
Under review as a conference paper at ICLR 2022

A KOOPMAN APPROACH TO UNDERSTANDING
SEQUENCE NEURAL MODELS—
SUPPLEMENTARY MATERIAL

Anonymous authors
Paper under double-blind review

A UNIGRAM AND BIGRAM HIGHLIGHTING IN SENTIMENT ANALYSIS

Several examples of reviews in which the positive and negative unigrams are highlighted by the
projection magnitude of the hidden states are shown in Fig. 1. In particular, we note the first negative
review, where the network decreases the projection magnitude when it identifies a positive word
(excellent), and the magnitude increases significantly when the word bad appears. To further
assess the eigenvectors role in identifying positive and negative unigrams in the reviews, we perform
the following statistical evaluation. We employ a Bag Of Words (BOW) algorithm on the vocabulary
to classify the sentiment on the word level. Using the BOW classification, we extract the positive and
negative words from each review, and we compute how many of these words attain high projection
magnitude values. Specifically, given a batch H , we compute the following averages

ap(H) =
1

|Tp|
∑
t∈Tp

bs(1, ht)e , an(H) =
1

|Tn|
∑
t∈Tn

bs(3, ht)e , (1)

where s(j, ht) = |ĥt(j)| ∈ [0, 1] is the projection magnitude of the state ht onto the eigenvector uj ,
Tp and Tn are the indices of positive and negative elements, respectively, and the operator b·e rounds
a number to the closest integer. Thus, ap(H) and an(H) hold the average of positive and negative
words whose projection magnitude is a at least .5 or higher. Consequently, we can view Eq. (1) as
the percentage of identified positive and negative unigrams. We show in Fig. 5 histograms of ap(H)
and an(H) over the entire test set. We find that on average, 62.3% and 74.0% of the positive and
negative words, respectively, are identified correctly by the eigenvectors. These statistics support
and reinforce our observation about the role of the eigenvectors in counting positive/negative words.

B THE CASE OF GENERAL n-GRAMS FOR n > 2

In addition to unigram and bigram highlighting, we also consider KANN in the general case of n-
grams where n > 2. We note that n-grams with large n are less common in sentiment analysis, both
from a semantic perspective (what would a 5-gram mean?) and also from a statistics viewpoint (e.g.,
even 2-grams are scarce in the IMDB dataset). Nevertheless, we would like to show in the following
that KANN indeed extends to the general case, and we test our method on 3-gram phrases. To this
end, we created a batch of 3-grams by adding amplifiers to 2-grams, e.g., “not bad” was changed to
“not extremely bad” or “not very bad” and etc., and we repeated our analysis. Specifically, we extract
a batch H ∈ Rk×n×m and obtain an operator C. Then, we project the batch on the eigenvectors as
described in Eq.(10) for each j eigenvector of C while we sum over time and average over batch:

ξj(H) =
1

k

∑
h∈H

∑
t∈Th

s(j, ht) (2)

where each h ∈ H is a sequence of hidden states corresponds to an example in the batch, k is the size
of the batch and Th are the indices of the sequence. We sort ξ(H) from high to low values to better
visualize the importance of the Koopman eigenvectors and their ordering. We plot the resulting
graph in Fig. 2 where a hierarchical behavior is shown, and each group of eigenvectors have a
different role. The first group with labels [3, 2, 4, 5] with the highest projection values captures 1-
grams as discussed in the main text. The second group with labels [6, 7] encodes 2-grams, and the
third group with labels [10, 9] encodes 3-grams as we show in Fig. 3. Specifically, using the same

1

Under review as a conference paper at ICLR 2022

method we described in the main text, we obtain highlighting of 3-gram components in the review
when projected onto eigenvector 10. Importantly, in our analysis on 3-grams we did not re-train
the network. Rather, we simply created a batch with 3-gram components and analyzed the results
obtained with KANN.

C SHUFFLED REVIEWS

We will consider the following two reviews: “not bad and very good” and “very bad and not good”.
These reviews serve as a great example to understand the behavior of the network as they contain
the same words in a different order, and the overall meaning is opposite. Considered from a linear
dynamical systems viewpoint, these reviews seem to pose a challenge: given that the tokens are the
same but in a different order, how will a linear system be able to distinguish between them? Indeed,
assuming a linear system in the space of tokens would be problematic in this case. However, we
would like to emphasize that our main claim in the paper is that the dynamics in the latent space are
sufficiently linear to allow for Koopman analysis. As the network is recurrent and nonlinear, and
the tokens are processed one-by-one, the above reviews can be distinguished in practice while not
breaking the linearity in the latent space. Specifically, each of these reviews is embedded completely
differently. The first example starts with the word “not”, whereas the second example starts with the
word “very”. In practice, the network embeds these latent states in completely different locations
of the latent space. Moreover, the embedding of the other states are related to the initial locations.
Thus, in practice, the network has two completely different trajectories for the example reviews in
discussion. From a (linear) dynamical systems perspective, we have two trajectories of different
initial conditions. Such cases can be typically differentiated and identified using linear dynamical
systems.

To show it numerically, we generated these two reviews (five words each), and we repeated our
analysis. Specifically, we projected their latent trajectories (as obtained from the network) onto
the first two dominant PCA modes (as was done in Maheswaranathan et al. (2019)), and we report
the obtained paths in Tab. 1. Keeping in mind that the network is mostly one-dimensional in a
PCA representation, the above paths clearly show that the reviews are correctly classified. Namely,
the first review starts in the negative part of the x-axis (−0.716) and finishes in the positive part
of the x-axis (0.713). In comparison, the second review starts in the positive part of the x-axis
(1.478) and finishes in the negative part of the x-axis (−0.572). Computing the paths using our
KANN representation via the matrix C, we obtain the paths reported in Tab. 1. While the values
are different (as our linear approximation exhibits some error), the initial positions and trend are
the same for the nonlinear representation and our Koopman linear representation. In particular, the
trajectories end on the same side of the x-axis for each review, exactly as we have in the nonlinear
network.

“not bad and very good” “very bad and not good”

Time Network KANN Network KANN

t = 1 (−0.716, 0.547) (−0.284, 0.649) (1.478, 0.355) (1.094, 0.522)
t = 2 (−1.080, 0.280) (−0.589, 0.612) (0.313, 0.078) (0.128, 0.619)
t = 3 (−0.440), −0.093) (0.003, 0.479) (0.392, −0.282) (0.335, 0.503)
t = 4 (0.807, −0.319) (0.708, 0.419) (−0.895, −0.311) (−0.530, 0.571)
t = 5 (0.713, 0.036) (0.598, 0.474) (−0.572, −0.291) (−0.237, 0.542)

Table 1: The nonlinear network as well as our linear representation are able to differentiate between
the reviews “not bad and very good” and “very bad and not good”, and to correctly classify them.
Specifically, we show the trajectories of the hidden states as obtained from the network and our
method when projected to the first dominant PCA modes. The results above show similar initial
conditions and trend, i.e., both start and end on the same side of the x-axis. We conclude that the
network learns a representation which is sufficiently linear in the latent space, allowing to methods
such as ours to expose its dynamics.

2

Under review as a conference paper at ICLR 2022

Positive unigram reviews:

Negative unigram reviews:

Bigram reviews:

Figure 1: Several examples of highlighted unigrams and bigrams.

3

Under review as a conference paper at ICLR 2022

3 2 4 5 6 7 10 9
Eigenvector index

10−2

Pr
oje

cti
on

 va
lue

1-grams
2-grams
3-grams

Figure 2: Projecting the batches of reviews onto the Koopman eigenvectors as specified in Eq. (2)
reveals a hierarchical ordering where subspaces of eigenvectors attain different roles. In particular,
the first group of eigenvectors colored blue and with indices[3, 2, 4, 5] highlights 1-grams. Similarly,
the second group of eigenvectors with the orange color and indices [6, 7] identifies 2-grams. Finally,
the last group in green with indices [10, 9] highlights 3-grams. We note that a similar structure was
identified across different batches.

Figure 3: Projecting the hidden states to eigenvector 10 highlights 3-gram components, similarly to
the highlighting of 1-grams and 2-grams in Fig. 1.

4

Under review as a conference paper at ICLR 2022

D PROJECTING NORMAL BEAT SIGNALS ONTO PCA COMPONENTS

In Sec. 4.2 in the main text, we discover that the dominant Koopman eigenvectors are capable of
identifying the salient features in the beat signals (marked by dashed black lines in Fig. 4). To com-
pare our results with PCA and KernelPCA (using rbf kernel), we now repeat the same experiment,
but instead of projecting onto Koopman modes, we project the hidden states H to the first four PCs
and first four eigenvectors of the centered kernel matrix respectively. We provide both qualitative and
quantitative comparison with both methods. Fig. 4 shows the resulting graphs, clearly demonstrating
that PCA and KernelPCA fail to encode the dynamics. In Tab. 2 we provide a quantitative compar-
ison of our method to PCA and KernelPCA. Specifically, for every method, we compute the mode
with the minimal distance to the salient features located at times t = 3, 35 ≤ t ≤ 75, t = 103 and
t = 133. The results clearly show that KANN attains the lowest error for each of the salient features.

Method t = 3 35 ≤ t ≤ 75 t = 103 t = 133

PCA 1.5817 1.2197 0.3356 1.1685
KernelPCA 0.0762 1.1045 0.4095 0.7217
KANN 0.0317 0.5107 0.1724 0.0871

Table 2: For every salient feature at times t = 3, 35 ≤ t ≤ 75, t = 103 and t = 133,
we compute the distance between the signal and its reconstruction using the principal modes of
PCA, KernelPCA and KANN. Our approach exhibits the minimal error in comparison to PCA and
KernelPCA.

Figure 4: We show the first four principal modes of KANN (solid lines), PCA (dashed lines), and
KernelPCA (dotted lines). The above graphs show that our method is better at matching the
salient features of beat signals which are marked by black dashed lines in comparison to PCA and
KernelPCA. We conclude that the network mainly focuses on reconstructing these salient features,
allowing the user to easliy distinguish between normal and anomalous beats during post-prcoessing.

E DIFFERENT BASIS AND NETWORK ARCHITECTURES

Choice of basis. We will now demonstrate the robustness of our approach to the choice of basis.
The first step to computing the matrix C involves the projection of the given states onto a basis.
In our work, we mostly experimented with the truncated SVD modes obtained by decomposing the
hidden states tensor. In what follows, we additionally show that the principal component analysis
(PCA), and Fourier transform (FFT) bases lead to quantitatively similar results on the sentiment

5

Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
average of identified unigrams

0

10

20

30

40

50

#b
at

ch
es

positive
negative

Figure 5: The above histograms show the average percentage of identified positive (blue) and nega-
tive (orange) unigrams per batch. It follows that negative words are better identified by the network
(74.0%) in comparison to positive words (62.3%).

analysis task. We note that while the bases are linear in terms of projection, SVD and PCA are data-
driven, whereas FFT is data-agnostic, i.e., the basis elements are independent of the data. First, we
compute the relative error as in Sec. 4.4, and we obtain 0.0347, 0.0347, 0.973 for SVD, PCA, and
FFT, respectively. The somewhat poor result of FFT is expected, as it is data-agnostic. Second,
we compare the dominant eigenvalues of the different C matrices computed using the bases. It
follows that across all bases, the dominant eigenvalues correspond to one another. In particular,
the average error between corresponding eigenvalues is 0.003 for PCA, and 0.02 for FFT, when
measured from the eigenvalues of SVD. We additionally plot the dominant eigenvalues in Fig. 7
where the x-axis is the real part, and the y-axis is the imaginary part. Finally, we also show how the
dominant eigenvectors have the same semantic role in highlighting the positive words in the same
review. Indeed, we show in Fig. 6 that the positive words obtain large projection magnitudes in all
bases. See the words e.g., amazing, special, good. Overall, the results show robustness to
linear bases.

Using SVD:

Using PCA:

Using FFT:

Figure 6: Computing C using SVD, PCA, and FFT yield eigenvectors with the same semantic role.
Indeed, projections using different bases highlight various positive words in the same review.

6

Under review as a conference paper at ICLR 2022

Figure 7: We show the dominant eigenvalues of various C matrices in the complex plane (Re, Im).
Most of the eigenvalues correspond when different bases such as SVD, PCA, FFT are used (left).
Similarly, using recurrent components such as RNN, LSTM, GRU leads to related spectra (right).

RNN model:

LSTM model:

Figure 8: Examples of highlighted unigrams obtained from the trained RNN and LSTM models.

Results extend across architectures. In addition to robustness to the basis, we also verify that
our results qualitatively extend across different architectures. Specifically, we trained a vanilla re-
current neural network (RNN) (Elman, 1990), a long short term memory model (LSTM) (Hochreiter
& Schmidhuber, 1997), and a gated recurrent unit (GRU) network on the sentiment analysis problem.
Then, we extract a single batch from the test set, and evaluate our KANN approach on the trained
models. We find that our analysis yields similar results in all cases. In particular, the dominant
eigenvalues of each of the models attain related values as can be seen in Fig. 7 (right). Moreover,
we find that the dominant eigenvectors share the same role of highlighting positive and negative
unigrams. To verify this, we computed the histograms of identified positive and negative words as
in Fig. 5. We observe that on average 62%, 76%, and 62% positive words are discovered by the
projection magnitude of the RNN, LSTM, and GRU models. Similarly, the negative unigrams are
highlighted in an average of 55%, 83%, and 74% for RNN, LSTM, and GRU. Indeed, there is a large
variation in the statistics of the models, where LSTM obtains the best averages, followed by GRU,
and RNN is last. Nevertheless, in all cases, the average identification of unigrams is above 50%, and
given that BOW is noisy by itself, we believe these statistics are qualitatively similar. In addition, we
plot in Fig. 8 a few examples of highlighted reviews obtained with the models.

7

Under review as a conference paper at ICLR 2022

F RESULTS ON THE COPY TASK

The copy task was designed to test the memory retaining capabilities of recurrent units (Hochreiter
& Schmidhuber, 1997). In this task, the network is expected to memorize the first few characters in
the input array and copy them to the end of the output vector which is otherwise filled with blanks.
For instance, the input-output structure reads 928---:-- 7→ϕ ------928, if the model is
required to remember three digits across three blanks. Thus, the challenge increases with more digits
to remember and when the amount of blanks is higher. We trained a dtriv architecture (Casado,
2019) on the copy task with three characters to remember and 30 blanks for 500 iterations. The
dtrivmodel is similar to a vanilla RNN with the exception that its hidden-to-hidden transformation
is orthogonal. The network converges to an accuracy of 100% on the training and test data as it is
a relatively easy setting. The following analysis is based on a test batch of size 32, yielding a states
tensor H ∈ R32×36×48 where the middle dimension is the sequence length, and the last dimension
is the hidden state size.

The latent structure of the copy task is measure-preserving. Our first analysis result deals with
the geometric structure of the learnt dynamics. Before discussing our results, we make the following
three observations. First, the copy problem with its unknown dynamics ϕ which maps inputs to
outputs, is isometric. Indeed, for many choices of norms, e.g., L2, it follows that d(x1, x2) =
d(y1 = ϕ(x1), y2 = ϕ(x2)) where x1, x2 are two input vectors, and y1, y2 are two output vectors.
Thus, ϕ belongs to the class of measure-preserving dynamical systems. Second, while dtriv
uses orthogonal hidden-to-hidden matrices, the overall network transformation is not necessarily
isometric due to the nonlinear activation layers. Indeed, the analysis in (Arjovsky et al., 2016)
which also applies to dtriv only establishes an upper bound on the gradient norms, and there is
no lower bound. In practice, since dtriv uses modReLU (Arjovsky et al., 2016), it may cause a
non-isometric transformation to the latent space. Third, Koopman theory establishes a connection
between the algebraic properties of the linear operator to the geometric structure of the dynamics
as we show next. The following result is not novel (Eisner et al., 2015), but we prove it below for
completeness.

Proposition 1 Let ϕ be an invertible measure preserving dynamical system on a compact, inner-
product domainM. Then its associated Koopman operator is unitary.

Proof. Let ϕ : M → M be a map on the compact, inner-product space M. We denote by µ
the continuous measure onM, and its induced metric ‖z‖. The map ϕ is measure preserving, i.e.,
µ(ϕ−1A) = µ(A) for every measurable set A ⊂ M. Let Kϕ be the Koopman operator of ϕ acting
on the function space of square integrable function L2. Given the indicator function 1A for the set
A, we have that

Kϕ1A(z) = 1A(ϕ ◦ z) = 1ϕ−1A(z) ,

and thus ∫
M
Kϕ1A dµ = µ(ϕ−1A) = µ(A) =

∫
M

1A dµ .

Moreover, positive functions converge to a representation using simple indicator functions. Conse-
quently, we have that

∫
MKϕf dµ =

∫
M f dµ for general f ∈ L2 since it can be written as the

difference of the integrable negative and positive components of f .

The Koopman operator is linear and it is pointwise multiplicative, i.e., Kϕ(αf + βg) = αKϕ(f) +
βKϕ(g) and Kϕ(f g) = Kϕ(f)Kϕ(g), where α, β ∈ R, and f, g ∈ L2. Due to these observations,
it follows that Kϕ preserves the inner product of functions, namely, for every f, g ∈ L2

〈f, g〉 =

∫
M
f g dµ =

∫
M
Kϕ(f g) dµ = 〈Kϕ(f), Kϕ(g)〉 .

Thus, the Koopman operator in this case is an isometry, since

d(f, g) = ‖f − g‖ = 〈f − g, f − g〉 12 = 〈Kϕ(f − g), Kϕ(f − g)〉 12 .

Finally, if ϕ is invertible then K∗ϕKϕ = KϕK∗ϕ where K∗ϕ is the adjoint operator, and thus Kϕ is
unitary.

8

Under review as a conference paper at ICLR 2022

Given H as specified above and its corresponding C, we find that C is approximately orthogonal,
i.e., CTC ≈ id. Specifically, the relative error |CTC− id|2/|C|2 = 0.0625. Our findings align with
prior work (Rustamov et al., 2013) which shows that approximate Koopman operators are approx-
imately orthogonal for measure-preserving maps. Therefore, although dtriv is not guaranteed to
learn a measure-preserving latent map, it does so in practice as our method reveals.

0

2

35

ĥ0

ĥt

ĥT

Eigenvectors span multiple digits in the copy task. Our second
analysis result on the copy problem focuses on the eigendecompo-
sition of C. We find that most of the eigenvalues, 44 out of 47,
are approximately unit length, i.e., |λj − 1| < 5e−2, which also
reinforces the above findings. Based on Eq. (9) it follows that the
eigenvectors of those eigenvalues have long memory horizons, e.g.,
τ = 418 for ε = 1e−1. This is well beyond the required memory
horizon for this task which is 30 as the number of blanks. Addi-
tionally, we find that all eigenvectors have the capacity to represent
several characters, depending on the root of unity they are multi-
plied with. Namely, computing the output of the state h̃ = Re(zvj)
for several z values, yields various digits. For instance, the inset
shows a specific eigenvector and its associated digits with their re-
spective span of the unit ball. We also plot in shaded dots the coefficients of a particular input over
time. Evidently, the shown eigenvector is responsible to output the blank part of the output since the
coefficients are located in the zero regime. Qualitatively similar results were obtained for the other
eigenvectors as we show in Fig. 9 the sets of digits for select eigenvectors. For instance, v6 spans the
digits {0, 5, 7}, depending on the root of unity zi we multiply with v6. Thus, the network essentially
splits the latent space onto digit regions. Then, given an input such as 928---:--, the network
generates its latent trajectory by carefully scaling the eigenvectors to point to the required output for
every time sample.

Quantitative results on the copy task. We briefly recall that RENN uses the hidden state tensorH
to generate a set of fixed points, i.e., points h∗ for which the dynamical system ht = F (ht−1, xt) is
stationary h∗ ≈ F (h∗, 0) (Sussillo & Barak, 2013). Then, they derive their analysis using the input
and recurrent Jacobians of F , J inp and J rec, evaluated at a single point (h∗, x∗ ≡ 0). We show in
Fig. 10 the resulting Jacobian matrices using RENN where J rec ≈ id matrix (left). This is actually
the expected result—as the blanks are mapped to zeros in this task, using x∗ ≡ 0 means we look
for fixed points h∗ related to a blank input. However, the output for a blank input should be blank
as well, and thus the hidden states converge to a section of the manifold which is indifferent to the
inputs. Indeed, in (Sussillo & Barak, 2013; Maheswaranathan & Sussillo, 2020; Maheswaranathan
et al., 2020), the authors discuss approaches to select input dependent initial points x∗, however,
it remains unclear how to avoid the above issue since any chosen point is related to a particular
potential input. For reference and comparison, we show in Fig. 10 (middle) the algebraic structure
of our C matrix.

To assess the information encoded in J rec and J inp vs. C, we perform the following experiment.
Let {ht} denote the nonlinear path of hidden states obtained from the copy task network. Given a

u2 u4 u6 u8

Figure 9: Every eigenvector in the copy task span multiple characters in the alphabet, allowing it
contribute to the propagation of the initial digits over the sequence.

9

Under review as a conference paper at ICLR 2022

certain threshold l = 1, ..., T , we split the path to two segments {ht}lt=1 and {BCkh̃l}T−lk=1. That
is, the first segment is simply the original states, and the second segment includes linear predictions
with Ck while always using hl. We denote by HKANN

l the union of the paths, i.e.,

HKANN
l = {h1, ..., hl, B Ch̃l, .., B CT−lh̃l} . (3)

For every admissible l, we generate HKANN
l , and we compute the accuracy obtained by the network

using the path HKANN
l . Fig. 10 (right) shows in blue the accuracy for the nonlinear path which is

simply 100%. We show in orange the accuracy obtained for several l/T values. The accuracy
results of KANN are extremely good, even when the percentage is high, i.e., most of the path does
not use the states provided by the network, but rather, their linear prediction. Further, we emphasize
that the orange point marks the percentage for three hidden states. That is, our method gets more
than 80% accuracy exactly when all the non-blank input digits are implicitly available in the states.
Therefore, our results highlight that C truly mimics the nonlinear dynamics as it is the minimal set
of necessary inputs for a meaningful prediction.

In comparison, RENN can be used in a similar fashion to generateHRENN
l using the following formula

hRENNt+1 := h∗ + J rec(h̄t − h∗) + J inpxt (4)

≈ h̄t + J inpxt , (5)

where h̄t can be the original ht or hRENNt depending on l, and the bottom formula is relevant when
J rec ≈ id matrix. The green curve in Fig. 10 shows the accuracy results of RENN. Due to the trivial
nature of J rec, RENN achieves zero accuracy in most cases, and it significantly improves when the
last three states become available (marked by the green point). Thus, RENN requires almost the
entire sequence of ground-truth hidden states to produce good accuracy measures in this scenario.

G TRAINING INFORMATION

In Tab. 3 we add details regarding the models training process across each architecture and task. In
the tasks column, SA, ECGC, and CT are acronyms for Sentiment Analysis, ECG Classification, and
Copy Task, respectively. In addition, we used weight decay regularization in both ECG classification
and Sentiment Analysis tasks.

REFERENCES

Martı́n Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, volume 48, pp. 1120–1128, 2016.

Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. In Advances
in Neural Information Processing Systems, pp. 9154–9164, 2019.

J rec J inp C

Figure 10: Computing RENN components for the copy task leads to an almost identity recurrent
Jacobian, |J rec−id| = 0.11 relative error. In comparison, our matrixC is approximately orthogonal
and it exhibits a diagonally-dominant structure. Our KANN approach attains good accuracy results
when used to predict the states path. See the text.

10

Under review as a conference paper at ICLR 2022

Table 3: The following hyperparameters per task and model were used during training.

Task Architecture #epochs #units Optimizer LR LR Scheduler Clip

SA RNN 7 128 Adam 5e−3 ExpLR, γ = 0.6 15
SA GRU 5 256 Adam 5e−3 ExpLR, γ = 0.5 15
SA LSTM 5 256 Adam 1e−3 ExpLR, γ = 0.3 5

ECGC GRU 150 64 Adam 1e−3 – −1
ECGC LSTM 150 64 Adam 1e−3 – −1

CT dtriv 500 48 RMSprop 1e−3 – −1
CT RNN 10k 64 RMSprop 5e−3 ExpLR, γ = 0.85 5
CT GRU 285 48 RMSprop 1e−2 – −1
CT LSTM 6.5k 48 RMSprop 5e−3 – 10

Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel. Operator theoretic aspects of ergodic
theory, volume 272. Springer, 2015.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Niru Maheswaranathan and David Sussillo. How recurrent networks implement contextual process-
ing in sentiment analysis. arXiv preprint arXiv:2004.08013, 2020.

Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. Re-
verse engineering recurrent networks for sentiment classification reveals line attractor dynamics.
In Advances in Neural Information Processing Systems, pp. 15696–15705, 2019.

Niru Maheswaranathan, David Sussillo, Luke Metz, Ruoxi Sun, and Jascha Sohl-Dickstein. Re-
verse engineering learned optimizers reveals known and novel mechanisms. arXiv preprint
arXiv:2011.02159, 2020.

Raif M Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and
Leonidas Guibas. Map-based exploration of intrinsic shape differences and variability. ACM
Transactions on Graphics (TOG), 32(4):1–12, 2013.

David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural computation, 25(3):626–649, 2013.

11

	Unigram and bigram highlighting in sentiment analysis
	The case of general n-grams for n>2
	Shuffled reviews
	Projecting normal beat signals onto PCA components
	Different basis and network architectures
	Results on the copy task
	Training Information

