
PESSIMISTIC NONLINEAR LEAST-SQUARES VALUE IT-
ERATION FOR OFFLINE REINFORCEMENT LEARNING

Qiwei Di1, Heyang Zhao1, Jiafan he1, Quanquan Gu1

1Department of Computer Science, University of California, Los Angeles
{qiwei2000,hyzhao,jiafanhe19,qgu}@cs.ucla.edu,

ABSTRACT

Offline reinforcement learning (RL), where the agent aims to learn the optimal
policy based on the data collected by a behavior policy, has attracted increasing
attention in recent years. While offline RL with linear function approximation has
been extensively studied with optimal results achieved under certain assumptions,
many works shift their interest to offline RL with non-linear function approximation.
However, limited works on offline RL with non-linear function approximation have
instance-dependent regret guarantees. In this paper, we propose an oracle-efficient
algorithm, dubbed Pessimistic Nonlinear Least-Square Value Iteration (PNLSVI),
for offline RL with non-linear function approximation. Our algorithmic design
comprises three innovative components: (1) a variance-based weighted regression
scheme that can be applied to a wide range of function classes, (2) a subroutine
for variance estimation, and (3) a planning phase that utilizes a pessimistic value
iteration approach. Our algorithm enjoys a regret bound that has a tight dependency
on the function class complexity and achieves minimax optimal instance-dependent
regret when specialized to linear function approximation. Our work extends the
previous instance-dependent results within simpler function classes, such as linear
and differentiable function to a more general framework.

1 INTRODUCTION
Offline reinforcement learning (RL), also known as batch RL, is a learning paradigm where an
agent learns to make decisions based on a set of pre-collected data, instead of interacting with the
environment in real-time like online RL. The goal of offline RL is to learn a policy that performs well
in a given task, based on historical data that was collected from an unknown environment. Recent
years have witnessed significant progress in developing offline RL algorithms that can leverage large
amounts of data to learn effective policies. These algorithms often incorporate powerful function
approximation techniques, such as deep neural networks, to generalize across large state-action
spaces. They have achieved excellent performances in a wide range of domains, including the games
of Go and chess (Silver et al., 2017; Schrittwieser et al., 2020), robotics (Gu et al., 2017; Levine et al.,
2018), and control systems (Degrave et al., 2022).
Several works have studied the theoretical guarantees of offline tabular RL and proved near-optimal
sample complexities in this setting (Xie et al., 2021b; Shi et al., 2022; Li et al., 2022). However, these
algorithms cannot handle real-world applications with large state and action spaces. Consequently, a
significant body of research has devoted to offline RL with function approximation. For example,
(Jin et al., 2021b) proposed the first efficient algorithm for offline RL with linear MDPs, employing
the principle of pessimism. Subsequently, numerous works have presented a range of algorithms for
offline RL with linear function approximation, as seen in Zanette et al. (2021); Min et al. (2021);
Yin et al. (2022a); Xiong et al. (2023); Nguyen-Tang et al. (2023). Among them, some works have
instance-dependent (a.k.a., problem-dependent) upper bound (Jin et al., 2021b; Yin et al., 2022a;
Xiong et al., 2023; Nguyen-Tang et al., 2023), which matches the worst-case result when dealing
with the “hard instance” and performs better in easy cases.
To address the complexities of working with more complex function classes, recent research has
shifted the focus towards offline reinforcement learning (RL) with general function approximation
(Chen & Jiang, 2019; Xie et al., 2021a). Utilizing the principle of pessimism first used in Jin et al.
(2021b), Xie et al. (2021a) enforced pessimism at the initial state over the set of functions consistent
with the Bellman equations. Their algorithm requires solving an optimization problem over all
the potential policies and corresponding version space, which includes all functions with lower
Bellman-error. To overcome this limitation, Xie et al. (2021a) proposed a practical algorithm which

1

has a poor dependency on the function class complexity. Later, Cheng et al. (2022) proposed an
adversarially trained actor critic method based upon the concept of relative pessimism. Their result is
not statistically optimal and was later improved by Zhu et al. (2023). Both algorithms’ implementation
relies on a no-regret policy optimization oracle. Another line of works, such as (Zhan et al., 2022;
Ozdaglar et al., 2023; Rashidinejad et al., 2021), sought to solve the offline RL problem through a
linear programming formulation, which requires some additional convexity assumptions on the policy
class. However, most of these works only have worst-case regret guarantee. The only exception is
Yin et al. (2022b), which studies the general differentiable function class and proposed an LSVI-type
algorithm. For more general function classes, how to get instance-dependent characterizations is still
an open problem. Therefore, a natural question arises:
Can we design a computationally tractable algorithm that is statistically efficient with respect to the
complexity of nonlinear function class and has an instance-dependent regret bound?
We give an affirmative answer to the above question in this work. Our contributions are listed as
follows:

• We propose a pessimism-based algorithm Pessimistic Nonlinear Least-Square Value Iteration
(PNLSVI) designed for nonlinear function approximation, which strictly generalizes the existing
pessimism-based algorithms for both linear and differentiable function approximation (Xiong et al.,
2023; Yin et al., 2022b). Our algorithm is oracle-efficient, i.e., it is computationally efficient when
there exists an efficient regression oracle and bonus oracle for the function class (e.g., generalized
linear function class). The bonus oracle can also be reduced to a finite number of calls to the
regression oracle.

• We introduce a new type of D2-divergence to quantify the uncertainty of an offline dataset, which
naturally extends the role of the elliptical norm seen in the linear setting and the D2-divergence in
Gentile et al. (2022); Agarwal et al. (2023); Ye et al. (2023) for online RL. We prove an instance-
dependent regret bound characterized by this new D2-divergence. Our regret bound has a tight
dependence on complexity of the function class, i.e., Õ(

√
logN) with N being the cardinality of

the underlying function class, which improves the Õ(logN) dependence 1 in (Yin et al., 2022b)
and resolves the open problem raised in their paper.

Notation: In this work, we use lowercase letters to denote scalars and use lower and uppercase
boldface letters to denote vectors and matrices respectively. For a vector x ∈ Rd and matrix
Σ ∈ Rd×d, we denote by ∥x∥2 the Euclidean norm and ∥x∥Σ =

√
x⊤Σx. For two sequences {an}

and {bn}, we write an = O(bn) if there exists an absolute constant C such that an ≤ Cbn, and we
write an = Ω(bn) if there exists an absolute constant C such that an ≥ Cbn. We use Õ(·) and Ω̃(·)
to further hide the logarithmic factors. For any a ≤ b ∈ R, x ∈ R, let [x][a,b] denote the truncate
function a · 1(x ≤ a) + x · 1(a ≤ x ≤ b) + b · 1(b ≤ x), where 1(·) is the indicator function. For a
positive integer n, we use [n] = {1, 2, .., n} to denote the set of integers from 1 to n.
2 RELATED WORK
RL with function approximation. As one of the simplest function approximation classes, linear
representation in RL has been extensively studied in recent years (Jiang et al., 2017; Dann et al.,
2018; Yang & Wang, 2019; Jin et al., 2020; Wang et al., 2020c; Du et al., 2019; Sun et al., 2019;
Zanette et al., 2020a;b; Weisz et al., 2021; Yang & Wang, 2020; Modi et al., 2020; Ayoub et al., 2020;
Zhou et al., 2021; He et al., 2021; Zhong et al., 2022). Several assumptions on the linear structure
of the underlying MDPs have been made in these works, ranging from the linear MDP assumption
(Yang & Wang, 2019; Jin et al., 2020; Hu et al., 2022; He et al., 2022; Agarwal et al., 2023) to the low
Bellman-rank assumption (Jiang et al., 2017) and the low inherent Bellman error assumption (Zanette
et al., 2020b). Extending the previous theoretical guarantees to more general problem classes, RL
with nonlinear function classes has garnered increased attention in recent years (Wang et al., 2020b;
Jin et al., 2021a; Foster et al., 2021; Du et al., 2021; Agarwal & Zhang, 2022; Agarwal et al., 2023).
Various complexity measures of function classes have been studied including Bellman rank (Jiang
et al., 2017), Bellman-Eluder dimension (Jin et al., 2021a), Decision-Estimation Coefficient (Foster
et al., 2021) and generalized Eluder dimension (Agarwal et al., 2023). Among these works, the setting
in our paper is most related to Agarwal et al. (2023) where D2-divergence (Gentile et al., 2022) was
introduced in RL to indicate the uncertainty of a sample with respect to a particular sample batch.

1In (Yin et al., 2022b), they denote by d the complexity of the underlying function class, which is essentially
logN using our notation.

2

Offline tabular RL. There is a line of works integrating the principle of pessimism to develop
statistically efficient algorithms for offline tabular RL setting (Rashidinejad et al., 2021; Yin & Wang,
2021; Xie et al., 2021b; Shi et al., 2022; Li et al., 2022). More specifically, Xie et al. (2021b) utilized
the variance of transition noise and proposed a nearly optimal algorithm based on pessimism and
Bernstein-type bonus. Subsequently, Li et al. (2022) proposed a model-based approach that achieves
minimax-optimal sample complexity without burn-in cost for tabular MDPs. Shi et al. (2022) also
contributed by proposing the first nearly minimax-optimal model-free offline RL algorithm.
Offline RL with linear function approximation. Jin et al. (2021b) presented the initial theoretical
results on offline linear MDPs. They introduced a pessimism-principled algorithmic framework for
offline RL and proposed an algorithm based on LSVI (Jin et al., 2020). Min et al. (2021) subsequently
considered offline policy evaluation (OPE) in linear MDPs, assuming independence between data
samples across time steps to obtain tighter confidence sets and proposed an algorithm with optimal
d dependence. Yin et al. (2022a) took one step further and considered the policy optimization in
linear MDPs, which implicitly requires the same independence assumption. Zanette et al. (2021)
proposed an actor-critic-based algorithm that establishes pessimism principle by directly perturbing
the parameter vectors in a linear function approximation framework. Recently, Xiong et al. (2023)
proposed a novel uncertainty decomposition technique via a reference function, and demonstrated
their algorithm matches the performance lower bound up to logarithmic factors.

Offline RL with general function approximation. Chen & Jiang (2019) examined the assumptions
underlying value-function approximation methods and established an information-theoretic lower
bound. Xie et al. (2021a) introduced the concept of Bellman-consistent pessimism, which enables
sample-efficient guarantees by relying solely on the Bellman-completeness assumption. Uehara &
Sun (2021) focused on model-based offline RL with function approximation under partial coverage,
demonstrating that realizability in the function class and partial coverage are sufficient for policy
learning. Zhan et al. (2022) proposed an algorithm that achieves polynomial sample complexity
under the realizability and single-policy concentrability assumptions. Nguyen-Tang & Arora (2023)
proposed a method of random perturbations and pessimism for neural function approximation. For
differentiable function classes, Yin et al. (2022b) made advancements by improving the sample
complexity with respect to the planing horizon H . However, their result had an additional dependence
on the dimension d of the parameter space, whereas in linear function approximation, the dependence
is typically on

√
d. Recently, a sequence of works focus on proposing statistically optimal and

practical algorithms under single concentrability assumption. Ozdaglar et al. (2023) provided a new
reformulation of linear-programming. Rashidinejad et al. (2022) used the augmented Lagrangian
method and proved augmented Lagrangian is enough for statistically optimal offline RL. Cheng et al.
(2022) proposed an actor-critic algorithm by formulating the offline RL problem into a Stackelberg
game. However, their result is not statistically optimal and Zhu et al. (2023) improved it by combining
the marginalized importance sampling framework and achieved the optimal statistical rate. We leave
a comparison of these works in Appendix A.
3 PRELIMINARIES
In our work, we consider the inhomogeneous episodic Markov Decision Processes (MDP), which can
be denoted by a tuple ofM

(
S,A, H, {rh}Hh=1, {Ph}Hh=1

)
. In specific, S is the state space, A is the

finite action space, H is the length of each episode. For each stage h ∈ [H], rh : S×A → [0, 1] is the
reward function2 and Ph(s

′|s, a) is the transition probability function, which denotes the probability
for state s to transfer to next state s′ with current action a. A policy π := {πh}Hh=1 is a collection
of mappings πh from a state s ∈ S to the simplex of action space A. For simplicity, we denote the
state-action pair as z := (s, a). For any policy π and stage h ∈ [H], we define the value function
V π
h (s) and the action-value function Qπ

h(s, a) as the expected cumulative rewards starting at stage h,
which can be denoted as follows:

Qπ
h(s, a) = rh(s, a) + E

[H∑
h′=h+1

rh′
(
sh′ , πh′(sh′)

)∣∣sh = s, ah = a

]
, V π

h (s) = Qπ
h

(
s, πh(s)

)
,

where sh′+1 ∼ Ph(·|sh′ , ah′) denotes the observed state at stage h′ + 1. By this definition,
the value function V π

h (s) and action-value function Qπ
h(s, a) are bounded in [0, H]. In addi-

tion, we define the optimal value function V ∗
h and the optimal action-value function Q∗

h as

2While we study the deterministic reward functions for simplicity, it is not difficult to generalize our results
to stochastic reward functions.

3

V ∗
h (s) = maxπ V

π
h (s) and Q∗

h(s, a) = maxπ Q
π
h(s, a). We denote the corresponding optimal

policy by π∗. For any function V : S → R, we denote [PhV](s, a) = Es′∼Ph(·|s,a)V (s′) and

[VarhV](s, a) = [PhV
2](s, a) −

(
[PhV](s, a)

)2
for simplicity. For any function f : S × A → R,

we define f(s) = maxa f(s, a). For any function f : S → R3, we define the Bellman operator Th as
[Thf](sh, ah) = Esh+1∼Ph(·|sh,ah) [rh(sh, ah) + f(sh+1)]. Based on this definition, for every stage
h ∈ [H] and policy π, we have the following Bellman equation for value functions Qπ

h(s, a) and
V π
h (s), as well as the Bellman optimality equation for optimal value functions:

Qπ
h(sh, ah) = [ThV π

h+1](sh, ah), Q
∗
h(sh, ah) = [ThV ∗

h+1](sh, ah),

where V π
H+1(s) = V ∗

H+1(s) = 0. We also define the Bellman operator for second moment as

[T2,hf](sh, ah) = Esh+1∼Ph(·|sh,ah)

[(
rh(sh, ah) + f(sh+1)

)2]
. For simplicity, we omit the sub-

scripts h in the Bellman operator without causing confusion.

Offline Reinforcement Learning: In offline RL, the agent only has access to a batch-dataset
D = {skh, akh, rkh : h ∈ [H], k ∈ [K]}, which is collected by a behavior policy µ, and the agent
cannot interact with the environment. We also make the compliance assumption of the dataset:

Assumption 3.1. For a dataset D = {(skh, akh, rkh)}
K,H
k,h=1, let PD be the joint distribution of the data

collecting process. We say D is compliant with an underlying MDP (S,A, H,P, r) if

PD(r
k
h = r′, skh+1 = s′ | {(sjh, a

j
h)}

k
j=1, {(r

j
h, s

j
h+1)}

k−1
j=1)

= Ph(rh(sh, ah) = r′, sh+1 = s′ | sh = skh, ah = akh)

for all r′ ∈ [0, 1], s′ ∈ S, h ∈ [H] and k ∈ [K].
This assumption is common in offline RL and has also been made in Jin et al. (2021b); Zhong et al.
(2022). When the dataset originates from one behavior policy, this assumption naturally holds. In
this paper, we assume our dataset is generated by a single behavior policy µ. In addition, for each
stage h, we denote the induced distribution of the state-action pair by dµh.
Given the batch dataset, the goal of offline RL is finding a near-optimal policy π that minimizes the
suboptimality V ∗

1 (s) − V π
1 (s). For simplicity, and when there’s no risk of confusion, we will use

the shorthand notation zkh = (skh, a
k
h) to denote the state-action pair in the dataset up to stage h and

episode k.

General Function Approximation: Given a general function class {Fh}h∈[H], where each func-
tion class Fh is composed of functions fh : S ×A → [0, L]. For simplicity, we assume L = O(H)
throughout the paper. We make the following assumptions on the function class.
Assumption 3.2 (ϵ-realizability under general function approximation). For each stage h ∈ [H],
there exists a function f∗

h ∈ Fh close to the optimal value function such that ∥f∗
h −Q∗

h∥∞ ≤ ϵ.
Assumption 3.3 (ϵ-completeness under general function approximation, Agarwal et al. 2023). We
assume for each stage h ∈ [H], and any function V : S → [0, H], there exists functions fh, f2,h ∈ Fh

such that
max

(s,a)∈S×A
|fh(s, a)− [ThV](s, a)| ≤ ϵ, and max

(s,a)∈S×A
|f2,h(s, a)− [T2,hV](s, a)| ≤ ϵ.

In this paper, for simplicity, we assume that the function class is finite and denote its cardinality by
N = maxh∈[H] |Fh|. For infinite function classes, we can use the covering number to replace the
cardinality. Note that the covering number will be reduced to the cardinality when the function class
is finite.
We introduce the following definition (D2-divergence) to quantify the disparity of a given point
z = (s, a) from the historical dataset Dh. It is a reflection of the uncertainty of the dataset.
Definition 3.4. For a function class Fh consisting of functions fh : S × A → R and Dh =
{(skh, akh, rkh)}k∈[K] as a dataset that corresponds to the observations collected up to stage h in the
MDP, we introduce the following D2-divergence:

D2
Fh

(z;Dh;σ
2
h) = sup

f1,f2∈Fh

(f1(z)− f2(z))
2∑

k∈[K]
1

(σh(zk
h))

2 (f1(z
k
h)− f2(zkh))

2 + λ
,

where σ2
h(·, ·) : S ×A → R is a weight function.

3In this paper, we slightly abuse notation f for both f(s) and f(s, a). The context readily clarifies the
intended meaning, i.e., value function or action-value function.

4

Remark 3.5. This definition signifies the extent to which the behavior of functions within the
function class can deviate at the point z = (s, a), based on their difference in the historical dataset.
It can be viewed as the generalization of the weighted elliptical norm ∥ϕ(s, a)∥Σ−1

h
in linear case,

where ϕ is the feature map and Σh is defined as
∑

k∈[K] σ
−2
h (skh, a

k
h)ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤ + λI.
Similar ideas have been used to define the Generalized Eluder dimension for online RL (Gentile et al.,
2022; Agarwal et al., 2023; Ye et al., 2023). In these works, the summation is over a sequence up to
the k-th episode rather than the entire historical dataset.

Data Coverage Assumption: In offline RL, there exists a discrepancy between the state-action
distribution generated by the behavior policy and the distribution from the learned policy. Under
this situation, the distribution shift problem can cause the learned policy to perform poorly or even
fail in offline RL. In this work, we consider the following data coverage assumption to control the
distribution shift.
Assumption 3.6 (Uniform Data Coverage). there exists a constant κ > 0, such that for any stage h
and functions f1, f2 ∈ Fh, the following inequality holds,

Edµ
h

[(
f1(sh, ah)− f2(sh, ah)

)2] ≥ κ∥f1 − f2∥2∞,

where the state-action pair (at stage h) (sh, ah) is stochasticly generated from the induced distribution
dµh.
Remark 3.7. Similar uniform coverage assumptions have also been considered in Wang et al.
(2020a); Min et al. (2021); Yin et al. (2022a); Xiong et al. (2023); Yin et al. (2022b). Among these
works, Yin et al. (2022b) is the most related to ours, proving an instance-dependent regret bound
under general function approximation. Here we make a comparison with their assumption. In detail,
Yin et al. (2022b) considered the differentiable function class, which is defined as follows

F :=
{
f
(
θ,ϕ(·, ·)

)
: S ×A → R,θ ∈ Θ

}
.

They introduced the following coverage assumption such that for all stage h ∈ [H], there exists a
constant κ,

Edµ
h

[(
f(θ1,ϕ(s, a))− f(θ2,ϕ(s, a))

)2] ≥ κ∥θ1 − θ2∥22,∀θ1,θ2 ∈ Θ; (∗)

Edµ
h

[
∇f(θ,ϕ(s, a))∇f(θ,ϕ(s, a))⊤

]
≻ κI, ∀θ ∈ Θ. (∗∗)

We can prove that our assumption is weaker than the first assumption (*), and we do not need the
second assumption (**). This suggests that the differentiable function class studied in Yin et al.
(2022b) is an example covered by our general function class.
In addition, in the special case of linear function class, the coverage assumption in Yin et al. (2022b)
will reduce to the following linear function coverage assumption (Wang et al., 2020a; Min et al.,
2021; Yin et al., 2022a; Xiong et al., 2023).

λmin(Edµ
h
[ϕ(s, a)ϕ(s, a)⊤]) = κ > 0, ∀h ∈ [H].

Therefore, our assumption is also weaker than the linear function coverage assumption when dealing
with the linear function class. Due to space limitations, we defer a detailed comparison to Appendix B.
Remark 3.8. Many works such as Uehara & Sun (2021); Xie et al. (2021a); Cheng et al. (2022);
Ozdaglar et al. (2023); Rashidinejad et al. (2022); Zhu et al. (2023) adopted a weaker partial coverage
assumption than ours, where the ℓ∞ norm on the right hand is replaced with the expectation over a
distribution corresponding to a single policy, typically the optimal one. Their assumption, however,
generally confines their results to worst-case scenarios. It is unclear if we can still prove the instance-
dependent regret under their assumption. We will explore it in the future.

4 ALGORITHM
In this section, we provide a comprehensive and detailed description of our algorithm (PNLSVI), as
displayed in Algorithm 1. In the sequel, we introduce the key ideas of the proposed algorithm.
4.1 PESSIMISTIC VALUE ITERATION BASED PLANNING
Our algorithm operates in two distinct phases, the Variance Estimate Phase and the Pessimistic
Planning Phase. At the beginning of the algorithm, the dataset is divided into two independent
disjoint subsets D, sD with equal size K, and each is assigned to a specific phase.

5

Algorithm 1 Pessimistic Nonlinear Least-Squares Value Iteration (PNLSVI)
Require: Input confidence parameters β̄h, βh and ϵ > 0.

1: Initialize: Split the input dataset into D = {skh, akh, rkh}
K,H
k,h=1,

sD = {s̄kh, ākh, r̄kh}
K,H
k,h=1 ; Set the

value function f̂H+1(·) = qfH+1(·) = 0.
2: //Constructing the variance estimator
3: for stage h = H, . . . , 1 do

4: f̄h = argminfh∈Fh

∑
k∈[K]

(
fh(s̄

k
h, ā

k
h)− r̄kh − qfh+1(s̄

k
h+1)

)2
.

5: ḡh = argmingh∈Fh

∑
k∈[K]

(
gh(s̄

k
h, ā

k
h)−

(
r̄kh + qfh+1(s̄

k
h+1)

)2)2

.

6: Calculate a bonus function b̄h with confidence parameter β̄h,
7: qfh ← {f̄h − b̄h − ϵ}[0,H−h+1];
8: Construct the variance estimator

σ̂2
h(s, a) = max

{
1, ḡh(s, a)− (f̄h(s, a))

2 −O

(√
log(N·Nb)H

3

√
Kκ

)}
.

9: end for
10: //Pessimistic value iteration based planning
11: for stage h = H, . . . , 1 do

12: f̃h = argminfh∈Fh

∑
k∈[K]

1
σ̂2
h(s

k
h,a

k
h)

(
fh(s

k
h, a

k
h)− rkh − f̂h+1(s

k
h+1)

)2
13: Calculate a bonus function bh with bonus parameter βh;
14: f̂h ← {f̃h − bh − ϵ}[0,H−h+1];
15: π̂h(·|s) = argmaxa f̂h(s, a).
16: end for
17: Output: π̂ = {π̂h}Hh=1.

The basic framework of our algorithm follows the pessimistic value iteration, which was initially
introduced by Jin et al. (2021b). In details, for each stage h ∈ [H], we construct the estimator value
function f̃h by solving the following variance-weighted ridge regression (Line 13):

f̃h = argmin
fh∈Fh

∑
k∈[K]

1

σ̂2
h(s

k
h, a

k
h)

(
fh(s

k
h, a

k
h)− rkh − f̂h+1(s

k
h+1)

)2
,

where σ̂2
h is the estimated variance and will be discussed in Section 4.2. In Line 14, we subtract the

confidence bonus function bh from the estimator value function f̃h to construct the pessimistic value
function f̂h. With the help of the confidence bonus function bh, the pessimistic value function f̂h is
almost a lower bound for the optimal value function f∗

h . The details of the bonus function will be
discussed in Section 4.3.
Based on the pessimistic value function f̂h for horizon h, we recursively perform the value iteration
for the horizon h− 1. Finally, we use the pessimistic value function f̂h to do planning and output the
greedy policy with respect to the pessimistic value function f̂h (Lines 15 - 17).
4.2 VARIANCE ESTIMATOR
In this phase, we provide an estimator for the variance σ̂h in the weighted ridge regression. We
construct this variance estimator with sD, thus independent of D. Using a larger bonus function b̄h,
we conduct a pessimistic value iteration process similar to that discussed in Section 4.1 and obtain a
more crude estimated value function { qfh}h∈[H]. According to the definition of Bellman operators T
and T2, the variance of the function qfh+1 for each state-action pair (s, a) can be denoted by

[Varh qfh+1](s, a) = [T2,h qfh+1](s, a)−
(
[Th qfh+1](s, a)

)2
.

Therefore, we need to estimate the first-order and second-order moments for qfh+1. We perform
nonlinear least-squares regression separately for each of these moments. Specifically, in Line 4, we
conduct regression to estimate the first-order moment.

f̄h = argmin
fh∈Fh

∑
k∈[K]

(
fh(s̄

k
h, ā

k
h)− r̄kh − qfh+1(s̄

k
h+1)

)2
.

6

In Line 5, we perform regression for estimating the second-order moment.

ḡh = argmin
gh∈Fh

∑
k∈[K]

(
gh(s̄

k
h, ā

k
h)−

(
r̄kh + qfh+1(s̄

k
h+1)

)2)2

.

In this phase, we set the variance function to 1 for each state-action pair (s, a). Combing these two
regression results and subtracting some perturbing terms (We will discuss in Section 6.1), we create a
pessimistic estimator for the variance function (Lines 7 to 8).
4.3 NONLINEAR BONUS FUNCTION
As we discuss in Sections 4.1 and 4.2, following Wang et al. (2020b); Kong et al. (2021); Agarwal
et al. (2023), we introduce a bonus function. This function is designed to account for the functional
uncertainty, enabling us to develop a pessimistic estimate of the value function. Ideally, we hope to
choose bh(·, ·) = βhDFh

(·, ·;Dh; σ̂
2
h), where βh is the confidence parameter and DFh

(·, ·;Dh; σ̂
2
h)

is defined in Definition 3.4. However, the D2-divergence composes a complex function class, and
its calculation involves solving a complex optimization problem. To address this issue, following
Agarwal et al. (2023), we assume there exists a function classW with cardinally |W| = Nb and
can approximate the D2-divergence well. For the parameters βh, λ ≥ 0, error parameter ϵ ≥ 0,
taking a variance function σh(·, ·) : S ×A → R and f̂h ∈ Fh as input, we can get a bonus function
bh(·, ·) ∈ W satisfying the following properties:

• bh(zh) ≥ max
{
|fh(zh)− f̂h(zh)|, fh ∈ Fh :

∑
k∈[K]

(fh(zkh)−f̂h(zkh))2

(σ̂h(sk
h
,ak

h
))2

≤ (βh)
2
}

for any zh ∈ S ×A.

• bh(zh) ≤ C ·
(
DFh(zh;Dh; σ̂

2
h) ·

√
(βh)2 + λ+ ϵβh

)
for all zh ∈ S ×A with constant 0 < C <∞.

We can implement the function class W with bounded Nb by extending the online subsampling
framework presented in Wang et al. (2020b); Kong et al. (2021) to an offline dataset. Additionally,
using Algorithm 1 of Kong et al. (2021), we can calculate the bonus function with finite calls of the
oracle for solving the variance-weighted ridge regression problem. We leave a detailed discussion to
Appendix C.
5 MAIN RESULTS
In this section, we prove an instance-dependent regret bound of Algorithm 1.

Theorem 5.1. Under Assumption 3.6, for K ≥ Ω̃
(

log(N·Nb)H
6

κ2

)
, if we set the parameters

β′
1,h, β

′
2,h = Õ(

√
log(N · Nb)H

2) and βh = Õ(
√
logN) in Algorithm 1, then with probability at

least 1− δ, for any state s ∈ S, we have

V ∗
1 (s)− V π̂

1 (s) ≤ Õ(
√
logN)

∑H
h=1Eπ∗

[
DFh

(zh;Dh; [VhV
∗
h+1](·, ·))|s1 = s

]
,

where [VhV
∗
h+1](s, a) = max{1, [VarhV ∗

h+1](s, a)} is the truncated conditional variance.
This theorem establishes an upper bound for the suboptimality of our policy π̂. The bound depends on
the expected uncertainty, which is characterized by the weighted D2-divergence along the trajectory,
marking itself as an instance-dependent result. It’s noteworthy that both the trajectory and the weight
function are based on the optimal policy and the optimal value function, respectively. This bound
necessitates that the dataset size K is sufficiently large. Furthermore, all parameters are determined
solely by the complexity of the function class, the horizon length H , and the data coverage assumption
constant κ , regardless of the dataset’s composition.
Remark 5.2. In Theorem 5.1, the dependence on the cardinality of the function class scales as
Õ(
√
logN), which is better than that in Yin et al. (2022b), which scales as Õ(logN). This improved

dependence is due to the reference-advantage decomposition (discussed in Section 6.2), which avoids
the unnecessary covering argument. Thus we resolve the open problem raised by Yin et al. (2022b),
i.e., how to achieve the Õ(

√
logN) dependence.

Remark 5.3. When specialized to linear MDPs (Jin et al., 2020), the following function class

F lin
h = {⟨ϕ(·, ·),θh⟩ : θh ∈ Rd, ∥θh∥2 ≤ Bh} for any h ∈ [H],

suffices and satisfies the completeness assumption (Assumption 3.3). Let F lin
h (ϵ) be an ϵ-net of the

linear function class F lin
h , with log |F lin

h (ϵ)| = Õ(d). The dependency of the function class will
reduce to Õ(

√
logN) = Õ(

√
d). For linear function class, we can prove the following inequality:

DF lin
h (ϵ)(z;Dh; [VhV

∗
h+1](·, ·)) ≤ ∥ϕ(z)∥Σ∗−1

h
,

7

where Σ∗
h =

∑
k∈[K] ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤/[VhV
∗
h+1](s

k
h, a

k
h)+λI. Therefore, our regret guarantee

in Theorem 5.1 is reduced to

V ∗
1 (s)− V π̂

1 (s) ≤ Õ(
√
d) ·

H∑
h=1

Eπ∗

[
∥ϕ(sh, ah)∥Σ∗−1

h
|s1 = s

]
,

which matches the lower bound proved in Xiong et al. (2023). This suggests that our algorithm is
optimal for linear MDPs.

6 KEY TECHNIQUES
In this section, we provide an overview of the key techniques in our algorithm design and analysis.
6.1 VARIANCE ESTIMATOR WITH NONLINEAR FUNCTION CLASS
In our work, we extend the technique of variance-weighted ridge regression, first introduced in Zhou
et al. (2021) for online RL, and later used by Min et al. (2021); Yin et al. (2022a;b); Xiong et al.
(2023) for offline RL with linear MDPs, to general nonlinear function class F . We use the following
nonlinear least-squares regression to estimate the underlying value function:

f̃h = argmin
fh∈Fh

∑
k∈[K]

1

σ̂2
h(s

k
h, a

k
h)

(
fh(s

k
h, a

k
h)− rkh − f̂h+1(s

k
h+1)

)2
.

For this regression, it is crucial to obtain a reliable evaluation for the variance of the estimated
cumulative reward rkh + f̂h+1(s

k
h+1). As discussed in Section 4.2, we use sD to construct a variance

estimator independent from D. According to the definition of Bellman operators T and T2, the
variance of the function qfh+1 for each state-action pair (s, a) can be denoted by

[Varh qfh+1](s, a) = [T2,h qfh+1](s, a)−
(
[Th qfh+1](s, a)

)2
.

In our algorithm, we perform nonlinear least-squares regression on sD. For simplicity, we denote
the empirical variance as Bh(s, a) = ḡh(s, a)−

(
f̄h(s, a)

)2
, and the difference between empirical

variance Bh(s, a) and actual variance [Varh qfh+1](s, a) is upper bound by∣∣∣Bh(s, a)− [Varh qfh+1](s, a)
∣∣∣ ≤ ∣∣∣ḡh(s, a)− [T2,h

qfh+1](s, a)
∣∣∣+ ∣∣∣(f̃h(s, a))2 − (

[Th
qfh+1](s, a)

)2∣∣∣.
For these nonlinear function estimators, the following lemmas provide coarse concentration properties
for the first and second order Bellman operators.

Lemma 6.1. For any stage h ∈ [H], let qfh+1(·, ·) ≤ H be the estimated value function constructed
in Algorithm 1 Line 7. By utilizing Assumption 3.3, there exists a function f̄ ′

h ∈ Fh, satisfying that
|f̄ ′

h(zh)− [Th qfh+1](zh)| ≤ ϵ holds for all state-action pair zh = (sh, ah). Then with probability at
least 1− δ/(4H), it holds that∑

k∈[K]

(
f̄ ′
h(z̄

k
h)− f̄h(z̄

k
h)
)2 ≤ (β̄1,h)

2,

where β̄1,h = Õ
(√

log(N · Nb)H
)

, and f̄h is the estimated function for first-moment Bellman
operator (Line 4 in Algorithm 1).

Lemma 6.2. For any stage h ∈ [H], let qfh+1(·, ·) ≤ H be the estimated value function constructed
in Algorithm 1 Line 7. By utilizing Assumption 3.3, there exists a function ḡ′h ∈ Fh, satisfying that
|ḡ′h(zh)− [T2,h qfh+1](zh)| ≤ ϵ holds for all state-action pair zh = (sh, ah). Then with probability at
least 1− δ/(4H), it holds that∑

k∈[K]

(
ḡ′h(z̄

k
h)− ḡh(z̄

k
h)
)2 ≤ (β̄2,h)

2,

where β̄2,h = Õ
(√

log(N · Nb)H
2
)
, and ḡh is the estimated function for second-moment Bellman

operator (Line 5 in Algorithm 1).

Notice that all of the previous analysis focuses on the estimated function qfh+1. By leveraging an in-
duction procedure similar to existing works in the linear case (Jin et al., 2021b), we can control the dis-
tance between the estimated function qfh+1 and the optimal value function f∗

h+1. In details, with high

8

probability, for all stage h ∈ [H], the distance is upper bounded by Õ
(√

log(N · Nb)H
3/
√
Kκ
)

.

This result allows us to further bound the difference between [Varh qfh+1](s, a) and [Varhf∗
h+1](s, a).

Therefore, the concentration properties in Lemmas 6.1 and 6.2 enable us to add some perturbation
terms and construct a variance estimator, which satisfies the following property:

[VhV
∗
h+1](s, a)− Õ

(√
log(N · Nb)H

3

√
Kκ

)
≤ σ̂2

h(s, a) ≤ [VhV
∗
h+1](s, a). (6.1)

where [VhV
∗
h+1](s, a) = max{1, [VarhV ∗

h+1](s, a)} is the truncated conditional variance.
6.2 REFERENCE-ADVANTAGE DECOMPOSITION
To obtain the optimal dependency on the function class complexity, we need to tackle the challenge
of additional error from uniform concentration over the whole function class Fh. To address this
problem, we utilize the so-called reference-advantage decomposition technique, which was used by
(Xiong et al., 2023) to achieve the optimal regret for offline RL with linear function approximation.
We generalize this technique to nonlinear function approximation. We provide detailed insights into
this approach as follows:

rh(sh, ah) + f̂h+1(sh+1)− [Thf̂h+1](sh, ah) = rh(sh, ah) + f∗
h+1(sh+1)− [Thf∗

h+1](sh, ah)︸ ︷︷ ︸
Reference uncertainty

+ f̂h+1(sh+1)− f∗
h+1(sh+1)− ([Phf̂h+1](sh, ah)− [Phf

∗
h+1](sh, ah))︸ ︷︷ ︸

Advantage uncertainty

.

We decompose the Bellman error into two parts: the Reference uncertainty and the Advantage
uncertainty. For the first term, the optimal value function f∗

h+1 is fixed and not related to the pre-
collected dataset, which circumvents additional uniform concentration over the whole function class
and avoids any dependence on the function class complexity. For the second term, it is worth noticing
that the distance between the estimated function f̂h+1 and the optimal value function f∗

h decreases
with the speed of O(1/

√
Kκ). Though, we still need to maintain the uniform convergence guarantee,

the Advantage uncertainty is dominated by the Reference uncertainty when the number of episodes
K is large enough. Such an analysis approach has been first studied in the online RL setting (Azar
et al., 2017; Zhang et al., 2021; Hu et al., 2022; He et al., 2022; Agarwal et al., 2023) and later in
the offline environment by Xiong et al. (2023). Previous works, such as Yin et al. (2022b), didn’t
adapt the reference-advantage decomposition analysis to their nonlinear function class, resulting in
a parameter space dependence that scales with d, instead of the optimal

√
d. By integrating these

results, we can prove a variance-weighted concentration inequality for Bellman operators.
Lemma 6.3. For each stage h ∈ [H], assuming the variance estimator σ̂h satisfies (6.1), let
f̂h+1(·, ·) ≤ H be the estimated value function constructed in Algorithm 1 Line 14. Then with

probability at least 1− δ/(4H), it holds that
∑

k∈[K]
1

(σ̂h(zk
h))

2

(
[Thf̂h+1](z

k
h)− f̃h(z

k
h)
)2
≤ (βh)

2,

where βh = Õ(
√
logN) and f̃h is the estimated function from the weighted ridge regression (Line

12 in Algorithm 1).
After controlling the Bellman error, with a similar argument to Jin et al. (2021b), we obtain the
following lemma, which provides an upper bound for the regret.

Lemma 6.4 (Regret Decomposition Property). If
∣∣∣[Thf̂h+1](z)− f̃h(z)

∣∣∣ ≤ bh(z) holds for all stage
h ∈ [H] and state-action pair z = (s, a) ∈ S ×A, then the suboptimality of the output policy π̂ in
Algorithm 1 can be bounded as

V ∗
1 (s)− V π̂

1 (s) ≤ 2
∑H

h=1Eπ∗ [bh (sh, ah) | s1 = s] .

Here, the expectation Eπ∗ is with respect to the trajectory induced by π∗ in the underlying MDP.
Combining the results in Lemmas 6.3 and 6.4, we have proved Theorem 5.1.
7 CONCLUSION AND FUTURE WORK
In this paper, we present Pessimistic Nonlinear Least-Square Value Iteration (PNLSVI), an oracle-
efficient algorithm for offline RL with non-linear function approximation. Our result matches the
lower bound proved in Xiong et al. (2023) when specialized to linear function approximation. We
notice that our uniform coverage assumption can sometimes be strong in practice. In our future work,
we plan to relax this assumption by devising algorithms for nonlinear function classes under a partial
coverage assumption.

9

ACKNOWLEDGEMENTS
We thank the anonymous reviewers and area chair for their helpful comments. QD, HZ, JH and QG
are supported in part by the National Science Foundation CAREER Award 1906169, CPS-2312094,
Amazon Research Award and the Sloan Research Fellowship. JH is also supported in part by Amazon
PhD Fellowship. The views and conclusions contained in this paper are those of the authors and
should not be interpreted as representing any funding agencies.
REFERENCES
Alekh Agarwal and Tong Zhang. Model-based rl with optimistic posterior sampling: Structural

conditions and sample complexity. arXiv preprint arXiv:2206.07659, 2022.

Alekh Agarwal, Yujia Jin, and Tong Zhang. Vo q l: Towards optimal regret in model-free rl with
nonlinear function approximation. In The Thirty Sixth Annual Conference on Learning Theory, pp.
987–1063. PMLR, 2023.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning, pp.
463–474. PMLR, 2020.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-
forcement learning. In International Conference on Machine Learning, pp. 263–272. PMLR,
2017.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, pp. 1042–1051. PMLR, 2019.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic for
offline reinforcement learning. In International Conference on Machine Learning, pp. 3852–3878.
PMLR, 2022.

Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. On oracle-efficient pac rl with rich observations. Advances in neural information
processing systems, 31, 2018.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
Wang. Bilinear classes: A structural framework for provable generalization in rl. In International
Conference on Machine Learning, pp. 2826–2836. PMLR, 2021.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient
for sample efficient reinforcement learning? arXiv preprint arXiv:1910.03016, 2019.

Dylan Foster, Alekh Agarwal, Miroslav Dudı́k, Haipeng Luo, and Robert Schapire. Practical
contextual bandits with regression oracles. In International Conference on Machine Learning, pp.
1539–1548. PMLR, 2018.

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of
interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

Claudio Gentile, Zhilei Wang, and Tong Zhang. Achieving minimax rates in pool-based batch active
learning. In International Conference on Machine Learning, pp. 7339–7367. PMLR, 2022.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international conference
on robotics and automation (ICRA), pp. 3389–3396. IEEE, 2017.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning with
linear function approximation. In International Conference on Machine Learning, pp. 4171–4180.
PMLR, 2021.

10

Jiafan He, Heyang Zhao, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement
learning for linear markov decision processes. arXiv preprint arXiv:2212.06132, 2022.

Pihe Hu, Yu Chen, and Longbo Huang. Nearly minimax optimal reinforcement learning with linear
function approximation. In International Conference on Machine Learning, pp. 8971–9019. PMLR,
2022.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contex-
tual decision processes with low bellman rank are pac-learnable. In International Conference on
Machine Learning, pp. 1704–1713. PMLR, 2017.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143.
PMLR, 2020.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
problems, and sample-efficient algorithms. Advances in neural information processing systems,
34:13406–13418, 2021a.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021b.

Dingwen Kong, Ruslan Salakhutdinov, Ruosong Wang, and Lin F Yang. Online sub-sampling for
reinforcement learning with general function approximation. arXiv preprint arXiv:2106.07203,
2021.

Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John Langford. Active
learning for cost-sensitive classification. In International Conference on Machine Learning, pp.
1915–1924. PMLR, 2017.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data collection. The
International journal of robotics research, 37(4-5):421–436, 2018.

Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of
model-based offline reinforcement learning. arXiv preprint arXiv:2204.05275, 2022.

Yifei Min, Tianhao Wang, Dongruo Zhou, and Quanquan Gu. Variance-aware off-policy evaluation
with linear function approximation. Advances in neural information processing systems, 34:
7598–7610, 2021.

Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of reinforcement
learning using linearly combined model ensembles. In International Conference on Artificial
Intelligence and Statistics, pp. 2010–2020. PMLR, 2020.

Thanh Nguyen-Tang and Raman Arora. Viper: Provably efficient algorithm for offline rl with neural
function approximation. In The Eleventh International Conference on Learning Representations,
2023.

Thanh Nguyen-Tang, Ming Yin, Sunil Gupta, Svetha Venkatesh, and Raman Arora. On instance-
dependent bounds for offline reinforcement learning with linear function approximation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 9310–9318, 2023.

Asuman E Ozdaglar, Sarath Pattathil, Jiawei Zhang, and Kaiqing Zhang. Revisiting the linear-
programming framework for offline rl with general function approximation. In International
Conference on Machine Learning, pp. 26769–26791. PMLR, 2023.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34:11702–11716, 2021.

Paria Rashidinejad, Hanlin Zhu, Kunhe Yang, Stuart Russell, and Jiantao Jiao. Optimal conserva-
tive offline rl with general function approximation via augmented lagrangian. In The Eleventh
International Conference on Learning Representations, 2022.

11

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic q-learning for offline
reinforcement learning: Towards optimal sample complexity. In International Conference on
Machine Learning, pp. 19967–20025. PMLR, 2022.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
rl in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on learning theory, pp. 2898–2933. PMLR, 2019.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. In International Conference on Learning Representations, 2021.

Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline rl with
linear function approximation? arXiv preprint arXiv:2010.11895, 2020a.

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
function approximation: Provably efficient approach via bounded eluder dimension. Advances in
Neural Information Processing Systems, 33:6123–6135, 2020b.

Yining Wang, Ruosong Wang, Simon Shaolei Du, and Akshay Krishnamurthy. Optimism in rein-
forcement learning with generalized linear function approximation. In International Conference
on Learning Representations, 2020c.

Gellért Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds for planning in
mdps with linearly-realizable optimal action-value functions. In Algorithmic Learning Theory, pp.
1237–1264. PMLR, 2021.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34:6683–6694, 2021a.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 34:27395–27407, 2021b.

Wei Xiong, Han Zhong, Chengshuai Shi, Cong Shen, Liwei Wang, and Tong Zhang. Nearly minimax
optimal offline reinforcement learning with linear function approximation: Single-agent mdp and
markov game. In International Conference on Learning Representations (ICLR), 2023.

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pp. 6995–7004, 2019.

Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound. In International Conference on Machine Learning, pp. 10746–10756. PMLR, 2020.

Chenlu Ye, Wei Xiong, Quanquan Gu, and Tong Zhang. Corruption-robust algorithms with uncertainty
weighting for nonlinear contextual bandits and markov decision processes. In International
Conference on Machine Learning, pp. 39834–39863. PMLR, 2023.

Ming Yin and Yu-Xiang Wang. Towards instance-optimal offline reinforcement learning with
pessimism. Advances in neural information processing systems, 34:4065–4078, 2021.

Ming Yin, Yaqi Duan, Mengdi Wang, and Yu-Xiang Wang. Near-optimal offline reinforcement
learning with linear representation: Leveraging variance information with pessimism. arXiv
preprint arXiv:2203.05804, 2022a.

12

Ming Yin, Mengdi Wang, and Yu-Xiang Wang. Offline reinforcement learning with differentiable
function approximation is provably efficient. In The Eleventh International Conference on Learning
Representations, 2022b.

Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric.
Frequentist regret bounds for randomized least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics, pp. 1954–1964. PMLR, 2020a.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent bellman error. In International Conference on Machine Learning,
pp. 10978–10989. PMLR, 2020b.

Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic methods
for offline reinforcement learning. Advances in neural information processing systems, 34:13626–
13640, 2021.

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason Lee. Offline reinforcement
learning with realizability and single-policy concentrability. In Conference on Learning Theory,
pp. 2730–2775. PMLR, 2022.

Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than bandits?
a near-optimal algorithm escaping the curse of horizon. In Conference on Learning Theory, pp.
4528–4531. PMLR, 2021.

Han Zhong, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, and Zhuoran Yang.
Pessimistic minimax value iteration: Provably efficient equilibrium learning from offline datasets.
In International Conference on Machine Learning, pp. 27117–27142. PMLR, 2022.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learning
for linear mixture markov decision processes. In Conference on Learning Theory, pp. 4532–4576.
PMLR, 2021.

Hanlin Zhu, Paria Rashidinejad, and Jiantao Jiao. Importance weighted actor-critic for optimal
conservative offline reinforcement learning. arXiv preprint arXiv:2301.12714, 2023.

13

A COMPARISON OF OFFLINE RL ALGORITHMS
In this section, we make a comparison between different offline RL algorithms, concerning their
algorithm type, function approximation class, data coverage assumption, used oracles, and regret
type. In the upper part are the algorithms with worst-case regret, while in the lower part are those
with instance-dependent regret.

Table 1: Comparison of offline RL algorithms in terms of algorithm type, function classes, data
coverage assumption, types of oracle and regret-type.

Algorithm Algorithm Type Function
Classes

Data Coverage Types of Oracle Regret Type

Xie et al. (2021a) Bellman-
consistent
Pessimism

General Partial Optimization on
Policy and

Function Class

Worst-case

CPPO-TV
Uehara & Sun

(2021)

MLE General Partial Optimization on
Policy and

Hypothesis Class

Worst-case

CORAL
Rashidinejad
et al. (2022)

Augmented
Lagrangian with

MIS

General Partial Optimization on
Policy and

Function Class

Worst-case

Reformulated LP
Ozdaglar et al.

(2023)

Linear Program General Partial Linear
Programming

Worst-case

ATAC Cheng
et al. (2022)

Actor Critic General Partial No-regret Policy
Optimization and
Optimization on

the Function
Class

Worst-case

A-Crab Zhu et al.
(2023)

Actor Critic General Partial No-regret Policy
Optimization and
Optimization on

the Function
Class

Worst-case

LinPEVI-ADV+
Xiong et al.

(2023)

LSVI-type Linear Uniform / Instance-
dependent

PFQL Yin et al.
(2022b)

LSVI-type Differentible Uniform Gradient Oracle
and Optimization
on the Function

Class

Instance-
dependent

PNLSVI (Our
work)

LSVI-type General Uniform Regression
Oracle

Instance-
dependent

B COMPARISON OF DATA COVERAGE ASSUMPTIONS
In Yin et al. (2022b), they studied the general differentiable function class, where the function class
can be denoted by

F :=
{
f
(
θ,ϕ(·, ·)

)
: X ×A → R,θ ∈ Θ

}
.

In this definition, Ψ is a compact subset, and ϕ(·, ·) : X × A → Ψ ⊆ Rm is a feature map. The
parameter space Θ is a compact subset Θ ⊆ Rd. The function f : Rd × Rm → R satisfies the
following smoothness conditions:

• For any vector ϕ ∈ Rm, f(θ,ϕ) is third-time differentiable with respect to the parameter θ.

• Functions f, ∂θf, ∂2
θ,θf, ∂

3
θ,θ,θf are jointly continuous for (θ,ϕ).

Under this definition, Yin et al. (2022b) introduce the following coverage assumption (Assumption
2.3) such that for all stage h ∈ [H], there exists a constant κ,

Edµ
h

[(
f (θ1,ϕ(x, a))− f(θ2,ϕ(x, a))

)2] ≥ κ∥θ1 − θ2∥22,∀θ1,θ2 ∈ Θ; (∗)

Edµ
h

[
∇f(θ,ϕ(x, a))∇f(θ,ϕ(x, a))⊤

]
≻ κI, ∀θ ∈ Θ.(∗∗)

It is worth noting that our assumption 3.6 is weaker than this assumption. For any compact sets Θ,Ψ
and continuous function f , there always exist a constant κ0 > 0 such that f is κ0-Lipschitz with
respect to the parameter θ,i.e:

|f(θ1,ϕ)− f(θ2,ϕ)| ≤ κ0∥θ1 − θ2∥2,∀θ1,θ2 ∈ Θ,ϕ ∈ Ψ.

14

Therefore, the coverage assumption in Yin et al. (2022b) implies that

Edµ
h

[(
f(θ1,ϕ(·, ·))− f(θ2,ϕ(·, ·))

)2] ≥ κ∥θ1 − θ2∥22

≥ κ

κ2
0

sup
(x,a)∈X×A

(
f(θ1,ϕ(x, a))− f(θ2,ϕ(x, a))

)2
.

Our assumption can be reduced to their first assumption (*). We do not need the second assumption
(**).
In addition, for the linear function class, the coverage assumption in Yin et al. (2022b) will reduce to
the following linear function coverage assumption(Wang et al., 2020a; Min et al., 2021; Yin et al.,
2022a; Xiong et al., 2023).

λmin(Eµ,h[ϕ(x, a)ϕ(x, a)
⊤]) = κ > 0, ∀h ∈ [H].

Therefore, our assumption is also weaker than the linear function coverage assumption when dealing
with the linear function class.
C DISCUSSION ON THE CALCULATION OF THE BONUS FUNCTION
To obtain the bonus function satisfying the required properties, we need to consider the constraint
optimization problem

max

|f1(zh)− f2(zh)|, f1, f2 ∈ Fh :
∑

k∈[K]

(f1(z
k
h)− f2(z

k
h))

2

(σ̂h(skh, a
k
h))

2
≤ (βh)

2

 . (C.1)

We utilize the online subsampling framework presented in Wang et al. (2020b); Kong et al. (2021) to
an offline dataset. Additionally, we generalize the idea of Kong et al. (2021) to the weighted problem.
Using the shorthand expression

∥f∥2σ̂h,Dh
=
∑

k∈[K]

(f(zkh))
2

(σ̂h(skh, a
k
h))

2
,

we aim to estimate the solution of the following constraint optimization problem.

min
f1,f2
∥f1 − f2∥2σ̂h,Dh

+
w

2
(f1(s, a)− f2(s, a)− 2L)2. (C.2)

Algorithm 2 Binary Search
1: Input: Dataset Dh = {skh, akh, rkh}Kk=1, objective z = (s, a), βh, precision α
2: G ← Fh −Fh

3: Define R(g, w) := ∥g∥2σ̂h,Dh
+ w

2 (g(s, a)− 2(L+ 1))2, ∀g ∈ G
4: wL ← 0, wH ← βh/(α(L+ 1))
5: gL ← 0, zL ← 0
6: gH ← argming∈G R(g, wH), zH ← gH(s, a)

7: ∆← αβ/(8(L+ 1)3)
8: while |zH − zL| > α and |wH − wL| > ∆ do
9: w̃ ← (wH + wL)/2

10: g̃ ← argming∈G R(g, w̃), z̃ ← g̃(s, a)

11: if ∥g̃∥2σ̂h,Dh
> βh then

12: wH ← w̃, zH ← z̃
13: else
14: wL ← w̃, zL ← z̃
15: end if
16: end while
17: Output: zH
The binary search algorithm is similar to Kong et al. (2021), which utilizes the oracle for variance-
weighted ridge regression in Lines 6 and 10. It reduces the computational complexity of the
constrained optimization problem given by (C.1), limiting it to a finite number of calls to the
regression oracle. If the function class Fh is convex, the binary search algorithm can solve the
optimization problem (C.1) up to a precision of α with O(log(1/α)) calls of the regression oracle.
We summarize the result in the following theorem. If Fh is not convex, the method of Krishnamurthy
et al. (2017) can solve the problem with O(1/α) calls of the regression oracle.

15

Theorem C.1. Assume the optimal solution of the optimization problem (C.1) is g∗ = f∗
1 − f∗

2 and
the function class Fh is convex and closed under pointwise convergence, then Algorithm 2 terminate
after O(log(1/α)) calls of the regression oracle and the returned values satisfy

|zH − g∗(s, a)| ≤ α.

Proof of Theorem C.1. Easy to see G = Fh − Fh is also convex. We then follow the proof of
Theorem 1 of Foster et al. (2018).

To see the solution of optimization problem C.1 satisfies the condition of the bonus function, we
recall the definition of the D2-divergence

D2
Fh

(z;Dh; σ̂
2
h) = sup

f1,f2∈Fh

(f1(z)− f2(z))
2∑

k∈[K]
1

(σ̂h(zk
h))

2 (f1(z
k
h)− f2(zkh))

2 + λ
.

Therefore, for any f1, f2 ∈ Fh satisfying
∑

k∈[K]
1

(σ̂h(zk
h))

2 (f1(z
k
h)− f2(z

k
h))

2 ≤ (β2
h), we have

|f1(zh)− f2(zh)| ≤ DFh
(z;Dh; σ̂

2
h)
√
(βh)2 + λ.

D ANALYSIS OF THE VARIANCE ESTIMATOR
In this section, our main objective is to prove that our variance estimators are close to the truncated
variance of the optimal value function [VhV

∗
h+1](s, a). The following lemmas are helpful in the proof

of Lemma D.4. To start with, we need an upper bound of the D2-divergence for a large dataset.
Lemma D.1. Let Dh be the dataset satisfying Assumption 3.6. When the size of data set satisfies
K ≥ Ω̃

(
logN
κ2

)
, with probability at least 1− δ, for each state-action pair z, we have

DFh
(z,Dh, 1) = Õ

(
1√
Kκ

)
.

Lemma 6.1 and Lemma 6.2 show the confidence radius for the first and second-order Bellman error,
which is essential in our proof. Here we restate them with more accurate parameter choices.

Lemma D.2 (Restatement of Lemma 6.1). For any stage h ∈ [H], let qfh+1(·, ·) ≤ H be the estimated
value function constructed in Algorithm 1 Line 7. By utilizing Assumption 3.3, there exists a function
f̄ ′
h ∈ Fh, satisfying that |f̄ ′

h(zh)− [Th qfh+1](zh)| ≤ ϵ holds for all state-action pair zh = (sh, ah).
Then with probability at least 1− δ/(4H), it holds that∑

k∈[K]

(
f̄ ′
h(z̄

k
h)− f̄h(z̄

k
h)
)2 ≤ (β̄1,h)

2,

where β̄1,h = Õ
(√

log(N · Nb)H
)

, and f̄h is the estimated function for first-moment Bellman
operator (Line 4 in Algorithm 1).

Lemma D.3 (Restatement of Lemma 6.1). For any stage h ∈ [H], let qfh+1(·, ·) ≤ H be the estimated
value function constructed in Algorithm 1 Line 7. By utilizing Assumption 3.3, there exists a function
ḡ′h ∈ Fh, satisfying that |ḡ′h(zh)− [T2,h qfh+1](zh)| ≤ ϵ holds for all state-action pair zh = (sh, ah).
Then with probability at least 1− δ/(4H), it holds that∑

k∈[K]

(
ḡ′h(z̄

k
h)− ḡh(z̄

k
h)
)2 ≤ (β̄2,h)

2,

where β̄2,h = Õ
(√

log(N · Nb)H
2
)
, and ḡh is the estimated function for second-moment Bellman

operator (Line 5 in Algorithm 1).
Recall the definition of the variance estimator.

f̄h = argmin
fh∈Fh

∑
k∈[K]

(
fh(s̄

k
h, ā

k
h)− r̄kh − qfh+1(s̄

k
h+1)

)2
ḡh = argmin

gh∈Fh

∑
k∈[K]

(
gh(s̄

k
h, ā

k
h)−

(
r̄kh + qfh+1(s̄

k
h+1)

)2)2

.

16

The variance estimator is defined as:

σ̂2
h(s, a) := max

{
1, ḡh(s, a)−

(
f̄h(s, a)

)2 − Õ
(√log(N · Nb)H

3

√
Kκ

)}
.

We can prove the following lemma:

Lemma D.4. with probability at least 1 − δ/2, for any h ∈ [H], the variance estimator designed
above satisfies:

[VhV
∗
h+1](s, a)− Õ

(√
log(N · Nb)H

3

√
Kκ

)
≤ σ̂2

h(s, a) ≤ [VhV
∗
h+1](s, a).

Proof of Lemma D.4. We write Bh(s, a) = ḡh(s, a) −
(
f̄h(s, a)

)2
. We first bound the difference

between Bh(s, a) and [Varh qfh+1](s, a). By the definition of conditional variance, we have∣∣∣Bh(s, a)− [Varh qfh+1](s, a)
∣∣∣ ≤ ∣∣∣ḡh(s, a)− [T2,h qfh+1](s, a)

∣∣∣+ ∣∣∣(f̄h(s, a))2 − ([Th qfh+1](s, a)
)2∣∣∣,

where we use our definition of Bellman operators. By Assumption 3.3, there exists f̄ ′
h ∈ Fh, ḡ′h ∈ Fh,

such that for all (s, a) ∣∣f̄ ′
h(s, a)− [Th qfh+1](s, a)

∣∣ ≤ ϵ (D.1)∣∣ḡ′h(s, a)− [T2,h qfh+1](s, a)
∣∣ ≤ ϵ. (D.2)

Then by Lemma D.2, with probability at least 1− δ/(4H2), the following inequality holds∑
k∈[K]

(
f̄h(z̄

k
h)− f̄ ′

h(z̄
k
h)
)2 ≤ (β̄1,h)

2. (D.3)

Similarly, for the second-order term, using Lemma D.3, with probability at least 1− δ/(4H2), the
following inequality holds ∑

k∈[K]

(
ḡh(z̄

k
h)− ḡ′h(z̄

k
h)
)2 ≤ (β̄2,h)

2. (D.4)

After taking a union bound, with probability at least 1−δ/(2H), (D.3) and (D.4) hold for all h ∈ [H]
simultaneously. Consequently, we focus on this high probability event and prove that∣∣∣ḡh(s, a)− [T2,h qfh+1](s, a)

∣∣∣+ ∣∣∣ (f̄h(s, a))2 − ([Th qfh+1](s, a)
)2∣∣∣

≤ ϵ+
∣∣ḡh(s, a)− ḡ′h(s, a)

∣∣+O(H) ·
[∣∣f̄h(s, a)− f̄ ′

h(s, a)
∣∣+ ϵ

]
= O(H) · ϵ+ |ḡh(s, a)− ḡ′h(s, a)|√∑

k∈[K]

(
ḡh(z̄kh)− ḡ′h(z̄

k
h)
)2

+ λ
·
√∑

k∈[K]

(
ḡh(z̄kh)− ḡ′h(z̄

k
h)
)2

+ λ

+O(H) ·
∣∣f̄h(s, a)− f̄ ′

h(s, a)
∣∣√∑

k∈[K]

(
f̄h(z̄kh)− f̄ ′

h(z̄
k
h)
)2

+ λ
·
√∑

k∈[K]

(
f̄h(z̄kh)− f̄ ′

h(z̄
k
h)
)2

+ λ

≤ O(H) · ϵ+ |ḡh(s, a)− ḡ′h(s, a)|√∑
k∈[K]

(
ḡh(z̄kh)− ḡ′h(z̄

k
h)
)2

+ λ
·
√
(β̄2,h)2 + λ

+O(H) · |f̄h(s, a)− f̄ ′
h(s, a)|√∑

k∈[K]

(
f̄h(z̄kh)− f̄ ′

h(z̄
k
h)
)2

+ λ
·
√
(β̄1,h)2 + λ

≤ Õ(
√
log(N · Nb)H

2) ·DFh
(z,D′

h, 1)

≤ Õ

(√
log(N · Nb)H

2

√
Kκ

)
,

17

where the first inequality holds due to the completeness assumption. The second inequality holds due
to (D.3) and (D.4). The third inequality holds due to Definition 3.4 . The last inequality holds due to
Lemma D.1. Therefore, we have∣∣∣Bh(s, a)− [Varh qfh+1](s, a)

∣∣∣ ≤ Õ

(√
log(N · Nb)H

2

√
Kκ

)
. (D.5)

To further bound the difference between
[
Varh qfh+1

]
(s, a) and [VarhV ∗

h+1](s, a), we prove
∥∥ qfh+1 −

V ∗
h+1

∥∥
∞ ≤ Õ

(√
log(N·Nb)H

3

√
Kκ

)
by induction.

At horizon H + 1, qfH+1 = V ∗
H+1 = 0, the inequality holds naturally. At horizon H , we have

Q∗
H(s, a) = [THV ∗

H+1](s, a)

= [TH qfH+1](s, a)

≥ f̄H(s, a)−
∣∣[TH qfH+1](s, a)− f̄H(s, a)

∣∣
≥ f̄H(s, a)− (ϵ+ |f̄ ′

H(s, a)− f̄H(s, a)|)
≥ f̄H(s, a)− b̄H(s, a)− ϵ

= qfH(s, a),

where the first inequality holds due to the triangle inequality. The second inequality holds due to
(D.1). The third inequality holds due to the property of the bonus function b̄H and (D.3). The last
equality holds due to our definition of qfH in Algorithm 1 Line 7. Therefore, V ∗

H(s) ≥ qfH(s) for all
s ∈ S.
We denote the policy derived from qfH by qπH , i.e. qπH(s) = argmaxa

qfH(s, a) and then we have

V ∗
H(s)− qfH(s) = ⟨Q∗

H(s, ·)− qfH(s, ·), π∗(·|s)⟩A + ⟨ qfH(s, ·), π∗
H(·|s)− qπH(·|s)⟩A

≤ ⟨Q∗
H(s, ·)− qfH(s, ·), π∗(·|s)⟩A

= ⟨[THV ∗
H+1](s, ·)− f̄H(s, ·) + b̄H(s, ·), π∗(·|s)⟩A

= ⟨[TH qfH+1](s, ·)− f̄H(s, ·) + b̄H(s, ·), π∗(·|s)⟩A
+ ⟨[THV ∗

H+1](s, ·)− [TH qfH+1](s, ·), π∗
H(·|s)⟩A

≤ 2⟨b̄H(s, ·), π∗
H(·, s)⟩A + ϵ

≤ Õ

(√
log(N · Nb)H√

Kκ

)
,

where the first inequality holds because the policy qπH takes the action which maximizes qfH . The
second inequality holds due to (D.1) and (D.3). For the last inequality, we use the choice of bH such
that for all z ∈ S ×A with constant 0 < C <∞

b̄H(z) ≤ C ·
(
DFH

(z;DH ; 1) ·
√

(β̄H)2 + λ+ ϵβ̄H

)
.

Therefore, we have maxz b̄H(z) ≤ Õ

(√
log(N·Nb)H√

Kκ

)
, which uses Lemma D.1 and βH =

Õ
(√

log(N · Nb)H
)
.

Next, we prove by induction. Let Rh = Õ

(√
log(N·Nb)H√

Kκ

)
· (H − h+ 1). We define the induction

assumption as follows: Suppose with the probability of 1− δh+1, the event Eh+1 = {0 ≤ V ∗
h+1(s)−

qfh+1(s) ≤ Rh+1} holds. Then we want to prove that with the probability of 1 − δh (δh will be
determined later), the event Eh = {0 ≤ V ∗

h (s)− qfh(s) ≤ Rh} holds.
Conditioned on the event Eh+1, using similar argument to stage H , we have

Q∗
h(s, a) = [ThV ∗

h+1](s, a)

≥ [Th qfh+1](s, a)

18

≥ f̄h(s, a)−
∣∣∣[Th qfh+1](s, a)− f̄h(s, a)

∣∣∣
≥ f̄h(s, a)−

(
ϵ+ |f̄ ′

h(s, a)− f̄h(s, a)|
)

≥ f̄h(s, a)− b̄h(s, a)− ϵ

= qfh(s, a).

where the first inequality holds due to Eh+1. The second inequality holds due to the triangle inequality.
The third inequality holds due to (D.1). The fourth inequality holds due to the property of the bonus
function b̄h and (D.3). The last equality holds due to our definition of qfh in Algorithm 1 Line 7.
Therefore, V ∗

h (·) ≥ qfh(·).
On the other hand, similar to the case at horizon H , we denote the policy derived from qfh by qπh, i.e.
qπh(s) = argmaxa

qfh(s, a). Taking a union bound over the event in Lemma D.1 and Eh+1, we have
with probability at least 1− δh+1 − δ/(2H2),

V ∗
h (s)− qfh(s) = ⟨Q∗

h(s, ·)− qfh(s, ·), π∗
h(·|s)⟩A + ⟨ qfh(s, ·), π∗

h(·|s)− qπh(·|s)⟩A
≤ ⟨Q∗

h(s, ·)− qfh(s, ·), π∗
h(·|s)⟩A

= ⟨[ThV ∗
h+1](s, ·)− f̄h(s, ·) + b̄h(s, a), π

∗
h(·|s)⟩A + ϵ

= ⟨[Th qfh+1](s, ·)− f̄h(s, ·) + b̄h(s, a), π
∗
h(·|s)⟩A

+ ⟨[ThV ∗
h+1](s, ·)− [Th qfh+1](s, ·), π∗

h(·|s)⟩A + ϵ

≤ 2⟨b̄h(s, ·), π∗
h(·, s)⟩A + 2ϵ+Rh+1

≤ Rh+1 + Õ

(√
log(N · Nb)H√

Kκ

)

≤ Õ

(√
log(N · Nb)H√

Kκ

)
· (H − h+ 1) = Rh,

where the first inequality holds because the policy qπH takes the action which maximizes qfH . The
second inequality holds due to (D.1) and (D.3). The third inequality holds due to Lemma D.1. The
last inequality holds due to the induction assumption. Therefore, we can choose δh = (H − h +
1)δ/(2H2) ≤ δ/2H . Taking a union bound over all h ∈ [H], we prove that with probability at least
1− δ/2, the following inequality holds for all h ∈ [H] simultaneously

0 ≤ V ∗
h+1(·)− qfh+1(·) ≤ Õ

(√
log(N · Nb)H

2

√
Kκ

)
. (D.6)

Conditioned on this event, we can further bound the difference between [Varh qfh+1](s, a) and
[VarhV ∗

h+1](s, a).∣∣∣∣[Varh qfh+1](s, a)− [VarhV ∗
h+1](s, a)

∣∣∣∣
≤
∣∣∣∣[Ph

qf2
h+1

]
(s, a)−

[
PhV

∗2
h+1

]
(s, a)

∣∣∣∣+ ∣∣∣∣([Ph
qfh+1

]
(s, a)

)2
−
([

PhV
∗
h+1

]
(s, a)

)2∣∣∣∣
≤ O(H) ·

∥∥∥V ∗
h+1 − qfh+1

∥∥∥
∞

≤ Õ

(√
log(N · Nb)H

3

√
Kκ

)
, (D.7)

where the first inequality holds due to the triangle inequality. The second inequality holds due to
V ∗
h+1,

qfh+1 ≤ H . The last inequality holds due to (D.6). Therefore, for any (s, a) ∈ S ×A, we have∣∣Bh(s, a)− [VarhV ∗
h+1](s, a)

∣∣ ≤ ∣∣∣Bh(s, a)−
[
Varh qfh+1

]
(s, a)

∣∣∣
+
∣∣∣[Varh qfh+1

]
(s, a)−

[
VarhV ∗

h+1

]
(s, a)

∣∣∣
19

≤ Õ

(√
log(N · Nb)H

3

√
Kκ

)
.

Thus, for any (s, a) ∈ S ×A, we have

Bh(s, a)− Õ

(√
log(N · Nb)H

3

√
Kκ

)
≤ [VarhV ∗

h+1](s, a),

where the first inequality holds due to the triangle inequality. The second inequality holds due to
(D.5) and (D.7). Finally, using the fact that the function max{1, ·} is increasing and nonexpansive,
we complete the proof of Lemma D.4, which is

[VhV
∗
h+1](s, a)− Õ

(√
log(N · Nb)H

3

√
Kκ

)
≤ σ̂2

h(s, a) ≤ [VhV
∗
h+1](s, a).

E PROOF OF LEMMAS IN SECTION D
E.1 PROOF OF LEMMA D.1
Proof of Lemma D.1. From the definition of D2 divergence (Definition 3.4), we have

D2
Fh

(z;Dh; 1) = sup
f1,f2∈Fh

(f1(z)− f2(z))
2∑

k∈[K]

(
f1(zkh)− f2(zkh)

)2
+ λ

(E.1)

By the Hoeffding’s inequality (Lemma I.3), with probability at least 1− δ/(N 2), we have∑
k∈[K]

(
f1(z

k
h)− f2(z

k
h)
)2 −KEµ,h

[
(f1(zh)− f2(zh))

2
]
≥ −2

√
2K log(N 2/δ) · ∥f1 − f2∥2∞.

Hence, after taking a union bound, we have with probability at least 1− δ, for all f1, f2 ∈ Fh,∑
k∈[K]

(
f1(z

k
h)− f2(z

k
h)
)2 ≥ KEµ,h

[
(f1(zh)− f2(zh))

2
]
− 2
√
2K log(N 2/δ) · ∥f1 − f2∥2∞

≥ K · κ∥f1 − f2∥2∞ − 2
√

2K log(N 2/δ) · ∥f1 − f2∥2∞, (E.2)

where the second inequality holds due to Assumption 3.6. Substituting (E.2) into (E.1), when the
size of dataset K ≥ Ω̃

(
logN
κ2

)
, we have

D2
Fh

(z;Dh; 1) ≤ sup
f1,f2∈Fh

(f1(z)− f2(z))
2

1
2K · κ∥f1 − f2∥2∞ + λ

= Õ

(
1

Kκ

)
.

E.2 PROOF OF LEMMA D.2
In the proof of Lemma D.2, we need to prove the following concentration inequality.

Lemma E.1. Based on the dataset D′ = {s̄kh, ākh, r̄kh}
K,H
k,h=1, we define the filtration

H̄k
h = σ

(
s̄11, ā

1
1, r̄

1
1, s̄

1
2, . . . , r̄

1
H , s̄1H+1; s̄

2
1, ā

2
1, r̄

2
1, s̄

2
2, . . . , r̄

2
H , s̄2H+1; . . . , s̄

k
1 , ā

k
1 , r̄

k
1 , s̄

k
2 , . . . , r̄

k
h, s̄

k
h+1

)
.

For any fixed functions f, f ′ : S → [0, H], we make the following definitions:

η̄kh[f
′] := f ′(s̄kh+1)− [Phf

′](s̄kh, ā
k
h)

D̄k
h[f, f

′] := 2η̄kh[f
′]
(
f(z̄kh)− [Thf ′](z̄kh)

)
.

Then with probability at least 1− δ/(4H2N 2N 2
b), the following inequality holds,

∑
k∈[K]

D̄k
h[f, f

′] ≤ (24H + 5)i2(δ) +

∑
k∈[K]

(
f(z̄kh)− [Thf ′](z̄kh)

)2
2

,

where i(δ) =
√
2 log (N·Nb)H(2 log(4K)+2)(log(2L)+2)

δ .

20

Proof of Lemma D.2. Let (β̄1,h)
2 = (48H2 + 10)i2(δ) + 16KHϵ. We define the event Ē1,h :={∑

k∈[K]

(
f̄ ′
h(z̄

k
h)− f̄h(z̄

k
h)
)2

> (β̄1,h)
2
}

. We have the following inequality:∑
k∈[K]

(
f̄ ′
h(z̄

k
h)− f̄h(z̄

k
h)
)2

=
∑

k∈[K]

[(
r̄kh + qfh+1(s̄

k
h+1)− f̄ ′

h(z̄
k
h)
)
+
(
f̄h(z̄

k
h)− r̄kh − qfh+1(s̄

k
h+1)

)]2
=
∑

k∈[K]

(
r̄kh + qfh+1(s̄

k
h+1)− f̄ ′

h(z̄
k
h)
)2

+
∑

k∈[K]

(
f̄h(z̄

k
h)− r̄kh − qfh+1(s̄

k
h+1)

)2
+ 2

∑
k∈[K]

(
r̄kh + qfh+1(s̄

k
h+1)− f̄ ′

h(z̄
k
h)
)(

f̄h(z̄
k
h)− r̄kh − qfh+1(s̄

k
h+1)

)
≤ 2

∑
k∈[K]

(
r̄kh + qfh+1(s̄

k
h+1)− f̄ ′

h(z̄
k
h)
)2

+ 2
∑

k∈[K]

(
r̄kh + qfh+1(s̄

k
h+1)− f̄ ′

h(z̄
k
h)
)(

f̄h(z̄
k
h)− r̄kh − qfh+1(s̄

k
h+1)

)
= 2

∑
k∈[K]

(
r̄kh + qfh+1(s̄

k
h+1)− f̄ ′

h(z̄
k
h)
) (

f̄h(z̄
k
h)− f̄ ′

h(z̄
k
h)
)
, (E.3)

where the first inequality holds due to our choice of f̄h, i.e.,

f̄h = argmin
fh∈Fh

∑
k∈[K]

(
fh(s̄

k
h, ā

k
h)− r̄kh − qfh+1(s̄

k
h+1)

)2
.

Next, we will use Lemma E.1. For any fixed h, let f = f̄h ∈ Fh, f ′ = qfh+1 = {f̄ − ϵ}[0,H−h+1],
where f̄ = f̄h − b̄h ∈ Fh −W . Following the construction in Lemma E.1, we define

η̄kh[f
′] = r̄sh + f ′(s̄kh+1)− E

[
r̄kh + f ′(s̄kh+1)|z̄kh

]
,

and D̄k
h[f, f

′] = 2η̄kh[f
′]
(
f(z̄kh)− [Thf̄ ′](z̄kh)

)
.

Due to the result of Lemma E.1, taking a union bound on the function class, with probability at least
1− δ/(4H2), the following inequality holds,

∑
k∈[K]

D̄k
h[f, f

′] ≤ (24H2 + 5)i2(δ) +

∑
k∈[K]

(
f(z̄kh)− [Thf ′](z̄kh)

)2
2

. (E.4)

Therefore, with probability at least 1− δ/(4H2), we have

2
∑

k∈[K]

(
r̄kh + qfh+1(s̄

k
h+1)− f̄ ′

h(z̄
k
h)
) (

f̄h(z̄
k
h)− f̄ ′

h(z̄
k
h)
)

= 2
∑

k∈[K]

(
r̄kh + qfh+1(s̄

k
h+1)− [Th qfh+1](z̄

k
h)
) (

f̄h(z̄
k
h)− f̄ ′

h(z̄
k
h)
)

+ 2
∑

k∈[K]

(
[Th qfh+1](z̄

k
h)− f̄ ′

h(z̄
k
h)
) (

f̄h(z̄
k
h)− f̄ ′

h(z̄
k
h)
)

(E.5)

≤ 2
∑

k∈[K]

(
r̄kh + qfh+1(s̄

k
h+1)− [Th qfh+1](z̄

k
h)
) (

f̄h(z̄
k
h)− f̄ ′

h(z̄
k
h)
)
+ 4KHϵ

≤ (24H2 + 5)i2(δ) + 4KHϵ+

∑
k∈[K]

(
f̄h(z̄

k
h)− [Th qfh+1](z̄

k
h)
)2

2
(E.6)

≤ (24H2 + 5)i2(δ) + 8KLϵ+

∑
k∈[K]

(
f̄ ′
h(z̄

k
h)− f̄h(z̄

k
h)
)2

2

21

=
(β̄1,h)

2

2
+

∑
k∈[K]

(
f̄ ′
h(z̄

k
h)− f̃ ′

h(z̄
k
h)
)2

2
. (E.7)

where the first and third inequalities hold because of the completeness assumption. The second
inequality holds due to (E.4). The last equality holds due to the choice of

β̄1,h =
√
2(24L2 + 5)i2(δ) + 16KLϵ = Õ

(√
log(N · Nb)H

)
.

However, conditioned on the event Ē1,h, we have

2
∑

k∈[K]

(
r̄kh + qfh+1(s̄

k
h+1)− f̄ ′

h(z̄
k
h)
) (

f̄h(z̄
k
h)− f̄ ′

h(z̄
k
h)
)

≥
∑

k∈[K]

(
f̄ ′
h(z̄

k
h)− f̄h(z̄

k
h)
)2

>
(β̄1,h)

2

2
+

∑
k∈[K]

(
f̄ ′
h(z̄

k
h)− f̄h(z̄

k
h)
)2

2
.

where the first inequality holds due to (E.3). The second inequality holds due to Ē1,h. This is
contradictory with (E.7). Thus, we have P[Ē1,h] ≤ δ/(4H2) and complete the proof of Lemma
D.2.

E.3 PROOF OF LEMMA D.3
To prove this lemma, we need a lemma similar to Lemma E.1

Lemma E.2. On dataset D′ = {s̄kh, ākh, r̄kh}
K,H
k,h=1, we define the filtration

H̄k
h = σ(s̄11, ā

1
1, r̄

1
1, s̄

1
2, . . . , r̄

1
H , s̄1H+1; s̄

2
1, ā

2
1, r̄

2
1, s̄

2
2, . . . , r̄

2
H , s̄2H+1; . . . , s̄

k
1 , ā

k
1 , r̄

k
1 , s̄

k
2 , . . . , r̄

k
h, s̄

k
h+1).

For any fixed function f, f ′ : S → [0, H], we make the following definitions:

η̄kh[f
′] :=

(
r̄kh + f ′(s̄kh+1)

)2 − [Ph(r̄h + f ′)2
] (

s̄kh, ā
k
h

)
D̄k

h[f, f
′] := 2η̄kh[f

′]
(
f(z̄kh)− [T2,hf ′](z̄kh)

)
.

Then with probability at least 1− δ/(4H2N 2N 2
b), the following inequality holds,

∑
k∈[K]

D̄k
h[f, f

′] ≤ (24H + 5)i′2(δ) +

∑
k∈[K]

(
f(z̄kh)− [T2,hf ′](z̄kh)

)2
2

,

where i′(δ) =
√
4 log (N·Nb)H(2 log(4LK)+2)(log(4L)+2)

δ .

Proof of Lemma D.3. Let (β̄2,h)
2 = (40H4 + 10)i′2(δ) + 16KLϵ. We define the event Ē2,h :={∑

k∈[K]

(
ḡ′h(z̄

k
h)− ḡh(z̄

k
h)
)2

> (β̄2,h)
2
}

. We can prove the following inequality:∑
k∈[K]

(
ḡ′h(z̄

k
h)− ḡh(z̄

k
h)
)2

=
∑

k∈[K]

[((
r̄kh + qfh+1(s̄

k
h+1)

)2 − ḡ′h(z̄
k
h)
)
+
(
ḡh(z̄

k
h)−

(
r̄kh + qfh+1(s̄

k
h+1)

)2)]2
=
∑

k∈[K]

((
r̄kh + qfh+1(s̄

k
h+1)

)2 − ḡ′h(z̄
k
h)
)2

+
∑

k∈[K]

(
ḡh(z̄

k
h)−

(
r̄kh + qfh+1(s̄

k
h+1)

)2)2
+ 2

∑
k∈[K]

((
r̄kh + qfh+1(s̄

k
h+1)

)2 − ḡ′h(z̄
k
h)
)(

ḡh(z̄
k
h)−

(
r̄kh + qfh+1(s̄

k
h+1)

)2)
≤ 2

∑
k∈[K]

((
r̄kh + qfh+1(s̄

k
h+1)

)2 − ḡ′h(z̄
k
h)
)2

22

+ 2
∑

k∈[K]

((
r̄kh + qfh+1(s̄

k
h+1)

)2 − ḡ′h(z̄
k
h)
)(

ḡh(z̄
k
h)−

(
r̄kh + qfh+1(s̄

k
h+1)

)2)
= 2

∑
k∈[K]

((
r̄kh + qfh+1(s̄

k
h+1)

)2 − ḡ′h(z̄
k
h)
) (

ḡh(z̄
k
h)− ḡ′h(z̄

k
h)
)
, (E.8)

where the first inequality holds due to our choice of ḡh, i.e.

ḡh = argmin
gh∈Fh

∑
k∈[K]

(
gh(s̄

k
h, ā

k
h)− (r̄kh + qfh+1(s̄

k
h+1))

2
)2

.

Next, we will use Lemma E.2. For any fixed h, let f = ḡh ∈ Fh, f ′ = qfh+1 = {f̄ − ϵ}[0,H−h+1],
where f̄ = f̄h − b̄h ∈ Fh −W . Following the construction in Lemma E.2, we define

η̄kh[f
′] :=

(
r̄kh + f ′(s̄kh+1)

)2 − [Ph(r̄h + f ′)2
]
(s̄kh, ā

k
h)

and D̄k
h[f, f

′] := 2η̄kh[f
′]
(
f(z̄kh)− [T2,hf ′](z̄kh)

)
.

Due to the result of Lemma E.2, taking a union bound on the function, with probability at least
1− δ/(4H2), the following inequality holds,∑

k∈[K]

D̄k
h[f, f

′] ≤ (20H4 + 5)i2(δ) +

∑
k∈[K]

(
f(z̄kh)− [T2,hf ′](z̄kh)

)2
2

. (E.9)

Therefore, with probability at least 1− δ/(4H2), we have

2
∑

k∈[K]

((
r̄kh + qfh+1(s̄

k
h+1)

)2 − ḡ′h(z̄
k
h)
) (

ḡh(z̄
k
h)− ḡ′h(z̄

k
h)
)

= 2
∑

k∈[K]

((
r̄kh + qfh+1(s̄

k
h+1)

)2 − [T2,h qfh+1](z̄
k
h)
) (

ḡh(z̄
k
h)− ḡ′h(z̄

k
h)
)

+ 2
∑

k∈[K]

(
[T2,h qfh+1](z̄

k
h)− ḡ′h(z̄

k
h)
) (

ḡh(z̄
k
h)− ḡ′h(z̄

k
h)
)

≤ 2
∑

k∈[K]

((
r̄kh + qfh+1(s̄

k
h+1)

)2 − [T2,h qfh+1](z̄
k
h)
) (

ḡh(z̄
k
h)− ḡ′h(z̄

k
h)
)
+ 4KLϵ

≤ (20H4 + 5)i′2(δ) + 4KLϵ+

∑
k∈[K]

(
ḡh(z̄

k
h)− [T2,h qfh+1](z̄

k
h)
)2

2

≤ (20H4 + 5)i′2(δ) + 8KLϵ+

∑
k∈[K]

(
ḡ′h(z̄

k
h)− ḡh(z̄

k
h)
)2

2

≤ (β̄2,h)
2

2
+

∑
k∈[K]

(
ḡ′h(z̄

k
h)− ḡh(z̄

k
h)
)2

2
, (E.10)

where the first and third inequalities hold due to the Bellman completeness assumption. The second
inequality holds due to (E.9). The last inequality holds due to the choice of

β̄2,h =
√
(40H4 + 10)i′2(δ) + 16KLϵ = Õ(

√
log(N · Nb)H

2).

However, conditioned on the event Ē2,h, we have

2
∑

k∈[K]

(
(r̄kh + qfh+1(s̄

k
h+1))

2 − ḡ′h(z̄
k
h)
) (

ḡh(z̄
k
h)− ḡ′h(z̄

k
h)
)

≥
∑

k∈[K]

(
ḡ′h(z̄

k
h)− ḡh(z̄

k
h)
)2

>
(β̄2,h)

2

2
+

∑
k∈[K]

(
ḡ′h(z̄

k
h)− ḡh(z̄

k
h)
)2

2
,

where the first inequality holds due to (E.8). The last inequality holds due to Ē2,h. It is contradictory
with (E.10). Thus, we have P[Ē2,h] ≤ δ/(4H2) and complete the proof of Lemma D.3.

23

F PROOF OF THEOREM 5.1
In this section, we prove Theorem 5.1. The proof idea is similar to that of Section D. To start with,
we prove that our data coverage assumption (Assumption 3.6) can lead to an upper bound of the
weighted D2-divergence for a large dataset.
Lemma F.1. Let Dh be a dataset satisfying Assumption 3.6. When the size of data set satisfies
K ≥ Ω̃

(
logN
κ2

)
, σ̂h ≤ H , with probability at least 1− δ, for each state-action pair z, we have

DFh
(z,Dh, σ̂

2
h) = Õ

(
H√
Kκ

)
.

With Lemma D.4, we can prove a variance-weighted version of concentration inequality.
Lemma F.2 (Restatement of Lemma 6.3). Suppose the variance function σ̂h satisfies the inequality
in Lemma D.4. at stage h ∈ [H], the estimated value function f̂h+1 in Algorithm 1 is bounded
by H . According to Assumption 3.3, there exists some function f̄h ∈ Fh, such that |f̄h(zh) −
[Thf̂h+1](z)| ≤ ϵ for all zh = (sh, ah). Then with probability at least 1 − δ/2, the following
inequality holds for all stage h ∈ [H] simultaneously,∑

k∈[K]

1

(σ̂h(zkh))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2
≤ (βh)

2.

With these lemmas, we can start the proof of Theorem 5.1.

Proof of Theorem 5.1. For any state-action pair z = (s, a) ∈ S ×A, we have∣∣∣[Thf̂h+1](z)− f̃h(z)
∣∣∣ ≤ ∣∣∣[Thf̂h+1](z)− f̄h(z)

∣∣∣︸ ︷︷ ︸
I1

+
∣∣∣f̄h(z)− f̃h(z)

∣∣∣
≤ ϵ+ bh(z),

where we bound I1 with the Bellman completeness assumption. For the second term, we use the
property of the bonus function and Lemma F.2. Using Lemma I.2, we have

V ∗
1 (s)− V π̂

1 (s) ≤ 2

H∑
h=1

Eπ∗ [bh (sh, ah) | s1 = s] + 2ϵH

≤
H∑

h=1

Eπ∗

[
DFh

(zh;Dh; σ̂
2
h) ·

√
(βh)2 + λ | s1 = s

]
+ 2ϵH

≤ Õ
(√

logN
) H∑

h=1

Eπ∗
[
DFh

(zh;Dh; σ̂
2
h) | s1 = s

]
≤ Õ

(√
logN

) H∑
h=1

Eπ∗
[
DFh

(
zh;Dh; [VhV

∗
h+1](·, ·)

)
| s1 = s

]
,

where the first inequality holds due to Lemma I.2. The second inequality holds due to the property of
the bonus function

bh(z) ≤ C ·
(
DFh

(z;Dh; σ̂
2
h) ·

√
(βh)2 + λ+ ϵβh

)
.

The third inequality holds due to our choice of βh = Õ
(√

logN
)
. The last inequality holds due to

Lemma D.4 and the fact that D2-divergence is increasing with respect to the variance function. We
complete the proof of Theorem 5.1.

G PROOF OF THE LEMMAS IN SECTION F
G.1 PROOF OF LEMMA F.1
Proof of Lemma F.1. From the definition of D2 divergence, we have

D2
Fh

(z;Dh; σ̂
2
h) = sup

f1,f2∈Fh

(f1(z)− f2(z))
2∑

k∈[K]
1

(σ̂h(zk
h))

2

(
f1(zkh)− f2(zkh)

)2
+ λ

(G.1)

24

By the Hoeffding’s inequality (Lemma I.3), with probability at least 1− δ/(N 2),∑
k∈[K]

(
f1(z

k
h)− f2(z

k
h)
)2 −KEµ,h

[
(f1(zh)− f2(zh))

2
]
≥ −2

√
2K log(N 2/δ) · ∥f1 − f2∥2∞.

Hence, after taking a union bound, we have with probability at least 1− δ, for all f1, f2 ∈ Fh,∑
k∈[K]

1

(σ̂h(zkh))
2

(
f1(z

k
h)− f2(z

k
h)
)2

≥ 1

H2

(
KEµ,h

[
(f1(zh)− f2(zh))

2
]
− 2
√

2K log(N 2/δ) · ∥f1 − f2∥2∞
)

≥ 1

H2

(
K · κ∥f1 − f2∥2∞ − 2

√
2K log(N 2/δ) · ∥f1 − f2∥2∞

)
, (G.2)

where the last inequality holds due to Assumption 3.6. Substituting (G.2) into (G.1), when K ≥
Ω̃
(

logN
κ

)
, we have

D2
Fh

(z;Dh; σ̂
2
h) ≤ sup

f1,f2∈Fh

H2(f1(z)− f2(z))
2

1
2K · κ∥f1 − f2∥2∞ + λ

= Õ

(
H2

Kκ2

)
.

G.2 PROOF OF LEMMA F.2
In this section, we assume the high probability event in Lemma D.4 holds,i.e., the following inequality
holds:

[VhV
∗
h+1](s, a)− Õ

(√
log(N · Nb)H

3

√
Kκ

)
≤ σ̂2

h(s, a) ≤ [VhV
∗
h+1](s, a). (G.3)

To prove Lemma F.2, we need the following lemmas.

Lemma G.1. Based on the dataset D = {skh, akh, rkh}
K,H
k,h=1, we define the filtration Hk

h =

σ(s11, a
1
1, r

1
1, s

1
2, . . . , r

1
H , s1H+1;x

2
1, a

2
1, r

2
1, s

2
2, . . . , r

2
H , s2H+1; · · · sk1 , ak1 , rk1 , sk2 , . . . , rkh, skh+1). For

any fixed function f, f ′ : S →∈ [0, L], we define the following random variables:

ηkh := V ∗
h+1(s

k
h+1)− [PhV

∗
h+1](s

k
h, a

k
h)

Ds
h[f, f

′] := 2
ηkh

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)
,

As the variance function σ̂h satisfies (G.3), with probability at least 1− δ/(4H2N 2), the following
inequality holds, ∑

k∈[K]

Dk
h[f, f

′] ≤ 4

3
v(δ)
√
λ+
√
2v(δ) + 30v2(δ)

+

∑
k∈[K]

1

(σ̂h(zk
h))

2

(
f(zkh)− f ′(zkh)

)2
4

,

where v(δ) =
√
2 log HN (2 log(18LT)+2)(log(18L)+2)

δ .

Lemma G.2. Based on the dataset D =
{
skh, a

k
h, r

k
h

}K,H

k,h=1
, we define the following filtrationHk

h =

σ
(
s11, a

1
1, r

1
1, s

1
2, . . . , r

1
H , s1H+1;x

2
1, a

2
1, r

2
1, s

2
2, . . . , r

2
H , s2H+1; · · · sk1 , ak1 , rk1 , sk2 , . . . , rkh, skh+1

)
. For

any fixed functions f, f̃ : S → [0, L] and f ′ : S → [0, H], we define the following random
variables

ξkh[f
′] := f ′(skh+1)− V ∗

h+1(s
k
h+1)−

[
Ph(f

′ − V ∗
h+1)

]
(skh, a

k
h),

∆k
h

[
f, f̃ , f ′

]
:= 2

ξkh[f
′]

(σ̂h(zkh))
2

(
f(zkh)− f̃(zkh)

)
,

25

As the variance function σ̂h satisfies (G.3), with probability at least 1−δ/(4H2N 3Nb), the following
inequality holds,∑

k∈[K]

∆k
h[f, f̃ , f

′] ≤
(
4

3
ι(δ)
√
λ+
√
2ι(δ)

)
∥f ′ − V ∗

h+1∥2∞ +
2

3
ι2(δ)/ logNb

+ 30ι2(δ)∥f ′ − V ∗
h+1∥2∞ +

∑
k∈[K]

1
(σ̂h(zk

h))
2 (f(z

k
h)− f ′(zkh))

2

4
.

where ι(δ) =
√
3 log H(N·Nb)(2 log(18LT)+2)(log(18L)+2)

δ .

With these lemmas, we can start the proof of Lemma F.2.

Proof of Lemma F.2. We define the event Eh :=

{∑
k∈[K]

1
(σ̂(zk

h))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2

> (βh)
2

}
.

We have the following inequality:∑
k∈[K]

1

(σ̂(zkh))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2

=
∑

k∈[K]

1

(σ̂(zkh))
2

[(
rkh + f̂h+1(s

k
h+1)− f̄h(z

k
h)
)
+
(
f̃h(z

k
h)− rkh − f̂h+1(s

k
h+1)

)]2
=
∑

k∈[K]

1

(σ̂(zkh))
2

(
rkh + f̂h+1(s

k
h+1)− f̄h(z

k
h)
)2

+
∑

k∈[K]

1

(σ̂(zkh))
2

(
f̃h(z

k
h)− rkh − f̂h+1(s

k
h+1)

)2
+ 2

∑
k∈[K]

1

(σ̂(zkh))
2

(
rkh + f̂h+1(s

k
h+1)− f̄h(z

k
h)
)(

f̃h(z
k
h)− rkh − f̂h+1(s

k
h+1)

)
≤ 2

∑
k∈[K]

1

(σ̂(zkh))
2

(
rkh + f̂h+1(s

k
h+1)− f̄h(z

k
h)
)2

+ 2
∑

k∈[K]

1

(σ̂(zkh))
2

(
rkh + f̂h+1(s

k
h+1)− f̄h(z

k
h)
)(

f̃h(z
k
h)− rkh − f̂h+1(s

k
h+1)

)
= 2

∑
k∈[K]

1

(σ̂(zkh))
2

(
rkh + f̂h+1(s

k
h+1)− f̄h(z

k
h)
)(

f̃h(z
k
h)− f̄h(z

k
h)
)
. (G.4)

where the first inequality holds due to our choice of f̃h in Algorithm 1 Line 12,

f̃h = argmin
fh∈Fh

∑
k∈[K]

1

(σ̂(zkh))
2

(
fh(s

k
h, a

k
h)− rkh − f̂h+1(s

k
h+1)

)2
.

We prove this lemma by induction. At horizon H , we first use Lemma G.1. Let f = f̃H ∈ FH ,
f ′ = f̄H ∈ FH . We define

ηkH := V ∗
H+1(s

k
H+1)− [PHV ∗

H+1](z
k
H)

Dk
H [f, f ′] := 2

ηkH
(σ̂H(zkH))2

(
f(zkH)− f ′(zkH)

)
.

Taking a union bound over the function class, with probability at least 1− δ/(4H2), the following
inequality holds,∑

k∈[K]

2
ηkH

(σ̂H

(
zkH)

)2 (f̃(zkH)− f̄(zkH)
)
≤ 4

3
v(δ)
√
λ+
√
2v(δ) + 30v2(δ)

+

∑
k∈[K]

1

(σ̂H(zk
H))

2 (f̃(zkH)− f̄(zkH))2

4
. (G.5)

26

Then we use Lemma G.2. Let f = f̃H ∈ FH , f̃ = f̄H ∈ FH , f ′ = f̂H+1 = 0. We define:

ξkH [f ′] := f ′(skH+1)− V ∗
H+1(s

k
H+1)− [PH(f ′ − V ∗

H+1)](z
k
H)

∆k
H [f, f̃ , f ′] := 2

ξkH [f ′]

(σ̂H(zkH))2

(
f(zkH)− f̃(zkH)

)
.

Taking a union bound over the function class, with probability at least 1− δ/(4H2), we have∑
k∈[K]

2
ξkH [f̂H+1]

(σ̂H(zkH))2

(
f̃H(zkH)− f̄H(zkH)

)
≤
(
4

3
ι(δ)
√
λ+
√
2ι(δ)

)
∥f ′ − V ∗

H+1∥2∞

+
2

3
ι2(δ)/

√
logNb + 30ι2(δ)∥f̂H+1 − V ∗

H+1∥2∞ +

∑
k∈[K]

1
(σ̂H(zk

H))2

(
f̃H(zkH)− f̄H(zkH)

)2
4

.

(G.6)

Combining (G.5) and (G.6), we have with probability at least 1− δ/(2H2), the following inequality
holds:

2
∑

k∈[K]

1

(σ̂H(zkH))2

(
rkH + f̂H+1(s

k
H+1)− f̄H(zkH)

)(
f̃H(zkH)− f̄H(zkH)

)
= 2

∑
k∈[K]

1

(σ̂H(zkH))2

(
rkH + f̂H+1(s

k
H+1)− [TH f̂H+1](z

k
H)
)(

f̃H(zkH)− f̄H(zkH)
)

+ 2
∑

k∈[K]

1

(σ̂H(zkH))2

(
[TH f̂H+1](z

k
H)− f̄H(zkH)

)(
f̃H(zkH)− f̄H(zkH)

)
≤ 2

∑
k∈[K]

1

(σ̂H(zkH))2

(
rkH + f̂H+1(s

k
H+1)− [TH f̂H+1](z

k
H)
)(

f̃H(zkH)− f̄H(zkH)
)
+ 4KLϵ

≤ 4

3
v(δ)
√
λ+
√
2v(δ) + 30v2(δ) +

(
4

3
ι(δ)
√
λ+
√
2ι(δ)

)
∥f ′ − V ∗

H+1∥2∞ +
2

3
ι2(δ)/logNb

+ 30ι2(δ)∥f̂H+1 − V ∗
H+1∥2∞ + 8KLϵ+

∑
k∈[K]

1
(σ̂H(zk

H))2

(
f̄H(zkH)− f̃H(zkH)

)2
2

≤ (βH)2

2
+

∑
k∈[K]

1
(σ̂H(zk

H))2

(
f̄H(zkH)− f̃H(zkH)

)2
2

, (G.7)

where the first inequality holds due to the complete assumption. The second inequality holds due
to (G.5) and (G.6). The last inequality holds due to the fact f̂H+1 = V ∗

H+1 = 0 and our choice of
βH ,i.e.,

βH =

√
2

(
4

3
v(δ)
√
λ+
√
2v(δ) + 30v2(δ) +

2

3
ι2(δ)/logNb + 8KLϵ

)
= Õ(

√
logN).

However, conditioned on the event EH , we have∑
k∈[K]

1

(σ̂H(zkH))2

(
rkH + f̂H+1(s

k
H+1)− f̄H(zkH)

)(
f̃H(zkH)− f̄H(zkH)

)
≥
∑

k∈[K]

1

(σ̂H(zkH))2

(
f̄H(zkH)− f̃H(zkH)

)2

>
(βH)2

2
+

∑
k∈[K]

1
(σ̂(zk

H))2

(
f̄H(zkH)− f̃H(zkH)

)2
2

,

where the first inequality holds due to (G.4). The second inequality holds due to EH . It contradicts
with (G.7). Therefore, we prove that P[EH] ≥ 1− δ/2H2.

27

Suppose the event EH holds, we can prove the following result.

Q∗
H(s, a) = [THV ∗

H+1](s, a)

= [TH f̂H+1](s, a)

≥ f̃H(s, a)−
∣∣∣[TH f̂H+1](s, a)− f̃H(s, a)

∣∣∣
≥ f̃H(s, a)−

(
ϵ+ |f̄H(s, a)− f̃H(s, a)|

)
≥ f̃H(s, a)− bH(s, a)− ϵ

= f̂H(s, a).

where the first inequality holds due to the triangle inequality. The second inequality holds due to the
completeness assumption. The third inequality holds due to the property of the bonus function and∑

k∈[K]

1

(σ̂h(zkh))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2
≤ (βh)

2.

by Lemma F.2. Therefore, V ∗
H(s) ≥ f̂H(s) for all s ∈ S.

We also have

V ∗
H(s)− f̂H(s) = ⟨Q∗

H(s, ·)− f̂H(s, ·), π∗(·|s)⟩A + ⟨f̂H(s, ·), π∗
H(·|s)− π̂H(·|s)⟩A

≤ ⟨Q∗
H(s, ·)− f̂H(s, ·), π∗(·|s)⟩A

= ⟨[THV ∗
H](s, ·)− f̃H(s, ·) + bH(s, a), π∗(·|s)⟩A

= ⟨[TH f̂H+1](s, ·)− f̃H(s, ·) + bH(s, a), π∗(·|s)⟩A
+ ⟨[THV ∗

H+1](s, ·)− [TH f̂H+1](s, ·), π∗
H(·|s)⟩A

≤ 2⟨bH(s, ·), π∗
H(·|s)⟩A + ϵ

≤ Õ

(√
logNH2

√
Kκ

)
,

where the first inequality holds due to the policy π̂H takes the action which maximizes f̂H . The
second inequality holds due to the Bellman completeness assumption. The last inequality holds due
to the property of the bonus function

bH(z) ≤ C ·
(
DFH

(z;DH ; σ̂H) ·
√
(βH)2 + λ+ ϵβH

)
and Lemma F.1.
Then we do the induction step. Let Rh = Õ

(√
logNH2

√
Kκ

)
· (H − h+1), δh = (H − h+1)δ/(4H2).

We define another event E ind
h for induction.

E ind
h = {0 ≤ V ∗

h (s)− f̂h(s) ≤ Rh,∀s ∈ S}.

The above analysis shows that EH ⊆ E ind
H and P[EH] ≥ 1− 2δH . Moreover, P[E ind

H] ≥ 1− 2δH
We conduct the induction in the following way. At stage h, if P[Eh+1] ≥ 1− 2δh+1 and P[E ind

h+1] ≥
1− 2δh+1, we prove that P[Eh] ≥ 1− 2δh and P[E ind

h] ≥ 1− 2δh.
Suppose at stage h, P[Eh+1] ≥ 1− 2δh+1 and P[E ind

h+1] ≥ 1− 2δh+1. We first use Lemma G.1. Let
f = f̃h ∈ Fh, f ′ = f̄h ∈ Fh. We define

ηkh := V ∗
h+1(s

k
h+1)− [PhV

∗
h+1](z

k
h)

Dk
h[f, f

′] := 2
ηkh

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)
.

After taking a union bound, we have with probability at least 1− δ/(4H2), the following inequality
holds,∑

k∈[K]

2
ηkh

(σ̂h(zkh))
2

(
f̃(zkh)− f̄(zkh)

)
≤ 4

3
v(δ)
√
λ+
√
2v(δ) + 30v2(δ)

28

+

∑
k∈[K]

1
(σ̂h(zk

h))
2

(
f̃(zkh)− f̄(zkh)

)2
4

. (G.8)

Next, we use Lemma G.2 at stage h. Let f = f̃h ∈ Fh, f̃ = f̄h ∈ Fh, f ′ = f̂h+1 = {b̃}[0,H−h+1],
where b̃ = f̃h − bh ∈ Fh −W . We define:

ξkh[f
′] := f ′(skh+1)− V ∗

h+1(s
k
h+1)−

[
Ph(f

′ − V ∗
h+1)

]
(zkh)

∆k
h[f, f̃ , f

′] := 2
ξkh[f

′]

(σ̂h(zkh))
2

(
f(zkh)− f̃(zkh)

)
,

After taking a union bound, we have with probability at least 1− δ/(4H2), we have∑
k∈[K]

2
ξkh[f̂h+1]

(σ̂h(zkh))
2

(
f̃h(z

k
h)− f̄h(z

k
h)
)
≤
(
4

3
ι(δ)
√
λ+
√
2ι(δ)

)
∥f ′ − V ∗

h+1∥2∞

+
2

3
ι2(δ)/

√
logNb + 30ι2(δ)∥f̂h+1 − V ∗

h+1∥2∞ +

∑
k∈[K]

1
(σ̂h(zk

h))
2 (f̃h(z

k
h)− f̄h(z

k
h))

2

4
.

(G.9)

Let Uh be the event that (G.8) and (G.9) holds simultaneously. On the event Uh ∩ E ind
h+1, which

satisfies P[Uh ∩ E ind
h+1] ≥ 1− 2δh+1 − 2δ/H2 = 1− 2δh, we have

2
∑

k∈[K]

1

(σ̂h(zkh))
2

(
rkh + f̂h+1(s

k
h+1)− f̄h(z

k
h)
)(

f̃h(z
k
h)− f̄h(z

k
h)
)

= 2
∑

k∈[K]

1

(σ̂h(zkh))
2

(
rkh + f̂h+1(s

k
h+1)− [Thf̂h+1](z

k
h)
)(

f̃h(z
k
h)− f̄h(z

k
h)
)

+ 2
∑

k∈[K]

1

(σ̂h(zkh))
2

(
[Thf̂h+1](z

k
h)− f̄h(z

k
h)
)(

f̃h(z
k
h)− f̄h(z

k
h)
)

≤ 2
∑

k∈[K]

1

(σ̂h(zkh))
2

(
rkh + f̂h+1(s

k
h+1)− [Thf̂h+1](z

k
h)
)(

f̃h(z
k
h)− f̄h(z

k
h)
)
+ 4KLϵ

≤ 4

3
v(δ)
√
λ+
√
2v(δ) + 30v2(δ) +

(
4

3
ι(δ)
√
λ+
√
2ι(δ)

)
∥f̂h+1 − V ∗

h+1∥2∞

+
2

3
ι2(δ)/ logNb + 30ι2(δ)∥f̂h+1 − V ∗

h+1∥2∞ + 8KLϵ+

∑
k∈[K]

1
(σ̂h(zk

h))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2

2

≤ (βh)
2

2
+

∑
k∈[K]

1
(σ̂(zk

h))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2

2
, (G.10)

where the first inequality holds due to the completeness assumption. The second inequality holds
due to (G.8) and (G.9). The last inequality holds due to the event E ind

h+1 and the choice of K ≥
Ω̃
(

ι(δ)2H6

κ

)
.

However, on the event of Ec
h, we have

2
∑

k∈[K]

1

(σ̂(zkh))
2

(
rkh + f̂h+1(s

k
h+1)− f̄h(z

k
h)
)(

f̃h(z
k
h)− f̄h(z

k
h)
)

≥
∑

k∈[K]

1

(σ̂(zkh))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2

>
(βh)

2

2
+

∑
k∈[K]

1
(σ̂(zk

h))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2

2
.

where the first inequality holds due to (G.4). The second inequality holds due to event Ec
h. However,

this contradicts with (G.10). We conclude that Uh ∩ E ind
h+1 ⊆ Eh, thus P[Eh] ≥ 1− 2δh.

29

Next we prove P[E ind
h] ≥ 1− 2δh. Suppose the event Uh ∩ E ind

h+1 holds, the above conclusion shows
that ∑

k∈[K]

1

(σ̂h(zkh))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2

> (βh)
2.

We can prove the following result.

Q∗
h(s, a) = [ThV ∗

h+1](s, a)

≥ [Thf̂h+1](s, a)

≥ f̃h(s, a)− |[Thf̂h+1](s, a)− f̃h(s, a)|

≥ f̃h(s, a)− (ϵ+ |f̄h(s, a)− f̃h(s, a)|)

≥ f̃h(s, a)− bh(s, a)

= f̂h(s, a),

where the first inequality hold due to the event E ind
h . The second inequality holds due to the triangle

inequality. The third inequality holds due to the completeness assumption. The last inequality holds
due to the property of the bonus function and∑

k∈[K]

1

(σ̂h(zkh))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2
≤ (βh)

2.

Therefore, V ∗
h (s) ≥ f̂h(s) for all s ∈ S.

We also have

V ∗
h (s)− f̂h(s) = ⟨Q∗

h(s, ·)− f̂h(s, ·), π∗(·|s)⟩A + ⟨f̂h(s, ·), π∗
h(·|s)− π̂h(·|s)⟩A

≤ ⟨Q∗
h(s, ·)− f̂h(s, ·), π∗(·|s)⟩A

= ⟨[ThV ∗
h](s, ·)− f̃h(s, ·) + bh(s, a), π

∗(·|s)⟩A
= ⟨[Thf̂h+1](s, ·)− f̃h(s, ·) + bh(s, a), π

∗(·|s)⟩A
+ ⟨[ThV ∗

h+1](s, ·)− [Thf̂h+1](s, ·), π∗
h(·|s)⟩A

≤ 2⟨bh(s, ·), π∗
h(·, s)⟩A + ϵ+Rh+1

≤ Õ

(√
logNH2

√
Kκ

)
· (H − h+ 1) = Rh.

where the first inequality holds due to the policy π̂h takes the action which maximizes f̂h. The second
inequality holds due to the Bellman completeness assumption. The second inequality holds due to
the property of the bonus function

bh(z) ≤ C ·
(
DFh

(z;Dh; σ̂
2
h) ·

√
(βh)2 + λ+ ϵβh

)
and Lemma F.1. The last inequality holds due to the induction assumption. Therefore, we have
Uh ∩ E ind

h+1 ⊆ E ind
h and P[E ind

h] ≥ 1− 2δh. Thus we complete the proof of induction.
Finally, taking the union bound of all the Eh, we get the result that with probability at least 1− δ/2,
the event ∪Hh=1Eh holds, i.e for any h ∈ [H] simultaneously, we have∑

k∈[K]

1

(σ̂h(zkh))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2
≤ (βh)

2.

Therefore, we complete the proof of Lemma F.2.

H PROOF OF LEMMAS IN SECTION E AND G
H.1 PROOF OF LEMMA E.1
Proof of Lemma E.1. We use Lemma I.1, with the following conditions:

D̄k
h[f, f

′] is adapted to the filtration H̄k
h and E

[
D̄k

h[f, f
′] | H̄k−1

h

]
= 0.

30

∣∣D̄k
h[f, f

′]
∣∣ ≤ 2

∣∣η̄kh∣∣max
z
|f(z)− [Thf ′](z)| ≤ 4H2 = M.∑

k∈[K]

E
[(
D̄k

h[f, f
′]
)2 ∣∣∣z̄kh] = ∑

k∈[K]

E
[
4
(
η̄kh[f

′]
)2 ∣∣∣z̄kh] (f(z̄kh)− [Thf ′](z̄kh)

)2 ≤ (4HK)2 = V 2.

On the other hand,∑
k∈[K]

E
[(
D̄k

h[f, f
′]
)2 ∣∣∣z̄kh] = ∑

k∈[K]

E
[
4
(
η̄kh[f

′]
)2 ∣∣∣z̄kh] (f(z̄kh)− [Thf ′](z̄kh)

)2
≤ 8H2

∑
k∈[K]

(
f(z̄kh)− [Thf ′](z̄kh)

)2
.

Then using Lemma I.1 with v = 1, m = 1, with at least 1− δ/(4H2N 2N 2
b)∑

k∈[K]

2η̄kh[f
′]
(
f(z̄kh)− [Thf ′](z̄kh)

)
≤ i(δ)

√
2(2 · 8H2)

∑
k∈[K]

(
f(z̄kh)− [Thf ′](z̄kh)

)2
+

2

3
i2(δ) +

4

3
i2(δ) · 4H2

≤ (24H2 + 5)i2(δ) +

∑
k∈[K]

(
f(z̄kh)− [Thf ′](z̄kh)

)2
2

.

We complete the proof of Lemma E.1.

H.2 PROOF OF LEMMA E.2
Proof of Lemma E.2. We use Lemma I.1, with the following conditions:

D̄k
h[f, f

′] is adapted to the filtration H̄k
h and E

[
D̄k

h[f, f
′] | H̄k−1

h

]
= 0.∣∣D̄k

h[f, f
′]
∣∣ ≤ 2|η̄kh|max

z
|f(z)− [T2,hf ′](z)| ≤ 4L2 = M.∑

k∈[K]

E
[(
D̄k

h[f, f
′]
)2 ∣∣∣z̄kh] = ∑

k∈[K]

E
[
4(η̄kh[f

′])2|z̄kh
] (

f(z̄kh)− [T2,hf ′](z̄kh)
)2 ≤ (4L2K)2 = V 2.

On the other hand,∑
k∈[K]

E
[(
D̄k

h[f, f
′]
)2 ∣∣∣z̄kh] = ∑

k∈[K]

E
[
4
(
η̄kh[f

′]
)2 ∣∣∣z̄kh] (f(z̄kh)− [Thf ′](z̄kh)

)2
≤ 8L4

∑
k∈[K]

(
f(z̄kh)− [T2,hf ′](z̄kh)

)2
.

Then using Lemma I.1 with v = 1, m = 1, we have:∑
k∈[K]

2η̄kh[f
′]
(
f(z̄kh)− [T2,hf ′](z̄kh)

)
≤ i′(δ)

√
2(2 · 8L4)

∑
k∈[K]

(
f(z̄kh)− [T2,hf ′](z̄kh)

)2
+

2

3
i′2(δ) +

4

3
i′2(δ) · 4L2

≤ (20L4 + 5)i′2(δ) +

∑
k∈[K]

(
f(z̄kh)− [Thf ′](z̄kh)

)2
2

We complete the proof of Lemma E.2.

H.3 PROOF OF LEMMA G.1
Proof of Lemma G.1. We use Lemma I.1, with the following conditions:

Dk
h[f, f

′] is adapted to the filtrationHk
h and E

[
Dk

h[f, f
′] | Hk−1

h

]
= 0.∣∣Dk

h[f, f
′]
∣∣ ≤ 2

∣∣ηkh∣∣max
z
|f(z)− f ′(z)| ≤ 8LH = M.∑

k∈[K]

E
[(
Dk

h[f, f
′]
)2 ∣∣∣zkh] = 4

∑
k∈[K]

E
[
(ηkh)

2
∣∣zkh]

(σ̂h(zkh))
4

(
f(zkh)− f ′(zkh)

)
.

31

On the other hand,∑
k∈[K]

E
[(
Dk

h[f, f
′]
)2 ∣∣∣zkh] = 4

∑
k∈[K]

E
[
(ηkh)

2
∣∣zkh]

(σ̂h(zkh))
4

(
f(zkh)− f ′(zkh)

)2
≤ 8

∑
k∈[K]

1

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
,

where the last inequality holds because of the inequality in Lemma D.4:
E
[
(ηkh)

2|zkh
]
= [VarhV ∗

h+1](s
k
h, a

k
h)

≤ [VhV
∗
h+1](s

k
h, a

k
h)

≤
(
σ̂h(z

k
h)
)2

+ Õ

(√
log(N · Nb)H

3

√
Kκ

)
≤ 2

(
σ̂h(z

k
h)
)2

,

where we use the requirement that K ≥ Ω̃
(

log(N·Nb)H
6

κ

)
.

Moreover, for any k ∈ [K],∣∣Dk
h[f, f

′]
∣∣ ≤ 2

∣∣∣∣ ηkh
(σ̂h(zkh))

2

∣∣∣∣ ∣∣f(zkh)− f ′(zkh)
∣∣

≤ 4H

√√√√√D2
Fh

(zkh,Dh, σ̂2
h)

 ∑
k∈[K]

1

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
+ λ


≤ Õ

(
4H2

√
Kκ

)√√√√∑
k∈[K]

1

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
+ λ

≤ 1

v(δ)

√√√√∑
k∈[K]

1

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
+ λ.

The second inequality holds because of the definition of D2 divergence (Definition 3.4). The
third inequality holds due to Lemma F.1. The last inequality holds because of the choice of K ≥
Ω̃
(

v2(δ)H4

κ

)
.

Then using Lemma I.1 with v = 1, m = 1, we have∑
k∈[K]

2
ηkh

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)
≤ v(δ)

√√√√16
∑

k∈[K]

1

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
+ 2 +

2

3
v2(δ)

+
4

3
v(δ)

√√√√∑
k∈[K]

1

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
+ λ

≤ 4

3
v(δ)
√
λ+
√
2v(δ) + 30v2(δ)

+

∑
k∈[K]

1

(σ̂h(zk
h))

2

(
f(zkh)− f ′(zkh)

)2
4

.

We complete the proof of Lemma G.1.

H.4 PROOF OF LEMMA G.2

Proof of Lemma G.2. ∆k
h[f, f̃ , f

′] is adapted to the filtration Hk
h and E

[
∆k

h[f, f̃ , f
′] | Hk−1

h

]
= 0.

We also have∑
k∈[K]

E
[
(∆k

h[f, f̃ , f
′])2
∣∣∣zkh] = 4

∑
k∈[K]

E
[
(ξkh[f

′])2
∣∣∣zkh]

(σ̂h(zkh))
4

(
f(zkh)− f ′(zkh)

)2

32

≤ 8
∑

k∈[K]

∥f ′ − V ∗
h+1∥2∞

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
.

Moreover, for any k ∈ [K],∣∣∣∆k
h[f, f̃ , f

′]
∣∣∣ ≤ 2

∣∣∣∣ ξkh[f
′]

(σ̂h(zkh))
2

∣∣∣∣ ∣∣f(zkh)− f ′(zkh)
∣∣

≤ 4∥f ′ − V ∗
h+1∥∞

√√√√√D2
Fh

(zkh,Dh, σ̂2
h)

 ∑
k∈[K]

1

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
+ λ


≤ Õ

(
H√
Kκ

)
· ∥f ′ − V ∗

h+1∥∞

√√√√∑
k∈[K]

1

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
+ λ

≤
∥f ′ − V ∗

h+1∥∞
ι(δ)

√√√√∑
k∈[K]

1

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
+ λ

The second inequality holds because of the definition of D2 divergence (Definition 3.4). The
third inequality holds due to Lemma F.1. The last inequality holds because of the choice of K ≥
Ω̃
(

ι2(δ)H4

κ

)
.

Then using Lemma I.1 with v = 1, m = 1/ logNb, with probability at least 1− δ/(4H2N 3Nb), we
have∑

k∈[K]

2
ξkh[f

′]

(σ̂h(zkh))
2

(
f(zkh)− f̃(zkh)

)
≤ ι(δ)

√√√√8
∑

k∈[K]

∥f ′ − V ∗
h+1∥2∞

(σ̂h(zkh))
2

(
f(zkh)− f ′(zkh)

)2
+ 2

+
2

3
ι2(δ)/ logNb +

4

3
ι(δ)∥f ′ − V ∗

h+1∥∞

√√√√∑
k∈[K]

1

(σ̂h(zkh))
2
(f(zkh)− f ′(zkh))

2 + λ

≤
(
4

3
ι(δ)
√
λ+
√
2ι(δ)

)
∥f ′ − V ∗

h+1∥2∞ +
2

3
ι2(δ)/ logNb + 30ι2(δ)∥f ′ − V ∗

h+1∥2∞

+

∑
k∈[K]

1
(σ̂h(zk

h))
2

(
f(zkh)− f ′(zkh)

)2
4

.

We complete the proof of Lemma G.2.

I AUXILIARY LEMMAS
Lemma I.1 (Agarwal et al. 2023). Let M > 0, V > v > 0 be constants, and
{xi}i∈[t] be a stochastic process adapted to a filtration {Hi}i∈[t]. Suppose E[xi|Hi−1] = 0,
|xi| ≤ M and

∑
i∈[t] E[x2

i |Hi−1] ≤ V 2 almost surely. Then for any δ, ϵ > 0, let ι =√
log (2 log(V/v)+2)·(log(M/m)+2)

δ , we have

P

∑
i∈[t]

xi > ι

√√√√√2

2
∑
i∈[t]

E[x2
i |Hi−1] + v2

+
2

3
ι2
(
2max

i∈[t]
|xi|+m

) ≤ δ.

Lemma I.2 (Regret Decomposition Property, Jin et al. 2021b). Suppose the following inequality
holds, ∣∣∣[Thf̂h+1](z)− f̃h(z)

∣∣∣ ≤ bh(z),∀z = (s, a) ∈ S ×A,∀h ∈ [H],

the regret of Algorithm 1 can be bounded as

V ∗
1 (s)− V π̂

1 (s) ≤ 2

H∑
h=1

Eπ∗ [bh (sh, ah) | s1 = s] .

Here Eπ∗ is with respect to the trajectory induced by π∗ in the underlying MDP.

33

Lemma I.3 (Azuma-Hoeffding inequality, Cesa-Bianchi & Lugosi 2006). Let {xi}ni=1 be a martin-
gale difference sequence with respect to a filtration {Gi} satisfying |xi| ≤M for some constant M ,
xi is Gi+1-measurable, E[xi|Gi] = 0. Then for any 0 < δ < 1, with probability at least 1 − δ, we
have

n∑
i=1

xi ≤M
√

2n log(1/δ).

34

	Introduction
	Related Work
	Preliminaries
	Algorithm
	Pessimistic Value Iteration Based Planning
	Variance Estimator
	Nonlinear Bonus Function

	Main Results
	Key Techniques
	Variance Estimator with Nonlinear Function Class
	Reference-Advantage Decomposition

	Conclusion and Future Work
	Comparison of offline RL algorithms
	Comparison of data coverage assumptions
	Discussion on the Calculation of the Bonus Function
	Analysis of the Variance Estimator
	Proof of lemmas in Section D
	Proof of Lemma D.1
	Proof of Lemma D.2
	Proof of Lemma D.3

	Proof of Theorem 5.1
	Proof of the Lemmas in Section F
	Proof of Lemma F.1
	Proof of Lemma F.2

	Proof of Lemmas in Section E and G
	Proof of Lemma E.1
	Proof of Lemma E.2
	Proof of Lemma G.1
	Proof of Lemma G.2

	Auxiliary lemmas

