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1 USER STUDY
To evaluate the subjective quality of our method in the task of video
colorization, we conducted a user study involving 30 participants
who were not afflicted with color blindness. We randomly selected
five videos from both the DAVIS-Test-Dev 2017 test dataset [4] and
our curated LDV 3.0 test dataset [5]. The experiment was divided
into two groups: automatic video colorization methods and meth-
ods utilizing the first frame as a reference image for colorization.
The corresponding grayscale videos and the results of the meth-
ods under comparison were concatenated to ensure that the video
results of all methods could be played simultaneously, with the
appearance order randomized. Each participant was required to
select the video they deemed to have the best colorization quality
(CQ) effect and the highest degree of temporal consistency (TC),
with the percentage of votes for each method out of the total votes
shown in Table 1.

From the results in Table 1, it can be observed that our method
has a clear advantage, with its colorization results highly recog-
nized and positively evaluated by users, achieving a voting rate of
over 50% in both automatic and example-based colorization. Users
highly praised the quality, realism, and visual perception of the
generated color videos. The model’s colorization results not only
exhibited outstanding performance in color consistency but also
demonstrated exceptional visual performance in terms of visual
perception.

Table 1: User study for automatic and example-based col-
orization methods.

Colorization Type Method CQ TC

Automatic

peoldify[1] 21.67% 16.33%
TCVC[3] 14.33% 20.33%
VCGAN[8] 7.00% 10.00%
Ours 57.00% 53.33%

Example-based

DRemaster[2] 6.67% 5.67%
DExample[7] 14.67% 17.33%
BiSTNet[6] 24.67% 26.67%
Ours 54.00% 50.67%

2 ABLATION ON NUMBER OF KEYFRAMES
In this section, we focus on the ablation study on the number
of keyframes and assess the impact of changes in the number of
keyframes on generation performance, as a supplement to the
main experiments. This ablation was performed on the LDV3.0
test datasets and the DAVIS-Test-Dev 2017 test datasets. To ensure
video length alignment and enhance testing efficiency, we used
only the first 30 frames of each video segment. Additionally, to
ensure fairness in comparison and eliminate the potential influence

# keyframes 𝑇𝑠𝑡𝑎𝑔𝑒1 𝑇𝑠𝑡𝑎𝑔𝑒1+𝑇𝑠𝑡𝑎𝑔𝑒2 CDC ↓ FID ↓

1 4s 91s 0.4421 34.21
2 5s 89s 0.3858 31.65
3 7s 88s 0.3472 29.74
4 10s 88s 0.3321 28.31
5 13s 88s 0.3245 28.43
10 37s 97s 0.3194 27.41
15 72s 117s 0.3168 26.95
20 120s 150s 0.3175 27.15
25 179s 194s 0.3157 27.01

30 (full video frames) 250s 250s 0.3162 26.87
Table 2: Result I of Ablation Study on Keyframe Quan-
tity(partial)
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Figure 1: Result II of Ablation Study on Keyframe Quantity

of parallel coloration of multiple video frames when batchsize > 1,
we set batchsize = 1 during the single-step coloration process (this
means that the actual generation time is shorter, but it is adjusted
here for a better comparison). In addition to metrics that can repre-
sent the quality of supervised video colorization (FID&CDC), we
also calculated the time required for joint colorization with differ-
ent numbers of key frames, i.e., 𝑇𝑠𝑡𝑎𝑔𝑒1, as well as the total time
required for our two-stage process, i.e., 𝑇𝑠𝑡𝑎𝑔𝑒1+ 𝑇𝑠𝑡𝑎𝑔𝑒 . The final
results are displayed in Table 2 and Figure 1.
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From the results, we observe that as the number of keyframes
increases, the time required for joint coloring (Stage1) rapidly es-
calates. This surge is attributed to the increased computational
cost of the extended attention mechanism, which approximates to
𝑂 (𝑥2) , where 𝑥 representing the number of keyframes. This also
implies that joint coloring of a large volume of video frames would
incur significantly higher costs, resulting in decreased efficiency.
Additionally, it is noteworthy that when the number of keyframes
ranges from 1 to 3, there is a brief decline in total time, which can
be attributed to the GPU transitioning from an idle to a fully loaded
state during Stage1. Furthermore, regarding the quality of coloring,
it is evident that when the number of keyframes is relatively small,
both CDC and FID indices decrease rapidly, indicating that increas-
ing the number of keyframes significantly enhances the quality
of coloring for smaller sets of keyframes. Subsequently, there is a
gradual and steady improvement in coloring quality.

Based on the above analysis, we selected 𝑥 = 4 as the default
number of keyframes in Stage1 in our experiments, allowing for
high-quality coloring results within a shorter duration. Moreover,
this approach permits users the flexibility to choose the number of
keyframes, balancing between coloring efficiency and quality.

3 ADDITIONAL COLORING EXAMPLES
Weprovide numerous additional coloring examples, including videos
generated using our model for video colorization, along with com-
parison videos of other automatic and example-based video col-
orization models. These results offer supplementary information

and outcomes to complement the main content of the paper. Please
refer to the README file in the supplementary materials, as well
as the examples in the "videos" folder.
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