Systems, NIPS’96, pp. 295-301, Cambridge,
MA, USA, 1996. MIT Press.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38—45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp—-demos. 6.

Bruce X. B. Yu, Jianlong Chang, Lin Liu, Qi Tian, and Changan Chen. Towards a unified view
on visual parameter-efficient transfer learning. ArXiv, abs/2210.00788, 2022. URL https:
//api.semanticscholar.org/CorpusID:252683240.

Felix X. Yu, Ananda Theertha Suresh, Krzysztof Marcin Choromanski, Daniel N. Holtmann-
Rice, and Sanjiv Kumar. Orthogonal random features. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Infor-
mation Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 1975-
1983, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
53adafd494dc89ef7196d73636eb2451b-Abstract.html.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models, 2022.

14

http://www.worldcat.org/oclc/48970254
https://aclanthology.org/W18-5446
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:252683240
https://api.semanticscholar.org/CorpusID:252683240
https://proceedings.neurips.cc/paper/2016/hash/53adaf494dc89ef7196d73636eb2451b-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/53adaf494dc89ef7196d73636eb2451b-Abstract.html

Published as a conference paper at ICLR 2024

A TowARDS URFS: ADDITIONAL INTUITION

In this section, we provide an additional intuition that led us to the mechanism of URFs. Our first
observation is that if one has a mechanism for the linearization of the softmax kernel K(x,y) =
exp(x'y), i.e. a randomized mapping ¢ : R? — R™ such that: K(x,y) = E[¢(x) ¢(y)], then
this mechanism automatically provides an approximate linearization of the kernel defined as:

l
K(x,y) = Z c exp(sixTy), (15)
i=1

for some coefficients: cy, ..., ¢, s1, ..., S;. To see that, note that one can simply define the random
feature map W for that kernel as:

W(z) = concat (v/e19(y/512), ... v/ad(y/512)) (16)

where concat stands for the concatenation operator. Alternatively, if in addition ¢4, ..., ¢; > 0, one
can first sample the index k € {1, ...,1} from the discrete distribution (p;, ..., p;) with p, = ==

Zilzl Cn
and then define ¥ as:

a7)

The mechanism of URFs is the natural extension of this observation to the setting, where the kernel
cannot be given by the sum from Eq. [15] but the formula with the sum replaced by the integral (which
immediately leads to the representation of the function as the Fourier Transform of its inverse Fourier
Transform or vice versa: inverse Fourier Transform of its Fourier Transform). The only remaining
step is to choose a right mapping ¢ for the estimation of the regular softmax kernel and here we
have decided to leverage the recently introduced improvement of the positive random feature map
mechanism from |[Likhosherstov et al. (2022)).

B PROPAGATION OF THE ERROR OVER THE NETWORK

In this section, we show how the error accumulates when we try to bundle a deep feedforward
network.

The variance of the estimation of the kernel value K(x,y) is proportional to % where m is the
number of random features. This is the case since its estimator can be rewritten as:

1 m
Xzag;&

where each X; provides an unbiased estimation of the kernel value. Since random variables X; are
independent, using Azuma’s Inequality, we can also conclude that if | X;| < ¢, then:

2
ﬂm—K@y”>d<%m<—e), (18)

8mc?

for any € > 0. Recall from exp(X " (§)W()) = Egn(0,1,)[Ag(X)Ag(W)], where Ag : R — Ris
defined as follows for A < 0:

2
Nelz) = (1~ 44) exp(Algl3 + VI~ 4Ag 7 — 122 (19)

Note that the boundedness condition holds if A < 0 (see Remark 3.1).

Now assume that the kernel function K satisfies (in the region of interest): |K(x, w) — K(u, w)| <
d(a), as long as ||x — u||; < a for some function ¢. Note that this is not a strong assumption as
any continuous function on a compact subset of R" is uniformly continuous, i.e. satisfies the above
condition for some J, where §(a) — 0 asa — 0.

We then conclude that the probability that the approximate output of the bundled d-layer neural
network differs from the exact output by at least € + d(€) + --- + d(--- 3(d(¢))) (composition of
(d — 1) é-functions) in the L'-norm is upper-bounded by the RHS from the Inequality |18} but with
an extra multiplicative factor d (coming from the union-bound). We see that the number of random
features needed for an accurate approximation is larger if K grows faster (e.g. is L-Lipschitz with
larger constant L).

15

Published as a conference paper at ICLR 2024

C SNNK LAYERS AND RELATION TO LINEARIZATION OF 2-LAYER NEURAL
NETWORKS

In this subsection, we provide details on the training of the SNNK layers and how they can be
injected in place of MLP layers. We use the PyTorch style of Linear layer in our notations, namely
right multiplication by W . Recall an MLP layer with weight matrix W, a bias b and a non-linear
function o takes an input X and computes

f(X)=a(XWT +b) ~ d(X)U(W,b)" (20)
Rewriting A as U(W,b), one can think of W as fixed weights while A are trainable which is

exactly equation [3] Moreover A has fewer parameters than W, resulting in parameter efficient
training.

Using this above intuition, one can seamlessly plug SNNK in place of either pretrained network
where the input to ¥ will be pretrained weights or random weights in case of untrained networks.
We do not train W in this case, but only A.

D SNNK-INSPIRED ADAPTER BLOCKS

We think of adapters (discarding the nonlinearity) as a low rank factorization of a linear layer. If the

weight matrix W of the linear layer is of size (d x d) and k is the low rank of the factorized matrices
where k£ << d, the number of trainable parameters is 2 X k X d (again discarding the bias terms) as
opposed to d x d. However, we consider the problem of linearizing the entire block by one feature
matrix of size (d x random features) and we similarly transform the input tensors and compute the
matrix multiplication in the feature space. In this setting, we ignore the bias term b as b is initialized
as the zero vector and so it does not change the initial feature matrix. Thus our implementation of
linearized adapter looks like :

Y := SNNK(X) = &(X)¥(W)" Q1)

where ® and U are suitably chosen feature maps. As W is randomly initialized, we can treat ¥ (W)
as a random unstructured matrix A and update A. We use a residual connection as in (Houlsby et al.,
2019). It is well-known (Houlsby et al.| 2019} [He et al.l 2022a} |Pfeitfer et al., [2020) that for stable
training the adapter block should behave like the identity matrix at initialization. We introduce a
vector v that we call the gating vector or the modulating vector that is initialized as the zero vector.
Thus the equations of our adapter block becomes :

Y = (v © SNNK(X)) + X (22)
©® stands for Hadamard or element-wise product.

At this point, we would like to give some motivation regarding the use of this vector and discuss
initialization schemes. One simple way to initialize the entire block as the identity, is to choose A as
the O matrix but that in turn leads to optimization difficulties. Another initialization scheme would
be to initialize A from a Gaussian centered around 0 with small variance, but does not lead to good
performance. Other detailed initialization schemes are not studied and are beyond the scope of this
work. Meanwhile, adding the gating vector allows us to initialize the block as the identity matrix,
leading to stable training.

Thus the number of training parameters in this regime is (d + 1) X random features which is consid-
erably lower than the adapters if the number of random features are small. For all our experiments,
we only use 16 random features resulting in lowering the number of training parameters compared
to the baseline adapters. Our SNNK-inspired adapters can be used in different configurations and
can be also combined with SOTA adapter-based methods and we leave that to future work.

E BUNDLING THE POOLER AND THE CLASSIFIER LAYERS

The bundling of the pooler and the classifier layer takes a particularly simple form in this case: If
W,, b, (resp. W, b.) are the weight matrices and biases of the pooler and classifier layer resp and
o be the tanh activation function. Then :

o(XW, +b,) W, + b, ~ ®(X)¥U(W,,b,) W] +b, (23)

16

Published as a conference paper at ICLR 2024

~17K QPNN

~
v
~

v
o
~

~4.5K

N
v
~

~18K

~423K
Baseline SNNK

of Parameters
of Parameters
=
o
~

Baseline SNNK Baseline SNNK

Figure 7: Comparison of trainable parameters between the baseline models for toy experiments and the SNNK-
counterparts.

U(W,, b,) is a matrix of size d x k, where d is the dimension of the transformer, % is the number of
random features and £ < d. W, is a matrix of size d X ¢, where c is the number of output classes.
Thus, instead of storing the two matrices, we can only store the product of the 2 matrices which is
of size k X ¢, resulting in huge storage savings. Moreover during deploying, one can only use the
smaller matrix as the output layer resulting in lower flops.

F DATASETS

We describe the dataset statistics used in different experiments. Glue is a benchmark dataset in NLP
comprising of 8 different natural language understanding (NLU) tasks (Wang et al.| 2018). Table[2]
shows the train, dev splits for various tasks. CiFar-10 consists of 50k natural images for training split

Table 2: Statistics of Glue datasets
Dataset RTE MRPC QNLI QQP SST-2 MNLI STSB COLA

Train/Dev 2.49k/277 3.67k/408 105k/5.46k 364k/40.4k 67.3k/872 393k/9.83k 5.75k/1.5k 8.55k/1.04k

into 10 categories with 5k images in each category and 10k images for testing. CiFar-100 consists of
50k natural images for training split into 100 categories with 500 images in each category and 10k
images for testing. MNIST is a dataset of handwritten digits, consisting of 60k training examples
across 10 categories and 10k test examples. For these datasets, we use a 25% stratified random
sampling from the training set to create a validation set which is used to select the best model to run
on the holdout set.

We use three large UCI classification datasets CoverTypeﬁ(510K points, dim = 54), HIGGﬂ
(11 M points, dim = 28) and HEPMASﬂ(11 M points, dim = 28) to evaluate SNNK.

G EXPERIMENTS

In this section, we provide additional details for various experiments.

G.1 ADDITIONAL DETAILS ON TOY EXPERIMENTS

In the following subsections, we provide additional details on the toy experiments. The aim for
conducting the toy experiments is to showcase the versality of the SNNK-layer that can be used as
a drop-in replacement for MLP layers in different optimization problems.

G.1.1 QPNN

QPNN is a simple PINN-styled 3 layer neural network (Sehanobish et al.,2021). It learns the poten-
tial energy of a quantum system in an unsupervised manner by learning the principle of conservation
of energy (using Schrodinger’s equation). The hidden layer of the QPNN is of size 128 x 128 and
in this work, we replace the hidden layer by our SNNK layer with 32 random features, resulting

Zhttps://archive.ics.uci.edu/dataset/31/covertype
*https://archive.ics.uci.edu/dataset/280/higgs
‘nttps://archive.ics.uci.edu/dataset/347/hepmass

17

https://archive.ics.uci.edu/dataset/31/covertype
https://archive.ics.uci.edu/dataset/280/higgs
https://archive.ics.uci.edu/dataset/347/hepmass

Published as a conference paper at ICLR 2024

in efficient computation of the potential energy of the 2-body system. We use the cosine variant of
SNNK for generate the plots in the main paper. We observe similar performance for the sine variant
of SNNK.

G.1.2 SIREN

Siren network is a MLP with sine activations introduced in (Sitzmann et al.| [2020). Siren network
for the image fitting experiment is a 3 layer neural network with hidden dimension matrices of
sizes 256 x 256. As is shown in the original work, Siren network can not fit the image but can
also represent the derivatives of the signal. We replace the hidden layer with our sine variant of
the SNNK layer with 64 random features, resulting in modest computational gains. We show that
like the original Siren network, our SNNK-augmented Siren network can also accurately model the
derivatives of the signal.

The cosine variant of SNNK performs similarly in this task. This is not surprising since the derivative
of a siren network is also a siren network, and cosine function is a shifted sine function and so they
behave similarly.

G.1.3 CLASSIFICATION ON MNIST

The baseline NN is a simple 3-layer feedforward layer with hidden dimension to size 512 x 512 with
ReLU activation. Like our previous experiments, we replace the hidden layer by our ReL.U-variant
of the SNNK layer. We train the baseline as well as SNNK-MLP with various number of random
features for 25 epochs and measure their accuracy on the test set (see figure E] (left)).

Moreover, we observe lower training losses and stable training for SNNK-MLP across different
number of random features (see figure 0] (middle)) .

G.2 EXPERIMENTS ON LINEARIZING THE POOLER LAYER IN PRETRAINED TRANSFORMERS

Many encoder only pretrained transformers use a special token called [CLS] that is appended in
front of the input sequence which can be used for classification tasks. After the transformer blocks,
these encoder models employ a pooling layer on the final hidden state of the [CLS] token as the
final representation for the sequence which is then passed to a classifier layer for a classification or
regression task. The pooling layer is a linear layer of size d x d, where d is the hidden dimension of
the transformer with a tanh activation. For the baseline results, the BERT layers are frozen and only
the classifier and pooler is tuned.

We found the SNNK-variant with the cosine variant to be particularly performant in various scenar-
ios so we use it as a proxy. Both the cosine and the tanh functions have the same range of values so
we find no instabilities or difficulties in training. For these experiments, we replace the pooling layer
by our NNK layer employing fewer random features than the hidden dimension. Detailed discus-
sion about the bundling procedure is explained in Appendix [E| We would like to note that in image
classification tasks, the pooler layer is not used, only the final [CLS] token is used for classification.

G.3 EXPERIMENTS ON SNNK-INSPIRED ADAPTERS

Adapters in transformers were first introduced for NLP tasks in (Houlsby et al., 2019) and there
has been a lot of work designing different architectures (Pfeiffer et al., [2020; |Karimi Mahabadi
et al} |2021; Moosavi et al.,[2022) and unifying various paradigms (Moosavi et al., [2022; He et al.,
2022a). Adapters are bottleneck MLPs which are added twice to each Transformer layer, one after
the attention layer and once after the feedforward layer. For simplicity, we choose to work with the
original Houlsby configuration in this work.

Following the success of adapters for NLP tasks, several authors have proposed various variants
of adapters in ViT (Chen et al., 2022; He et al.| [2022b} |Yu et al.| 2022)). Like the BERT-adapter,
we use the adapter implementation for ViT-adapters using the Houlsby configuration as described
in (Pfeiffer et al.,|2020).

18

Published as a conference paper at ICLR 2024

H HYPERPARAMETERS

In this section, detailed hyperparameters for each experimental setting is presented. All experiments

on the smaller dataset are run on a Google Colab free version (T4 GPU), while experiments on the
larger datasets used V100 GPU and 40Gb A100 GPUs in Google Colab. For the GLUE experiments,
we use the sequence length of 128. For experiments on image datasets, we use the ViT checkpoint
‘google/vit-base-patchl6-224-in21k’ which is a ViT-base model pretrained on ImageNet-21k (Deng
et al.} [2009). We use 224 x 224 resolution for the images for all the experiments. For experiments
on text datasets, we use the bert-base-uncased checkpoint.

H.1 ADAPTER FINETUNING

For these experiments, we use a learning rate of 1le — 3, batch size of 64 and a constant scheduler
with warmup steps 6% of the total number of training steps with AdamW optimizer (Loshchilov &
Hutter;2019). All models converge within 5-30 epochs depending on the size of the dataset. For the
baseline experiments, we choose an adapter size of 48 for all experiments. For our SNNK-adapter
experiments, we merely use the hyperparameters found in (Pfeiffer et al.,[2020). We realize that such
a choice of hyperparameter may not be suitable for optimal performance but detailed hyperparameter
tuning is beyond the scope of the work.

For experiments on image datasets we also use gradient clipping to clip the gradients to global norm
1. We set number of random features as 16 for all adapter finetuning experiments except ImageNet
for which we used 32.

H.2 POOLER FINETUNING

For these experiments, we use learning rate of 1le — 3, batch size of 64 and a weight decay of 1le — 4
with AdamW optimizer. All models converge within 5-20 epochs depending on the size of the
dataset.

For the image experiments, we also use a constant scheduler with warmup steps 1% of the total
number of training steps. We also divide the inputs to our SNNK layer as well the initial weights by
d-?%, where d is the hidden dimension of the Transformer. Note that this is the same transformation
that is used in (Choromanski et al., 2021).

H.3 EXPERIMENTS ON BUNDLED NETWORKS

For these experiments, we do a hyperparameter search over learning rates in {1le-2, 5e-3, 2e-3, le-3
}. We use a batch size of 64, Adam optimizer and do not employ any regularization techniques.

H.4 Toy EXPERIMENTS

For the experiments on image fitting and computing the potential energy of the 2-body system, we
use the default parameters as used by the authors of the original papers. For MNIST experiment, we
use a batch size of 32, learning rate of .001 with Adam optimizer. We also use a dropout of .2 after
every layer except the output layer.

H.5 UCI EXPERIMENTAL DETAILS

A three layer MLP is used as a baseline. We use dropout and ReL U activation in the first two layers,
with the layers being : 1) ReLu(Linear(dim, 512)) and 2) ReLu(Linear(512, dparam)) and the output
layer being : output = Linear(dparam, numClasses), where dim is the dimension of the input (data
dependent), dparam iS @ hyperparameter that we vary to get all the relevant plots and numClasses
is the total number of classes to be predicted. For our method, we replace the second layer with a
SNNK layer.

19

Published as a conference paper at ICLR 2024

RTE MRPC

I S —m— Cos-SNNK-Pooler 70 —=— Cos-SNNK-Pooler =~ Cos-SNNK-Pooler 55 —m— Cos-SNNK-Pooler
-~ Bert-Pooler - =~ Bert-Pooler 66 - =~ Bert-Pooler - =~ Bert-Pooler
56 78 50
B 27 2 P 200 2 P 2 2 200 25 2 2 200 2 27 2 >)
Random Features # Random Features # Random Features # Random Features
5 Ry [o s —— 82 40
86 56 VNLT s STSB COLA
g80
84 > 278 mmmm
3 3 s
g 8 S
g g% 276
<% <5 g7
—m— Cos-SNNK-Pooler =~ Cos-SNNK-Pooler 50 =~ Cos-SNNK-Pooler 25 =~ Cos-SNNK-Pooler
80 ~== Bert-Pooler 48 ~=- Bert-Pooler § —=- Bert-Pooler ~=- Bert-Pooler
70 20

26 27 2 20 2i0 26 27 2 2 20 P 2 20 2t 26 27 2 20 2t
Random Features # Random Features # Random Features # Random Features

Figure 8: Ablation with different number of random features for the Cosine-SNNK-pooler experiments on the

GLUE dev set. Bert — Pooler baseline is from (2019).

MNIST

97.5 —B— SNNK
=== Baseline 0.05
70 PO 2 27 2
000

02
Random Features 0 5 10 15 20 25 Cifar-10 SST-2 RTE MNLI MRPC QNLI QQP STSB COLA
Dataset

Figure 9: Ablation results for MNIST dataset. Left : Accuracies of SNNK-MLP for different
number of random features. Middle : Training losses for the corresponding models on MNIST
training set. Right : Starting with pretrained Pooler weights produce better results than randomly
initialized layer for both image and text datasets.

H.6 UPTRAINING EXPERIMENTS

We use 8 random features, AdamW optimizer and linear learning schedule with warmup of 6% of
the total optimization steps for all uptraining experiments. For the larger GLUE datasets (SST-2,
MNLI, QNLI, QQP) we use a weight decay of .0001 and for the smaller datasets we use a weight
decay of .1 and a gradient clipping of 1. For image datasets, we use a weight decay of .001. We train
for 5-20 epochs depending on the dataset, and selecting the best model based on validation loss.

I ABLATION STUDIES

In this section, we present additional ablations in different experimental settings. Figure[9](Left and
Middle) shows accuracy on MNIST test set and the training curves for SNNK-MLP for different
number of random features.

We also show the importance of starting with the pretrained pooler weights over a randomly ini-
tialized layer. Our results show that the initial features coming from the pretrained pooler weights
produce better results on a wide range of text and image datasets.

Finally we present detailed ablations on the number of random features for pooler experiments on
the Glue tasks (see figure|[g).

J ADDITIONAL EXPERIMENTS

We show some additional experiments with different SNNK layers on various tasks.

J.1 POOLER EXPERIMENTS

In this section, we present additional pooler experiments using a linearization of the tanh kernel as
well as pooler experiments for vision transformers.

20

Published as a conference paper at ICLR 2024

POOLER CIFAR-10

95.06% 95.18% 87

©
o

POOLER CIFAR-100

86.32%

o
B

86.12%

Accuracy

o
N

o
o

Baseline SNNK Baseline SNNK

Figure 10: Results on linearized pooler experiments on CiFar-10 and CiFar-100.

J.1.1 EXPERIMENTS USING BRUTE FORCE LINEARIZATION OF TANH

Since tanh is the activation function used in pooler layers, we compute the linearization of the tanh
layer via the method sketched in Appendix [C:1] The sparse features produced by this kernel makes
learning difficult and produces poor performance (see table [3). This result motivates the need for
novel techniques that is developed in this work.

Table 3: Tanh-SNNK experiments on some GLUE benchmarks. The baseline numbers for BERT-
base are from (Lee et al.,[2019). MCC score is reported for CoLA, F1 score is reported for MRPC,
Spearman correlation is reported for STSB, and accuracy score is reported for RTE. All results are
an average of 5 seeds.

Dataset RTE MRPC STSB COLA

Bert-baseline 57.5 81.5 78.1 29.4
Tanh-SNNK-pooler 52.08 68.71 63.49 20.72

J.1.2 LINEARIZING THE POOLER LAYER IN VISION TRANSFORMERS

Vision Transformers introduced by (Kolesnikov et al., [2021)) introduces a [CLS] token which can
be used for image classification. Like BERT, ViT also has a pooling layer (a linear layer with tanh
activation) that is applied to the representation of the [CLS] token coming from the final transformer
layers. One can similarly use that representation for image classification. In that setting, we apply
our linearization of the pooler layer.Our method matches the baseline accuracy on Cifar 10 and
outperforms on Cifar-100 (see figure[I0).

J.2 SNNK-ADAPTER EXPERIMENTS

We present additional experiments on GLUE benchmarks using a Cosine-SNNK adapter layer. Even
though sinusoid activation is not common in Transformers or adapters, we see that they perform rel-
atively well beating the baseline on 4 out of 8 tasks while using only 1/3 of the training parameters.

Table 4: Cosine-SNNK experiments on GLUE benchmarks. The adapter baseline numbers are
from (Moosavi et al} [2022). MCC score is reported for CoLA, F1 score is reported for MRPC and
QQP, Spearman correlation is reported for STSB, and accuracy scores are reported for the other
tasks. All results are an average of 5 seeds.

Dataset RTE MRPC QNLI QQP SST-2 MNLI STSB COLA

Bert-Adapter-baseline 63.83 84.8 90.63 88.12 91.74 83.53 88.48 56.51
Cosine-SNNK-Adapter 64.77 85.06 88.67 86.471 91.97 79.28 88.57 52.12

J.3 TRAINING A BUNDLED NETWORK
We present proof-of-concept experiments on training using a bundled network. We use the setting

of finetuning a BERT-based model where the pretrained transformer layers are frozen and only the
pooler and classifier layers are tuned.

21

Published as a conference paper at ICLR 2024

Linear

i

FFN SNNK based SNNK Bundied

Figure 11: FFN and SNNK adapted FFN layer of BERT and ViT.

We linearize the pooler layer and combine it with the classifier layer to train a matrix W of size
(# random features x # classes), resulting in a dramatic drop in training parameters. We maintain
competitive performance while using 1024 random features thus training approximately 1/30 of the
number of parameters of the baseline model which trains both the pooler and classifier head. We
also train a linear probe, where the pooler is also frozen and only the classifier head is trained. The
results are presented in table[3}

We would like to emphasize that these results are remarkable, particularly on large datasets like
MNLI, where we are only about 2.7 points off the top row despite being about 1/30th smaller. Our
results also show that the BERT representations generally can not linearly separate the downstream
classes. Our novel methods introduce non-linearities without many additional parameters allowing
for implicit construction of complicated decision boundaries. Moreover, our bundled networks can
be trained stably at very high learning rates up to 2e-2, allowing them to converge rapidly.

STSB dataset is a regression task and as explained in sec we have a closed form formula for W
in that case. We computed the features of the BERT vectors via our random feature mechanism and
calculated the coefficients of the linear regressor using the closed form formula, which gives us a
Spearman correlation of 67. The entire fitting and evaluation takes barely a few seconds on a CPU.
We get the same result when we import the linear regression function from sklearn.

On Cifar-10 and CiFar-100, we achieve an accuracy of 95.8 and 82.73 respectively, closely matching
the baseline results.

Table 5: Bundled-SNNK experiments on GLUE benchmarks. MCC score is reported for CoLA,
F1 score is reported for MRPC and QQP, Spearman correlation is reported for STSB, and accuracy
scores are reported for the other tasks. All results are an average of 5 seeds.

Dataset # Training Parameters RTE MRPC QNLI QQP SST-2 MNLI STSB COLA
Pooler + Classifier (Lee et al.|[2019) ~ 59k 57.5 81.5 745 T72.0 849 56.4 781 294
Linear Probe ~ 1k 57.76 81.23 69.18 62.22 83.02 434 69.87 35.41
Bundled-final-layers (ours) ~ 2k 60.01 8148 72.21 70.19 8297 53.69 71.84 32.79

J.4 UPTRAINING TRANSFORMERS

In this section we provide experimental details and results on how SNNKSs can be used to replace
certain FFN blocks in Transformers. It is well-known that the FFN blocks account for more than
half of the training parameters and the storage size. If d is the hidden size of the transformer, the
FFN block consists of 2 linear layers, one taking the input representation of dimension d to 4d
with GELU non-linearity and the other taking the intermediate representation down to dim d. Our
aim here is to replace the first expansion linear layer with non-linearity by a small SNNK layer
employing only 8 random features (Figure[TT). After we have trained a model, we can bundle the
SNNK with the following linear layer entirely bypassing these large FFN blocks. In particular, we
replace f(x) = Gelu(zWy +by) Wy + ba, where Wy, W € R4 with f/(x) = ¢p(x) AT Wy + b,
where A = (W1,b1). In our settings d = 768 and number of random features is 8. Thus A is of
size 8 x 4 * d. As described by our bundling process, for forward pass, A7 W, can be precomputed
into a matrix of size d x 8 to save further memory and computational cost.

For both image and sequence classification tasks, we replace the top k& FFN layers of BERT and ViT
models by SNNKs using the procedure described above. Each successive replacement of FFN layer
with SNNK leads to reduction of both number of parameters and flop count (see Table[6). The flops

22

Published as a conference paper at ICLR 2024

RTE 95 95 95
70 * MRPC ONLI * QepP
z % ././'\-/.”. * 5% .__./-——'/r‘- %
@ 60 g —a—— " %
E 85 585 085
g
<30 —m— SNNK-Bundle 80 —m— SNNK-Bundle <80 —=— SNNK-Bundle 80 —m— SNNKBundle
k- Finetuned BERT s Finetuned BERT k- Finetuned BERT k- Finetuned BERT
40 75 75 75
70 80 90 100 110 70 80 90 100 110 70 80 90 100 110 70 80 90 100 110
Inference Parameters (x10°) # Inference Parameters (x10°) # Inference Parameters (x10°) # Inference Parameters (x10°)
95 90 90 70 COLA
SST—-2 STSB
./.——I/./._A * ik = x *
90 85 85 60

McCC

./-/'/'/._.*

@
S

50

Accuracy

@
S

Spearman Corr.

—=— SNNK-Bundle —m— SNNKBundle —=— SNNK-Bundle -~ SNNKBundle
k- Finetuned BERT k- Finetuned BERT - Finetuned BERT k- Finetuned BERT
80 75 75 40
70 80 90 100 110 70 80 90 100 110 70 80 90 100 110 70 80 90 100 110
Inference Parameters (x10°) # of Inference Parameters (x10°) # Inference Parameters (x10°) # Inference Parameters (x10°)

Figure 12: Uptraining experiments using BERT on GLUE benchmark. MCC score is reported for CoLA,
F1 score is reported for MRPC and QQP, Spearman correlation is reported for STSB, and accuracy scores
are reported for the other tasks. Full column corresponds to full finetuning and the BERT results are sourced
from (Pfeiffer et al., [2020)

-
o
s}

©
=3

CIFAR=10 * ./j:i‘.l/oo/. *

©
o

Accuracy
Accuracy
@
3

©
o

—m— SNNK-Bundle —m— SNNK-Bundle

~h- Finetuned ViT - Finetuned ViT
85 70
40 50 60 70 80 90 40 50 60 70 80 90
Inference Parameters (x10°) # Inference Parameters (x10°)

Figure 13: ViT uptraining results on CIFAR-10 and CIFAR-100.

are counted using an batch size of 64 with a sequence length of 128 for BERT models and using a
batch of 32 images for the ViT models. Note that we can substantially reduce the size/flop counts
during inference due to our novel bundling process. In fact, with 6 layers bundled, the BERT size
is 226.71 MB down from 440, and for ViT, it is 176.42 Mb down from 346 Mb (almost a 50%
reduction). We plot the change in accuracy as the model size and flops decrease Figure [I2] The
notable reduction in model size and FLOPs comes with only a slight decrease in accuracy.

On a free Google Colab, running a batch size of 64 with a sequence length of 128, it takes our
SNNK-BERT .32 secs compared to .44 seconds to the original BERT model. For SNNK-ViT, it
takes .26 seconds to run inference on a batch of 32 images whereas ViT takes .33 seconds.

Table 6: Detailed analysis of parameters and flops of bundled transformers.
Model Full 12 11 10 9 8 7

Training parameters (millions) 110 107 100 93 8 79 72
BERT # Inference parameters (millions) 110 104 97 90 83 76 69

Training Flops (billions) 716 697 678 659 640 620 601

Inference Flops (billions) 716 677 639 600 561 523 484

Training parameters (millions) 86 84 77 70 63 55 48
ViT # Inference parameters (millions) 86 81 74 67 60 53 46

Training Flops (billions) 563 548 533 519 504 489 475

Inference Flops (billions) 563 533 503 474 444 414 384

K DETAILED COMPARISONS WITH ADDITIONAL BASELINES

We present detailed comparisons our SNNK-inspired adapter methods with different SOTA pa-
rameter efficient finetuning (PEFT) methods. In table[7} results for BiTFit, Adapter, AdapterDrop,
LoRA, Transformer-probing, LoRA-Fix, LayerNorm Tuning, LePE Tuning, RPB Tuning, KAdap-
tation are from He et al.|(2022b), Visual Prompt Tuning results are from [Jia et al.|(2022) and that of
AdaptFormer are from [Chen et al.| (2022)). Adapter (Houlsby) is a baseline trained by us that uses
the Houlsby configuration as described in (Pfeiffer et al., 2020). Our SNNK-inspired adapters per-
form competitively amongst various parameter efficient methods. RELU-SNNK-Adapter* model
has a pooler layer but it is kept frozen, while RELU-SNNK-Adapter does not use a pooler layer as
is commonly the case with ViTs.

23

Published as a conference paper at ICLR 2024

Table 7: Comparisons with SoTA parameter efficient methods for Vision Models.

Training Parameters

Methods .o Cifar- 10 Cifar-100
(in millions)

Full Finetune 85 98.95 91.67
BitFit .36 92.3 81.0
Adapter (Houlsby) 1.8 99.1 91.2
Adapter 1.51 98.4 90.6
AdapterDrop 17 96.8 88.4
LoRA .22 98.7 90.6
Transformer-probing 3.2 96.5 86.9
LoRA-Fix .15 96.2 88.3
LayerNorm Tuning .08 92.2 71.7
Attention Tuning 28.41 93.9 85.7
LePE Tuning A7 93.7 90.8
RPB Tuning .15 96.7 87.0
KAdaptation A1 97.9 91.2
Visual Prompt Tuning .08 - 90.97
AdaptFormer-64 1.26 - 91.86
ReLU-SNNK-Adapter* .3 98.87 92.11
ReLU-SNNK-Adapter .3 98.2 91.1

We now present baselines for PEFT methods for the GLUE tasks. The training parameters in the
table refer to the additional training parameters injected to the frozen transformer models. Bit-
Fit results are taken from [Zaken et al.| (2022), Adapter (Houlsby and Pfeiffer) from Pfeiffer et al.
(2020). For the Lora baseline, we ran our own experiments using the same Lora hyperparameters

for Roberta-base (Hu et al., [2022).

Table 8: Comparisons with SoTA parameter efficient methods on GLUE benchmarks. MCC score
is reported for CoLA, F1 score is reported for MRPC and QQP, Spearman correlation is reported for
STSB, and accuracy scores are reported for the other tasks. Final classifier parameters are not used
for counting the total number of training parameters.

Training Parameters

Dataset (in millions) RTE MRPC QNLI QQP SST-2 MNLI STSB COLA
Full Finetune 110 66.2 90.5 91.3 88.3 926 84.1 88.8 59.5
Adapter-baseline (Moosavi et al.}[2022) 9 63.83 84.8 90.63 88.12 91.74 83.53 88.48 56.51
Adapter (Houlsby) 1.8 69.8 915 91.2 88.6 928 84.1 89.2 59.1
Adapter (Pfeiffer) 9 70.8 89.7 91.3 88.2 90.2 84.1 89.0 58.9
Adaptable Adapter (Moosavi et al.|[2022) 64.25 85.09 89.96 88.09 91.31 82.89 88.25 51.44
LoRA 3 72.5 90.1 91.5 88.5 92.7 84.1 89.1 59.2
BitFit 1 72.3 90.4 90.2 84.0 92.1 82.2 89.2 58.8
Relu-SNNK-Adapter 3 69.68 91.26 90.44 85.82 92.31 82.06 88.81 58.21

24

Published as a conference paper at ICLR 2024

L USING POLYNOMIAL KERNELS FOR BRUTE FORCE CONSTRUCTION OF
RANDOM FEATURES

Kar & Karnick|(2012) constructs random features for kernels of the form K(z, y) = f(xy "), where
f has a power series expansion of the form f := 3" a,z", and a,, > 0. This can be easily extended
to the case where f does not necessarily have positive Taylor coefficients. Write f as f := f1 — fo,
where f1 and fy have positive coefficients, and K(x,y) = K;(z,y) — Ka(x, y). Each K; admits
a random feature mechanism ®; and thus K(z,y) ~ [®(z)|®2(x)][®1(y)] — P2(y)] " where |
refers to concatenation of 2 vectors along their columns. The approximation error can be bounded
by the sum of the approximation errors for each factor. We refer to this construction as the brute
force variant.

L.1 EXTENDING POLYNOMIAL KERNELS TO TANH

Tanh is an odd function so a,, = 0, if n is even. Moreover, the non-zero terms alternate in sign, i.e.
>0, ifn=1(mod4)
an { <0, ifn=3(mod4)
=0 otherwise
Splitting it up in 2 power series with the positive and negative terms produces extremely sparse
kernels ®;, and this is due to the external measure used in (Kar & Karnick, 2012). Even with
rejection sampling, i.e. essentially sampling only odd terms still produces sparse kernels. This
becomes a bottleneck in the pooler experiments where most of the accuracies are contributed by the

pretrained features and applying a sparse kernel distorts them. We use the same random Rademacher
matrices for construction of both K; and K5 as it reduces the variance (Choromanski et al., [2022).

Table [3] shows some results using the above kernel for the pooler experiments. The results are
considerably worse for larger datasets. This negative results show the need for developing novel
techniques discussed in this paper.

M FOURIER TRANSFORMS OF SOME COMMONLY USED ACTIVATION
FUNCTIONS

In this section we compute the Fourier Transform of some well-known activation functions.

M.1 SINE

Sine activation was used by [Sitzmann et al.|(2020). This is well-known and is given by :
i 1 1

[B(k+ o) —d(k =)] (24)

FTsin(2))(k) = 5 o o

where § is the Dirac delta distribution.

M.2 COSINE

The Fourier transform of cosine is well known and is given by
1 1 1
FT k)=Z[0(k+ —)+(k— — 25
cos(@)](k) = 500k + 5) +8(k =) @s)

Note that the Fourier transform is real as cosine is an even function.

M.3 RELU
The Fourier transform of RELU function is not well behaved. So one can use a smoothed version of

RELU and compute it’s Fourier transform instead. This method is employed in (Bresler & Nagarajl,
2020). In fact our method can be seen as a generalization of the results presented in the above paper.

25

Published as a conference paper at ICLR 2024

N LIMITATIONS

The key ingredient in the computation of URFs is the computation of the Fourier Transform (FT) of
the activation function. However, the FT of some of the activation functions used in practice is not
well-behaved, e.g. ReLU, see (Bresler & Nagaraj, [2020) for the derivation of the FT of a “smooth”
truncated ReLU. Smoothing and truncating the function incurs an error.

Furthermore, approximating regular feedforward layers with random feature techniques incurs other
errors that might propagate from one SNNK layer to the next SNNK layer (see Section [B] for a
detailed discussion).

As we can see from Section replacing multiple layers of FFL with SNNK results in a trade-off
between accuracy and efficiency. This trade-off is a limitation of our current work and an open
question for future research.

Even though the approximation of the kernel may depend on the L' integrability/smoothness of the
activation function, we noticed that in practice taking a proxy function to simulate the kernel and
learning the weights work well as long as they are not ill-conditioned (i.e. not too spiky or sparse).

26

	Introduction
	Related Work
	Scalable Neural Network Kernels (SNNKs)
	Universal Random Features (URFs)
	Beyond regular FFLs: the curious case of the ReLU-SNNK layer
	Bundling neural networks with SNNKs

	Experiments
	Pointwise Kernel Estimation
	Toy Experiments
	Finetuning Experiments
	Linearizing the Pooler Layer in Transformers
	SNNK-inspired Adapter Layers

	Uptraining Transformers
	Experiments on UCI datasets

	Conclusion
	Towards URFs: additional intuition
	Propagation of the Error over the Network
	SNNK Layers and Relation to Linearization of 2-layer Neural Networks
	SNNK-inspired Adapter Blocks
	Bundling the Pooler and the Classifier Layers
	Datasets
	Experiments
	Additional Details on Toy Experiments
	QPNN
	Siren
	Classification on MNIST

	Experiments on Linearizing the Pooler Layer in Pretrained Transformers
	Experiments on SNNK-inspired Adapters

	Hyperparameters
	Adapter Finetuning
	Pooler Finetuning
	Experiments on Bundled Networks
	Toy Experiments
	UCI Experimental Details
	Uptraining Experiments

	Ablation Studies
	Additional Experiments
	Pooler Experiments
	Experiments using Brute Force Linearization of Tanh
	Linearizing the Pooler Layer in Vision Transformers

	SNNK-Adapter Experiments
	Training a Bundled Network
	Uptraining Transformers

	Detailed Comparisons with additional baselines
	Using Polynomial Kernels for Brute Force Construction of Random Features
	Extending polynomial kernels to tanh

	Fourier Transforms of some commonly used activation functions
	Sine
	Cosine
	Relu

	limitations

