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A NEED FOR RANGE-NET

To illustrate the limitations of current streaming randomized SVD approaches, we consider a synthetic
data matrix X with slow decay in the singular value. The numerical results section later presents a
number of these singular value spectra for different practical datasets (Fig. [3) to demonstrate that the
decay rates are subjective to the problem at hand.

X = dlag(4507449, e a27 1707 T ,0)
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Here X € R™*" is a strictly diagonal matrix with m = n = 500 with rank f = 450, where the
singular value spectrum decays linearly. Fig. |8/shows a comparison of reconstruction errors (see
Metrics in Appendix [E.5 for the definition) for SketchySVD (Tropp et al.|[2019) (red line), Block
Lanczos with Power Iteration (Musco & Musco, |2015) (black line), Sklearn’s randomized SVD (skr)
implementation (Halko et al.,|2011)) with (solid cyan line) and without power iteration (dashed blue
line), and Range-Net (green line) over 1000 runs for this synthetic dataset.
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Figure 8: Reconstruction errors (r = 20) for Range-Net and randomized SVD schemes (with and without
power iterations) for the non-exponentially decaying singular value spectrum over 1000 runs.

Please note that although power iteration improves the reconstruction error for both Block Lanczos
(Musco & Musco, 2015) and Sklearn’s RandSVD (Halko et al.|, 2011)), power iteration itself requires
a persistent presence of the data matrix X in the main memory. For a practical big data scenario,
power iteration is therefore not a feasible alternative when the data matrix X or it’s sketch is itself too
big to be loaded into the main memory. Note that the error expectation (upper bound) over multiple
runs of Randomized SVD algorithms does not reduce. We further identify the following requirements
for SketchySVD to return SVD factors with relatively lower approximation errors:

1. Decay rate of singular values of a dataset must be exponential.
2. For a rank- f matrix, the desired rank » must be chosen such that the oversampled rank £ is strictly
greater than f (k > f) to achieve lower errors at scale compared to other runs.

We suggest that the reader also attempt the case where all the diagonal entries are strictly ones and
zeros under a high rank setting.
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Figure 9: SketchySVD approximation errors for a synthetic dataset with linear decay in singular value spectrum,
corresponding to r» = [10, 20, 30, 40, 50] with corresponding oversampled rank k£ = [41, 81,121,161, 201].
Since the decay is non-exponential, SketchySVD accrues large approximation errors, hence impractical for real
datasets with similar behavior.

Fig. [9]shows the singular values extracted by SketchySVD for a linearly decaying spectrum with
corresponding errors in absolute and relative tail energies. The reader is referred to Appendix
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[B.1 for the definitions of tail energy and relative tail energy. Note that the synthetic data is a
diagonal matrix chosen specifically so that the exact tail energies can be computed using Frobenius
1
k 2
norm as ( > :Jc121> . For a rank-r approximation, SketchySVD suggests oversampling by a
i=r+1
factor of k¥ = 4r + 1 to extract the rank-r factors correctly. Hence for an oversampled rank
k = [41,81,121,161, 201] the corresponding top rank r = [10, 20, 30, 40, 50] extracted singular
values and vectors will have the lowest approximation errors. However as shown in the Fig. [9|(a) the
extracted singular values have an order of magnitude difference w.rt. the ground truth. Consequently,
Fig. [9](b) shows that the absolute tail-energies of the extracted features deviate quite substantially
from the true tail-energy. Furthermore, we also notice that the deviations remains large as long as the
oversampled rank-k is such that & < f. For a practical dataset f is either unknown or almost full
rank f < min(m,n) or both and can only be detected by performing a full SVD on the dataset. This
poses a serious restriction on SketchySVD’s reliability for a realistic big data application, due to an
exponential decay assumption.

We also notice that for smaller values of r, the accrued error in both the extracted singular values and
tail energy error is worse. Fig. |9](b) shows that for different rank approximations SketchySVD tail
energy deviates from the truth quite substantially. This is due to the fact that the oversampled rank
k =4r +1 < f, as pointed out before. Note that for oversampling parameter £ < f, although the
error decreases as k — f the memory requirement increases correspondingly as O (k) for extracting a
low rank-r approximation. This implies that for slow decaying spectrum optimal values of k are such
that £ > f even when a rank-1 approximation is desired. In Fig. [9](c), one can observe relative errors
between 10~2 and 10°. Although this implies that the actual rank-r tail-energy approximation error
is off by 1% at the best, the extracted singular values and vectors are off by one order of magnitude.
As a consequence, the extracted singular vectors no longer represent the features of the dataset.

Remark. For a randomized SVD algorithm to converge (without power iterations) to a rank-r
approximation X, over multiple runs, we posit that a rank-r sketch matrix X for a given rank- f
dataset X, for f > r, be such that P(span{X} N span{X,} = span{X,}) > 0.5. However,
ensuring this requires substantial amount of prior knowledge or intelligent sampling (a multipass
iterative algorithm).

Range-Net with it’s explicit minimization of tail energy is capable of intelligent sampling on an
arbitrary matrix without requiring any prior information. The key point to note here is that Range-Net
relies upon an iterative computation of a near optimal projector instead of arbitrary/user-specified
projectors used in Randomized SVD schemes. Even if the tail energy is theoretically upper bounded
for some of the Randomized SVD schemes, the target is to find the lower-bound (minimizer) on the
tail energy as discussed in Section [L.1] Furthermore, since none of the randomized SVD schemes
construct the projector in an iterative manner while minimizing Eq. [T, the relative error in the tail
energy remains high. Even if multiple runs of SketchySVD or Sklearn’s RandSVD are performed,
the reconstruction errors in tail energies remain the same at scales shown in Fig. [8 We would also
like to point out that although one must strive for lower errors (relative or otherwise) and tighter
theoretical upper and lower bounds, in practice we should also closely monitor if these theoretical
bounds deliver us the desired solution.

B THEORETICAL GUARANTEES

B.1 PRELIMINARIES

The Frobenius norm of a matrix A is given by,

1

[l = [ 3D a% | = (Tr(AaT4)* = (Tx(447))

=

Further, the Frobenius norm can be used to bound Trefethen & Bau III (1997) the norm of a matrix
product as,

IAB|[r < [AllrlBlr
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For a Frobenius norm we have that,
A+ Bllr < [|Allr +[|BllF
IA=Bllr>||Alr—IBlr
Also the Frobenius norm of a rank- f matrix A,
[AllF = 1Z¢lF
where ¥ = diag(o1,02,--- ,0) and o8 are the f non-zero, singular values of A.

Let A, B, C be matrices such that the following matrix products are feasible. The cyclic property of
the linear trace operator is,

Tr(ABC) = Tr(BCA) = Tr(CAB)

Definition 1. The tail energy of an arbitrary matrix B € R™*"™ with respect to a given matrix
X € R™™ equipped with a Frobenius norm is defined as,

T=|X-Blr
Definition 2. Let r, f € ZT be positive integers such that 0 < r < f, then a rank-r truncation X,
of a rank-f matrix X is defined as,

X, =03V =xv,vF

where, ¥, = diag(o1,09, -+ ,0.) and o;s are the top r singular values of X and V, =

[v1,v9, - v, and U, = [uy,ua, - - , u,] are matrices such that v;s and w;s are the corresponding
right and left singular vectors, respectively.

The relative tail energy of a rank-r matrix B, with respect to a rank-f matrix X (r < f) is then
defined as,
|X = Brllr

Trely = 7o — 1
IX - X e

B.2 STAGE 1

Proof of Theorem 2. Forany r, f € Z+, 0 < r < f, if the tail energy of a rank-f matrix X € R™*",
f < min(m,n), with respect to an arbitrary rank-r matrix B, = XV,V.T is bounded below by the
tail energy of X with respect to it’s rank-r approximation X, = XV, V." as,

”X - BT”F 2 HX _X’I‘HF

where, V. = span{vy, va, - - , v} and v;s are the right singular vectors corresponding to the largest
r singular values then the minimizer of argmin || X — XVVT|  is V, such that V.VI = V. VL.
VeR(nxr)

From Theorem [I] we have,

HX_BT”F_”X_XTHFZO “4)

Let V. = {v1,v2,...,v,} be the top-r, right-singular vectors of X corresponding to the largest
singular values,

X, =XV,vI =usvTv,vT =uxv?’ (5)

Alsolet B, = X VTVTT where V. is an arbitrary rank-r matrix. From triangle inequality we have that,

IX(VaV.E = VVD)lr 21X (L =V, VD) lF = IX (I = V. V,D)llr (6)

Combining Eq. @ and Eq. [f|we get,
IX(V,V," = V.V )|le >0 %
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Additionally, o o
IX||e|VaVE = ViV e > IX(V, VT =V, V) ||e (8)

Using the above two inequalities we arrive at,
X[ F V2V = VoVl > 0 ©)

Since || X || > 0, equality is achieved when V,. V.7 = V,VT = V,.V,Z. In other words, span{V, =
span{V.} since (V,0,)(V.0,)T = V,V.I for any rank-r, real valued unitary matrix ©,. spanning
the top rank-r subspace of X.

Remark. Theoremlalso implies that any matrix v, VT that does not span the same rank-r subspace
of X as V,.V.T will result in a higher tail-energy than given by the EYM tail-energy bound equipped
with a Frobemus norm.

Proof of Lemma 2.1. If VTV, = I, and V,V,' = V.V.I then VIV, = I,.
Let us assume V,7'V,. = I,. then,
IV,"V, = L||% = 0

Tr (VV,VIV,) + Te (1) —2Tr (V,'V,) =0
Using the cyclic property of the trace operator we have,

Tr (V,VIVVE) +Te (1) = 2T (V) =
Using Theorem 2 V.V =V, VT,

Tr (V.VIVVE) + Te (L) —2Te (VWV]) =0
Again using the cyclic property of the trace operator we now get,

Tr (VIV.VIV,) + Te (1) — 2Tr (VIVL) =0

Hence, V*T Vi = I,.. This shows that following Theorem the matrix V. comprises of orthonormal
column vectors spanning the same top rank-r subspace of X as the orthonormal column vectors V.

Proof of Lemma 2.2. [f X € R™*" is a rank f matrix, then for any rank r > f, where
{r, f} <min(m,n), if VIV, = I, and V.VL =V, VT then VIV, = I,.

VIV = L]z =0
Tr (VI VVIV) +Te (1) — 2T (VVL) =0
Using the cyclic property of the trace operator we have,
Tr (VVIVV) +Te (L) —2Te (VWV]) =0
Using Theorem 2 V.V =V, VT,
Tr (V, VIV, V) + Te (1) —2Te (V,V,) =0
Again using the cyclic property of the trace operator,
Tr (V' V,VIV,) + Te (1) —2Te (V,'V,) =0
T (VIV, VIV, + I, —2V'V,) =0
HVTTVT - IT”F =0
Hence VTTVT =1I,.
Remark. Lemmal[2.2)shows that for a rank-r approximation of a rank- f matrix X such that r > f,
the extracted right singular vectors are orthonormal when VIV, = I,.. This justifies the constraint
VTV = I, for the stage-1 minimization problem in Eq. |2 Iand is numerically verified in Appendix @
Remark. Note that Lemma[2.1|and[2.2)does not imply that V,, = V. instead V,©,. = V,., where ©,.
is any real valued unitary matrix for the equality to hold true.
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B.3 STAGE2

Proof of Theorem 3. Given a rank-r matrix XV, € R™*" and an arbitrary, rank-r matrix
C € R™*7, following Theorem|l| the tail energy of XV, with respect to XV, C' is bounded as,

| XV, = XV.C||lp>0
where the equality holds true if and only if C = I,.

[XVi(l, = C)|r 20

I XVillpllLy = Cllp = | XVi(l = O)lF

IXVillpllIr = Cllr = 0

Since X'V, > 0, this implies equality is achieved if and only if C = I,.

Proof of Lemma 3.1 IfC = @TGZ, where ©,. € R"*" is a rank-r matrix such that C = I, then
O, is a real-valued unitary matrix in an r-dimensional Euclidean space.

0,0 =1,
lo.67 — L =0
Tr (6,016,0 + 1, —20,0]) =0
Tr (0,076,0F) + Tr(I,) - 2Tr (6,0F) =0
Using the cyclic property of the trace operator,
Tr(0f6,070,) + Tr (I,) —2Tr (6]'0,) =0
Tr ((©f©, — I)(©eFe, —1,)7) =0
1676, — 1| =0

This implies @Z@r = I,.. Since @f@r = @T@f = I, this implies that ©,. is a real-valued unitary
matrix in the r-dimensional Euclidean space.

Proof of Theorem 4. Given a rank-r matrix XV, € R™*", such that V, V*T =V, V,,T where V,. is a
matrix with column vectors as the top-r right singular vectors of X, and a real-valued unitary matrix
O, € R™" then (XV,0,)T(XV.0,) is a diagonal matrix ¥2 where ¥.2 = diag(c?,03, -+ ,02)
and o;s are the top-r singular values of X if and only if V.0, = V.

(XV,0,)T(XV,0,) = %2

orvI(XTX)Vv,0, =x2

vIXTXxv, =e,x20r

V,VIXTXxv, VI =v.0,5207v]

Using V.Vl = V,.V.T' from Theorem 2}

v, vIXTxv.vI =v.e,x22efv!
V.EVE = (V.e,)83(V.e,)"
(Ve = Va0, 52(V, = V.0,)T =0
(Vi = Va0, SV = V.0,) " ||[r = 0

Using Frobenius norm to bound the matrix product,
12| |Ve = ViO, |7 >0
Since ||X2|| > 0, equality is achieved if and only if V., O, = V..
Remark. Note that ©,. is a rank-r unitary matrix wherein both rotation (det(©,.) = 1) and reflection
(det(©,.) = —1) are valid since the order of the orthonormal vectors in the matrix V,0,. = V,. do

not alter ||V, — V.0, || p. In practice, ©, manifests itself predominantly as a rotation matrix during
the iterative minimization using gradient descent.
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C ENERGY MINIMIZATION, L0OSS SURFACE GEOMETRY, AND CONVERGENCE

In this section, we consider the energy minimization problem that constructs the projection space
spanning the rank-r sub-space of a given data matrix. For ease of visualization, we consider a 2 x 2
matrix X = diag(5, 1) with singular values 5 and 1 corresponding to right singular vectors v; =
[1,0]7 and v, = [0,1]7, respectively. Our objective here is to extract a rank r = 1 approximation
of this rank f = 2 matrix X. Certainly, this corresponds to identifying the right singular vector v;
with singular value 5. The tail-energy surface (log-scale) corresponding to the | X997 — X || is
shown in Fig. [10] Here, ¥ is the test vector for a rank 1 approximation of X. The tail-energy is a
bi-quadratic function in v with 1 maximum, 2" minima and 2" saddle points, where r is the desired
low-rank approximation of a given data matrix. Furthermore, all minima have the same tail energy: a
property of bi-quadratic functions. For the current specific example, the two equal tail-energy minima
correspond to v and —wv1, respectively.

BB RN
Tail Energy, log10(t)

=

Figure 10: Surface plot for the bi-quadratic tail energy (log-scale) with 2 minima, 2 saddle points, and one
maxima for X = diag(5,1).

Although the minimization problem is non-convex, convergence is guaranteed since any perturbed-
gradient descent approach converges to either of the stable fixed points (minima). In other words, any
test vector v other than v; or —v; will increase the tail-energy and hence will not be the solution. The
same argument applies for a high-dimensional dataset X where a low rank-r approximation is desired
with the number of equal tail-energy minima corresponding to 2" for all possible negative and positive
combinations of the r right singular vectors v;—; ... ,. In effect, the stage 1 minimization problem
constructs a right projection space V' = span{vy, ..., v, } that spans the top rank-r subspace of a
given dataset X. A similar line of argument then applies to our stage 2 minimization problem as
well. A mild limitation, that will be addressed in our future work, occurs when X = diag(5,5 + ¢),
0 < e << 1, wherein the two right singular values cannot be resolved accurately (still better than
Randomized SVD methods) without further considerations. This latter case, with near algebraic
multiplicity in singular values is a special case for conventional SVD as well.

D NETWORK INTERPRETABILITY

As described before in Fig. 2] our network weights and outputs are strictly defined and incorporated
as losses in the network minimization problem. We therefore refer to the problem informed (SVD)
restrictions on the network weights as representation driven losses. This is in contrast to kernel
regularization loss often considered to impose a weak requirement on the network weights to be small.
The representation driven, orthonormality loss term, in Stage 1 enforces that the weights V' must be
orthonormal or (VI'V, = I,.) for a desired rank-r which is greater than the rank- f of the data matrix
X. We numerically verify the interpretability of the layer outputs and weights by considering two
networks: (1) with, and (2) without the aforementioned orthonomality loss. For each of these two
cases, two synthetic datasets are considered corresponding to » < f and > f. Please note that in
a practical scenario f is an unknown and can be determined only by performing a full SVD of X.
Therefore, numerically testing this aspect for our solver is necessary.

For the first case, we consider a synthetic data matrix X515 where the top 5 singular values are
positive (f = 5) while the rest are zero. The objective is to extract the top 10 (» = 10) singular
vectors where the desired rank is higher the the rank of the system itself. A total of four training runs
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Figure 11: Synthetic Low Rank Case: Correlation Map of extracted vectors Vi over four runs. Orthonormality
is imposed for the first run resulting in a diagonal structure. Absence of this condition results in a scatter.

are considered: one run for a network with the orthonormality condition imposed and three runs for
another network without this additional constraints. Fig. |11|shows the correlation map between the
recovered vectors V,, for each of the four runs. Notice that only when the orthonormality criteria is
not imposed, we get scatter away from the diagonal matrix, although all four runs converged to the
same tail energy. Since the true rank of X is 5, the null space of X is of dimension 10. The absence
of this orthonormality imposing, representation loss results in non-orthonormal vectors V, spanning
the low-rank range space.

Figure 12: Synthetic Full Rank Case: Correlation Map of extracted vectors V over four runs. Orthonormality
loss now does not contribute and therefore all runs have a diagonal structure.

1.00

For the second case, we consider a full-rank, synthetic data matrix Xi5x15 with f = 15. As before,
we extract the top 10 singular vectors (r = 10) using four training runs: one with and three without
imposing the orthonormality loss. Since the desired rank 10 system now itself is full rank, this
additional loss term does not contribute, as desired. Fig. shows that the extracted vectors V.
remain orthonormal, for all the four runs, so as to minimize tail energy (|| X (VV”™ — I)||r), as
described in Section [3.1]above. In fact, for any rank r approximation of a rank f system such that
r < f, an arbitrary non-orthonormal matrix V, will increase the tail energy and hence will not be a
fixed point (solution) of our network minimization problem.

E IMPLEMENTATION DETAILS

E.1 CHOICE OF ACTIVATION FUNCTIONS

All the activation functions in both stages are Linear with no biases. One might argue that this
choice is not a neural approach, since all the activations are linear. However, please note that singular
vectors are linearly separable orthogonal features of a dataset, and therefore any other choice of
activation function will result in approximation errors. Since the elements of singular vectors are in
[—1, 1], a choice of relu activation is problematic. A simple verification is to approximate a straight
line segment in [—1, 1] with fanh activation, only to realize that the approximation error — 0 as the
number of neurons — oco. These arguments can also be verified by replacing linear activation in
Stage 1 by any non-linear activation only to find that the tail energy bound cannot be satisfied. Note
that given a small matrix, one can calculate the right singular vectors and substitute them directly as
our network weights to confirm this tail energy bound.

E.2 TRAINING, VALIDATION, AND TESTING SPLIT

An issue with training and validation split in matrix decomposition problems is that the error norm
cannot be bounded in a deterministic manner or computationally verified. For Singular Value
Decomposition of a given data matrix X differs from SVD on a truncated dataset X init’s singular
triplets (singular values and vectors). Ensuring these triplets do not change over an arbitrary split is a
non-trivial computational task.
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Remark. For dataset X, an arbitrary training/validation split results in a varying dataset X wherein
the norm || Xpreq — X || p changes according to the split. Since the desired features are unknown a

priori, a consistent truncated dataset X, that spans the same space as the full data X cannot be
obtained using an arbitrary split.

Figure 13: Variation in extracted right singular vectors (dashed green lines) for three runs with each run
comprising of 200 different train/test data splits with an 80/20 ratio. The solid red lines indicate the ground truth
singular vectors when using the entire unsplit dataset (red dots). Extracted singular vectors deviate increasingly
from left to right over the three runs.

This results in a large variance in extracted features over multiple training/testing splits since the
span of X itself is changing with each split. Fig. |13|shows a numerical experiment with a synthetic
(rank-2) dataset containing 100 samples drawn (red dots) from a 2D ellipse with major and minor axes
2 and 1, respectively. The ground truth right singular vectors over the unsplit dataset are computed
using conventional SVD (solid red lines). Next the dataset was split with an 80/20 ratio as the
training/testing split for 200 different realizations per run. The mean/expectation of the extracted
right singular vectors (dashed green line) over the 200 realizations are then reported. One can easily
see that the expected right singular vectors vary quite substantially compared to the ground truth over
the three runs indicating that an arbitrary split of the dataset does not ensure accuracy.

E.3 DATA STREAMING

Given a data matrix X™*", we stream the data along the smaller dimension assuming the user
prescribed rank-r is such that » < min(m,n). For the sake of simplicity we assume that the data
matrix has m samples and n features, where m > n, and consequently feature vectors of samples are
streamed in batches. We rely upon the built-in Keras fit_generator class for data streaming from the
secondary memory (HDD). For a big data matrix X that cannot be loaded into the main memory, this
allows us to mimic the modality of data residing on an external server. Thus, given a pointer to the
data, the function yields a batch of specified size for the network to train on for specific epochs. This
ability saves main memory load and allows us to process bigger datasets on smaller main-memory
machines than reported in prior works.

Note that for the stage-1 network to converge to a desired tolerance, we require multiple passes
(empirically < 5) over the original data streamed batchwise. Therefore for Stage 1, the input data is
never persistently present in the main memory of the remote machine. The output data is dumped
onto the secondary memory assuming that storing a low rank approximation is still main memory
intensive. For Stage 2, this low rank approximation in the secondary memory is streamed as input,
and the extracted singular values and vectors are saved in main memory.

E.4 SETUP AND TRAINING

All experiments were done on a setup with Nvidia 2060 RTX Super 8GB GPU, Intel Core 17-9700F
3.0GHz 8-core CPU and 16GB DDR4 memory. We use Keras (Chollet,2015) running on a Tensorflow
2.0 backend with Python 3.7 to train the networks presented in this paper. For optimization, we use
AdaMax (Kingma & Bal [2014) with parameters (Ir=0.001) and 1000 steps per epoch.

E.5 ERROR METRICS

As discussed before in Section [2.1} since relative errors in tail energies do not imply similar errors at
scales in extracted singular factors, we rely upon additional error metrics on the extractor factors for
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performance comparison and benchmarking. In the following X and X are used to denote the true
and the reconstructed data matrices.

* Scree Error: Absolute difference between true and approximated singular values.
scree (1) = |oi(X) — 6:(X)| Vie[l,7]
* Reconstruction Error: Frobenius norm error of the true data and its rank-r approximation.
frober(r) = | X = X7 = [IX = X, |1}
* Spectral Error: 2-norm of the singular value of the true data and its rank-r approximation.

spectraley (1) = [| X — X2 — [| X — X, |2

* Chi Square Statistic: Deviation between the true and approximated singular vectors.
1 R N
XSTT(T) =1- ;HCOTT(U[:T] (X)a Ul (X))HF

Here, o;s are the true singular values and X, is the desired rank-r approximation of X using
conventional SVD as the baseline for benchmarking. Under perfect recovery, all error metrics are
expected to approximately achieve zero at machine precision. All of our numerical experiments were
performed on a GPU using single (32-bit) precision floating point operations. Therefore, the tail
energies are expected to be correct to up to 8 significant digits in all the subsequent calculations. In

the following sections, X is replaced by approximations from SketchySVD and Range-Net.

E.6 LOSS PROFILE

4001 —— EYM Tail Energy
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Figure 14: Range-Net Stage-1 training loss for Parrot image. The network minimization loss converges to the
EYM Tail Energy bound within five epochs and stabilizes for further epochs.

F ADDITIONAL EXPERIMENTS
F.1 FEATURE EXTRACTION: GRAPH (EIGEN)

Table 5: Description and Metrics of the Network Graphs for Range-Net

Dataset ‘ Nodes ‘ Edges ‘ rank ‘ erryy, errsp ng

Airlines (air) 235 2101 200 0 0 0.011

Twitter (air) 3556 188712 | 200 0 0 0.014

Wikivote (Leskovec & Krevl,|[2014) 8297 103689 | 200 0 0 0.027
Wikipedia (lev) 49728 | 941425 | 100 | 4.27e-6 1.23e-7 0.034

Slashdot (Leskovec & Krevl, [2014) | 82168 | 948464 100 | 8.56e-6 6.92e-7 0.045

Large scale networks occur in many applications where SVD is primarily used to identify the most
important nodes or as a pre-processing step for community detection. For these kind of graph based
datasets, we either perform SVD or Eigen decomposition on the graph, depending on the format in
which the data arrives. We demonstrate results on the following graphs of varying size, tabulated
in Table |5 If the data arrives directly in the form of an adjacency matrix, we can perform SVD or
Eigen decomposition on it directly. For cases, where an adjacency list is provided, a pre-processing
step is required to convert the list representation in a sparse vector.
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Since an Eigen decomposition problem is a special case of SVD, where the data matrix is symmetric
positive semi-definite, Range-Net is directly applicable. The benchmark was generated for smaller
graphs using a conventional SVD solver. For larger graphs, a similar benchmark was constructed
using the irlba routine by Baglama & Reichel (2005). Table. |5|shows the error metrics for all the
graphs, where consistently low values are observed for Frobenius and Spectral error metrics.

F.2 NAVIER-STOKES SIMULATED DATA (SVD)

For our next numerical experiment, we rely upon synthetic data generated using a Navier Stokes flow
simulator for an incompressible fluid. The flow data is available on tensor-product grid on two-spatial
and one temporal dimensions of size (w, h,t) = (100 x 50 x 200). For each point on the grid,
velocity vector values are available in both = and y spatial dimensions for 200 time instances. The
fully-developed, flow pattern exhibits a periodicity in the time dimension at approximately every ~ 60
time step that can be identified using SVD as characteristic modes. The data is therefore reshaped
into a spatial vector for each time instance resulting in a spatio-temporal matrix X € R5000%200 For
comparison purposes, we use only the x-direction stream velocity.

Figure 15: From left to right: x-direction stream velocity at times t = 0, 100, and 200
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Figure 16: Reshaped U indicative of dynamic modes, corresponding to top six right singular vectors for r = 5.

Fig. |15|shows the evolution of the stream velocity over three time instances and the inherent time-
periodic nature of the data. Notice the central-left region of primary flow across all three images. Fig.
shows the reshaped U vectors for SketchySVD, conventional SVD and Range-Net. Notice that the
images corresponding to the first left singular mode (also called dynamic modes) captures a notion
of the primary flow in the left-center part. The second one captures spatial variations of the flow as
time progresses. For all the three methods, all the modes have similar solution visually. Note that
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Figure 17: SketchySVD and Range-Net (a) extracted singular values and (b) cross correlation between estimated
and true (conventional SVD) right singular vectors for » = 5 on the Navier-Stokes data.

Range-Net computes a rank = 5 approximation without oversampling, wherein SketchySVD relies
upon memory intensive sketchy projections of ranks k = 21, s = 43 to arrive at the solution. Overall,
for this low-rank dataset both SketchySVD and Range-Net perform reasonably well qualitatively
looking at the features in Fig. [16/and the singular value spectrum in Fig. [17] because this synthetic
dataset is extemely low-rank (f = 10).

Remark. For a given data matrix X € R™*" of rank-f (f < min(m, n)) SketchySVD generates low
error approximations if the oversampled rank k is such that k > f. For full rank tall skinny matrices,
this implies that k > min(m,n). For cases where k < [ (full rank or otherwise), SketchySVD
accrues large approximation errors resulting in incorrect SVD factors.

From a use-case point of view, randomized SVD generates low-error factors for full-rank, tall skinny
matrices (X € R"*"™) only when the oversampled rank k& > n. This poses a serious limitation for
all applications where this requirement is not met and consequently randomized SVD algorithms
accrue large approximation errors in SVD factors as shown in the Sandy Big Data case study below
and Appendix|F.4| Note that given a big data matrix X determining the rank f of X is unknown and
therefore selecting an oversampled rank k such that & > f is impractical in such cases.

Remark. Once the SVD factors are extracted, SketchySVD cannot be independently verified without
performing a full SVD. In contrast, Range-Net is independently verifiable since Stage-1 of Range-Net
cannot return orthonormal vectors if the vectors do not span the rank-r subspace of a given data X.

F.3 HIGH RANK APPROXIMATION: SANDY BIG DATA

This section provides an addendum to the numerical results presented in Section|4.3|of the main text.
Fig. |18|shows evolution of Hurricane Sandy for two time instances. Similar to the Navier-Stokes
simulation data, Fig. [19|shows three dynamic modes corresponding to rank 1, 20, 50, 100 singular
values. As shown, our results are in good agreement with conventional SVD whereas, Sketchy SVD
shows substantial deviations after the first 50 dynamic modes. Fig. [20]shows the scree-error in the
singular values extracted by SketchySVD and Range-Net.

Figure 18: Satellite image captures of hurricane Sandy over the Atlantic ocean at ¢ = 0 (left) and ¢ = 200
minutes approximately (right).

Fig. 21|shows the cross correlation of the right singular vectors and scree-error in the corresponding
singular values extracted by SketchySVD and Range-Net. Note that for a rank-100 approximation,
SketchySVD extracted right singular vectors start deviating after rank-10 as shown in Figs. [21]
while the singular values deviate quite substantially from rank-1. Range-Net on the other hand is in
excellent agreement with the right singular vectors and values for all desired 100 indices.
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Figure 19: Reshaped U; indicative of dynamic modes, corresponding to ¢ = 1,20, 50,100 for r = 100
(oversampled rank k = 401 for SketchySVD. The dynamic mode approximation error stand out visually for
SketchySVD for indices 20, 50, 100. Our method does not have such artifacts.
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Figure 20: Scree-error in singular values for (a) SketchySVD and (b) Range-Net where a conventional SVD is
used as the baseline in scree-error metric.
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We point out that accuracy is a matter of special concern in scientific computations. Any compression
that results in substantial loss of information or obscuring an otherwise identifiable feature in
recorded observations directly culls our capacity to make scientific improvements. Consequently,
any exploratory data analysis, however big or small, must accurately identify the underlying features.
Range-Net achieves the lower bound on tail-energy given by EYM theorem to ensure an accurate
resolution in big data setting. Note that increasing the sensor resolution implies that we are interested
in exploring and understanding the high-frequency features (lower singular values) of the data.

F.4 Low RANK APPROXIMATION: SANDY BIG DATA

In this experiment, we extract the rank-10 SVD factors using SketchySVD and Range-Net for the
Sandy dataset. The oversampled ranks for sketchy SVD are k = 4r + 1 =41and s = 2k + 1 = 83
where k, s < min(m, n).

As before, Fig. @ show the cross-correlation between the extracted and true (conventional SVD)
right singular vectors using SketchySVD and Range-Net. Fig. shows the scree error in the
extracted singular values for the two methods with singular values from conventional SVD as the
baseline. Finally, Fig. |24|shows a comparison between extracted dynamic modes corresponding to
indices i = [1,4,7,10] from SketchySVD, conventional SVD, and Range-Net. One can easily see

23



Under review as a conference paper at ICLR 2022

o

N
N
o

N
o
N
o

o
o
o
o

Sketchy SVD vectors

[
o
®
o

Range-Net vectors (Vnet)

0 20 40 60 80 0 20 40 60 80
SVD vectors SVD vectors
(a) SketchySVD (b) Range-Net
Figure 21: Cross-correlation between extracted and true (conventional SVD) right singular vectors for (a)
SketchySVD and (b) Range-Net for a rank » = 100 approximation. SketchySVD deviates substantially after
index 10 (although sketching at sizes £ = 401 and s = 803) while Range-Net is in good agreement for all the
100 indices.
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Figure 22: Cross-correlation between extracted and true (conventional SVD) right singular vectors for (a)

SketchySVD and (b) Range-Net for a rank » = 10 approximation. SketchySVD deviates substantially after
index 3 while Range-Net is in good agreement for all the 10 indices.

that Sketchy SVD extracted dynamic modes/right singular vectors deviate quite substantially for
i=1[4,7,10].
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Figure 23: Scree-error in singular values for (a) SketchySVD and (b) Range-Net where a conventional SVD is
used as the baseline in scree-error metric. Note that for Range-Net the error is at a scale of 1075, 7 orders of
magnitude apart from SketchySVD (10%).

F.5 PARROT: ADDENDUM CORRELATION OF LEFT SINGULAR VECTORS

In the following, we show the deviation of left singular vectors, computed using Range-Net and
Sketchy SVD, from the conventional SVD computed left singular vectors as a baseline. As shown
before, random sketching introduces irreducible errors in randomized SVD methods resulting in
this unchecked deviation. Fig. [25shows a comparison of the cross-correlation against the common
baseline for both Range-Net and Sketchy SVD.
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Figure 24: Reshaped U; indicative of dynamic modes, corresponding to 7 = 1,4,7,10 for r = 10. The

dynamic mode approximation error stand out visually for SketchySVD for indices 1, 4, 7, 10. Our method does
not have such artifacts.
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Figure 25: Cross-correlation between true (conventional SVD) and extracted left singular vectors from (a)
SketchySVD (b) Range-Net for a rank-r = 20 approximation of the Parrot image.
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G SKETCHY SVD IMPLEMENTATION

A brief outline of the single-pass Sketch-SVD algorithm from Tropp et al.|(2019). Note that for the
numbers reported in terms of storage, we implemented this code with additional memory optimization

and sparse matrices.

Algorithm 1 Sketchy SVD

Input: X € R™*", r : expected rank
Output: X € R™** the approximated rank k-dim data

1: Initialize k =4r +1,s =2k + 1

2: Projection maps: T € R**™ Q € R¥*" & ¢ R**™ ¥ € R**"
3: Projection matrices: A € RFX" B € R™** Z € R**® as empty
4: fori =1:ndo

5: Form H € R™*™ as a sparse empty matrix
6 H(i,:) = X(i,:)
7 A+~ A+TH
8 B+ B+ HQT
Z+— Z+oHY"
10: Q € R™** < gqr_econ(B)
11: P € R™* « gr_econ(AT)
12: C € R®*® « ((®Q)\ Z2)/(¥P)
13: [U, %, V7] < svd(C)
14: X e R« X[1:r1:7]
15: U € R**" « U[;,1: 7]
16: VI e R™F « VT :7, 1]
17: U e R™*" «+ QU
18: VI e R™*" «— pV7T
19: X e R™*" - UV’

> Oversampling parameters

> Streaming Update

> Streamed columns

> Update Co-Range

> Update Range

> Update Core Sketch

> Basis for Range

> Basis for Co-Range

> Core Matrix

> Full SVD of Core Matrix
> Pick top r

> Pick top r

> Pick top r

> Project to Row Space

> Project to Column Space
> Approximation
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