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Abstract

With the increasing training cost of large language models, model merging is
attracting attention. This report describes our effort in the area during the NeurIPS
2024 LLM Merging Competition. We developed differentiable DARE-TIES, which
optimizes the merging parameters in a differentiable manner. Whereas existing
methods rely on black-box optimization algorithms, our method utilizes gradient
descent and is expected to optimize high-dimensional merging parameters more
efficiently. We conducted experiments to examine the potential of our approach.

1 Introduction

Large language models (LLMs) have significantly advanced the field of natural language processing,
enabling breakthroughs in tasks ranging from machine translation to conversational agents. As these
models have been growing in scale and complexity, techniques for efficiently merging and optimizing
them have become crucial. One such technique gaining attention is evolutionary model merge [1],
which leverages evolutionary algorithms to optimize merging hyperparameters for combining multiple
LLMs into a more powerful model.

The covariance matrix adaptation evolution strategy (CMA-ES) [2] is a popular evolutionary algorithm
used in this context, which is also known as a well-performed continuous black-box optimization
method. By conducting extensive evaluations—often numbering in the thousands—CMA-ES explores
the parameter space to find well-optimized configurations for model merging. For instance, 1,000
evaluations with CMA-ES yielded the high-quality merged model in [1]. However, this approach has
a drawback: the computational time required for convergence can be high due to the computational
demands of evolutionary processes.

To address this challenge, we propose a novel method that transforms the design parameters for
optimization into differentiable forms, enabling the use of gradient-based optimization techniques.
By making the parameters differentiable, we can apply efficient gradient descent methods to optimize
the merging process directly. This approach significantly reduces the convergence time compared to
conventional evolutionary algorithms.

In our experiments, we observed that the proposed method could reduce the computational time
by about ten times compared to the evolutionary model merge method with a typical setting.1
Despite the efficiency of our approach, the performance of the merged models was promising as

1While our proposed method can reduce the computational time for optimization compared to evolutionary
algorithm-based merging parameter optimization, the GPU memory usage of our method is large because all the
tensors of the base and source models are loaded.
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Figure 1: Overview of our Differentiable DARE-TIES method.

exemplified by our method achieving a fourth-place in the LLM-Merging competition. We submitted
the model merging code for the competition using the merging configuration parameters obtained by
the proposed method.

2 Proposed Method

We introduce a differentiable model merging method based on DARE-TIES, as illustrated in Figure 1.
In settings with a base model and multiple fine-tuned versions of it, which we refer to as source
models, we first extract task tensors [3], representing the delta tensors between the base model and
each source model. These tensors are then sparsified, following a process similar to DARE-TIES: a
portion of each task tensor is randomly dropped with a ratio of p, and tensor values with the minority
signs within each tensor are also removed. Next, each task tensor is scaled by learnable scaling
factors and added to the corresponding tensor in the base model. While DARE-TIES typically applies
scaling at the model or layer level [1], our method applies it at the tensor level for more granular
model merging. We treat the tensors obtained by named_parameters() in PyTorch as the set of
tensors. After merging, we optimize the cross entropy loss with respect to the learnable scaling
factors using gradient-based methods, while keeping all other model parameters fixed.

2.1 Fine-Tuning Dataset Preparation

After optimizing the scaling factors, we fine-tuned the merged model on a small custom dataset
containing 921 samples to align its output format. We created this dataset by randomly selecting
three samples for each task in BIG-Bench [4] and FLAN Collection T0 sub-mixture [5]. This process
was intended to reduce instances of generated text that did not match the competition’s output format.
In our experiments, fine-tuning the merged models required only a few minutes.

3 Experiment

We compared our merging method, which utilizes optimized scaling factors, against a version that
employs randomly sampled scaling factors from a uniform distribution between 0 and 1.

3.1 Experimental Setup

Dataset We used tinyBenchmarks [6] to optimize merging parameters, which is a small dataset of
600 questions and answers. For the multiple-choice task, we used the correct answer statement as the
answer.

Models We used Llama 3 8B [7] as the base model, and also used suzume-llama-3-8B-multilingual-
orpo-borda-top75 [8], MAmmoTH2-8B-Plus [9] and Llama-3-Refueled [10] as source models. These
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Table 1: The final leaderboard score of our methods.
Method Private final leaderboard score

Ours 0.41
Ours w/o Fine-Tuning 0.40

models show high performance on the Open LLM Leaderboard 2 Average, Math Hard, and Big
Bench Hard, respectively. Llama 3 8B has 291 tensors, so the total number of scaling factors is 873.

Evaluation We evaluated the performance of the merged models on the private final leaderboard of
the LLM Merging Competition on Kaggle. The chat template for llama 3 was applied to the original
questions in the test dataset during the evaluation process. For the multiple choice questions, we gave
the model choices as a system prompt, and then selected the choice that maximized the rougeLsum
f-measure with the model output as the answer.

Optimization We used Adam to optimize the scaling factors. In Adam, we set the learning rate to
0.1, β1 to 0.9 and β2 to 0.999, the batch size to 50, the number of epochs to 50. We set the initial
scaling factors to 1. We cropped the scaling factors between 0 and 1 while optimizing. We set all
density parameters for DARE to 0.5. The chat template is used in the optimization process.

Fine-Tuning We fine-tuned the optimized merged model using low-rank adaptation [11] with a
linearly decaying learning rate from 10−5 to 0, a rank r of 8, a scaling factor α of 16, a dropout rate
of 0.1, a batch size of 4, and AdamW as the optimizer, over one epoch.

3.2 Results

Table 1 shows final leaderboard score of LLM Merging Competition on Kaggle. Our method achieved
a score of 0.41, placing fourth in the competition, where scores ranged from 0.17 to 0.46 in the
competition. The result suggests that the differentiable approach to model merging is a promising
strategy for achieving greater efficiency. Additionally, Figure 2 illustrates the distribution of optimized
scaling factors for three source models. The scaling factors mostly gather around the extremes (zero
and one) instead of middle values. This pattern suggests that the merging mainly depends on a few
important tensors from each source model rather than combining all of them equally. This selective
focus might mean that certain models provide unique and highly useful tensors, which are crucial for
the final performance, while others are essentially filtered out by scaling factors near zero.

4 Conclusion

In this report, we proposed differentiable DARE-TIES that optimizes the scaling factors for model
merging efficiently. Our method optimized the scaling factors by the gradient method. We found
experimentally that differentiable DARE-TIES shows competitive results at very low computational
cost. Although we only optimized the scaling factors, simultaneously optimizing other merging
parameters, including non-differentiable ones, is an interesting direction.
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(a) Distribution of scaling factors for source models.
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(b) Histograms of the scaling factors separately for each source model.

Figure 2: Distribution of optimized scaling factors across source models. Model A indicates suzume-
llama-3-8B-multilingual-orpo-borda-top75, model B is MAmmoTH2-8B-Plus, and model C is
Llama-3-Refueled.

Quantifying and extrapolating the capabilities of language models. Transactions on Machine Learning
Research, 2023.

[5] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V Le,
Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning (ICML), 2023.

[6] Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
tinybenchmarks: evaluating LLMs with fewer examples. In International Conference on Machine Learning
(ICML), 2024.

[7] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and et al. Ahmad Al-Dahle. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[8] Peter Devine. Are you sure? Rank them again: Repeated ranking for better preference datasets. arXiv
preprint arXiv:2405.18952, 2024.

[9] Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. MAmmoTH2: Scaling instructions from the web.
arXiv preprint arXiv:2405.03548, 2024.

[10] Refuel Team. Announcing Refuel LLM-2, 2024. https://www.refuel.ai/blog-posts/
announcing-refuel-llm-2 (Accessed on 11 1, 2024).

[11] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations (ICLR), 2022.

4

https://www.refuel.ai/blog-posts/announcing-refuel-llm-2
https://www.refuel.ai/blog-posts/announcing-refuel-llm-2

	Introduction
	Proposed Method
	Fine-Tuning Dataset Preparation

	Experiment
	Experimental Setup
	Results

	Conclusion

