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A

A.1 Equivalence between (4) and (5) with p(y) = p(y,D)

• Case α = 1 with f1(u) = 1− u+ u log(u) for all u > 0. Then,

D1(µK||P) =
∫
Y

f1

(
µk(y)

p(y|D)

)
p(y|D)ν(dy)

=

∫
Y

µk(y) log

(
µk(y)

p(y|D)

)
ν(dy) + 0

=

∫
Y

µk(y) log

(
µk(y)

p(y,D)

)
ν(dy) + log p(D)

=

∫
Y

f1

(
µk(y)

p(y,D)

)
p(y,D)ν(dy) + 1− p(D) + log p(D)

Thus,

inf
µ∈M

D1(µK||P)⇔ inf
µ∈M

Ψ1(µ; p) with p(y) = p(y,D)

• Case α = 0 with f0(u) = u− 1− log(u) for all u > 0.

D0(µK||P) =
∫
Y

f0

(
µk(y)

p(y|D)

)
p(y|D)ν(dy)

=

∫
Y

− log

(
µk(y)

p(y|D)

)
p(y|D)ν(dy)

=

∫
Y

− log

(
µk(y)

p(y,D)

)
p(y|D)ν(dy)− log p(D)

=
1

p(D)

[∫
Y

f1

(
µk(y)

p(y,D)

)
p(y,D)ν(dy) + p(D)− 1− p(D) log p(D)

]
Thus

inf
µ∈M

D0(µK||P)⇔ inf
µ∈M

Ψ0(µ; p) with p(y) = p(y,D)
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• Case α ∈ R \ {1} with fα(u) =
1

α(α−1) [u
α − 1− α(u− 1)] for all u > 0.

Dα(µK||P)

=

∫
Y

fα

(
µk(y)

p(y|D)

)
p(y|D)ν(dy)

=

∫
Y

1

α(α− 1)

[(
µk(y)

p(y|D)

)α

− 1

]
p(y|D)ν(dy)

= p(D)α−1

∫
Y

1

α(α− 1)

[(
µk(y)

p(y,D)

)α

− 1

]
p(y,D)ν(dy) +

p(D)α − 1

α(α− 1)

= p(D)α−1

∫
Y

fα

(
µk(y)

p(y,D)

)
p(y,D)ν(dy) +

αp(D)α−1 + (1− α)p(D)α − 1

α(α− 1)

Thus,
inf
µ∈M

Dα(µK||P)⇔ inf
µ∈M

Ψα(µ; p) with p(y) = p(y,D)

A.2 [1, Theorem 1] with Γ(v) = [(α− 1)v + 1]η/(1−α)

Theorem 4 ([1, Theorem 1] with Γ(v) = [(α − 1)v + 1]η/(1−α)). Assume that p and k are as in
(A1). Let α ∈ R \ {1}, let κ be such that (α − 1)κ ⩾ 0, let µ ∈ M1(T) and let η ∈ (0, 1] be such
that

0 < µ(Γ(bµ,α + κ)) <∞ (13)

holds and Ψα(µ) <∞. Then, the two following assertions hold.

(i) We have Ψα ◦ Iα(µ) ⩽ Ψα(µ).

(ii) We have Ψα ◦ Iα(µ) = Ψα(µ) if and only if µ = Iα(µ).

A.3 The case α < 1 for the Power Descent algorithm

Let α ̸= 1, η ∈ (0, 1], κ be such that (α−1)κ ⩾ 0 and let the initial probability measure µ1 ∈ M1(T)
be such that Ψα(µ1) <∞. Recall that the Power Descent builds the sequence of probability measures
(µn)n∈N⋆

µn+1 = Iα(µn) , n ∈ N⋆ ,

where for all µ ∈ M1(T), the one-step transition µ 7→ Iα(µ) is given by

Iα(µ)(dθ) =
µ(dθ) · [(α− 1)(bµ,α(θ) + κ) + 1]

η
1−α

µ([(α− 1)(bµ,α + κ) + 1]
η

1−α )
(14)

and where for all θ ∈ T,

bµ,α(θ) =

∫
Y

k(θ, y)f ′
α

(
µk(y)

p(y)

)
ν(dy) .

In particular, since for all α ̸= 1 and all u > 0, f ′
α(u) =

1
α−1

[
uα−1 − 1

]
, we have that

bµ,α(θ) =
1

α− 1

∫
Y

k(θ, y)

(
µk(y)

p(y)

)α−1

ν(dy)− 1

α− 1
. (15)

Here, bµ,α(θ) cannot fully be computed in closed-form, which is mainly due to the fact that this
quantity involves (µk(y))α−1. Nevertheless and as underlined in [1], one way to bypass this problem
is to introduce an unbiased estimate of bµ,α(θ). Letting Y ∼ qIS , this can for example be done by
considering the unbiased estimate of bµ,α(θ) given by

b̂µ,α(θ) =
1

α− 1

k(θ, Y )

qIS(Y )

(
p(Y )

µk(Y )

)1−α

− 1

α− 1
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Observe then that when p(Y ) = 0, this estimator will not blow up as long as α < 1 and µk(Y ) > 0.
For this reason, setting qIS = µk and α < 1 can be numerically advantageous from an implementation
point of view, especially for multimodal targets or whenever the support of p does not contain the
support of µk.

More generally, Bayesian tasks aim at computing integrals of the form∫
Y

h(y)p(y|D)ν(dy) , (16)

where h is a function of interest defined on Y. A common way to approximate intractable integrals of
the form (16) is to resort to Importance Sampling methods and in that case we are also interested
in ensuring that the support of the variational approximation q ∈ Q (with q = µk in our case) is
included in the support of p. Seeking to solve the Variational Inference optimation problem

inf
µ∈M

Dα(µK||P)

for α < 1 enables this to happen, as opposed to the case α ⩾ 1 for which the α-divergenve exhibits
the so-called mode-seeking property [2, 3, 4].
Remark 2 (The function θ 7→ bµ,α(θ) for the special case α = 1). Since for all θ ∈ T,

b1,α(θ) =

∫
Y

k(θ, y) log

(
µk(y)

p(y)

)
ν(dy)

=

∫
Y

k(θ, y) log (µk(y)) ν(dy)−
∫
Y

k(θ, y) log (p(y)) ν(dy)

the second term of the r.h.s Ek(θ,·) [log(p)] in the last equality might be computable in closed-form
for specific models p(y) = p(y,D), which is an aspect left for future work. As a whole, well-chosen
samplers and variance reduction methods appear to be a necessity even in the case α = 1 so that the
obtained Monte Carlo estimator of θ 7→ bµ,α(θ) do not suffer from a too large variance.

B

B.1 Proof that (A2) is satisfied in Example 1

Proof that (A2) is satisfied in Example 1.

We have kh(θ, y) = e−∥y−θ∥2/(2h2)

(2πh2)d/2
and p(y) = c×

[
0.5 e−∥y−θ⋆1∥2/2

(2π)d/2
+ 0.5 e−∥y−θ⋆2∥2/2

(2π)d/2

]
for all θ ∈ T

and all y ∈ Y. Recall that by assumption T = B(0, r) ⊂ Rd with r > 0. Then, for all α ∈ [0, 1), we
are interested in proving∫

Y

sup
θ∈T

k(θ, y)× sup
θ′∈T

(
k(θ′, y)

p(y)

)α−1

ν(dy) <∞ (17)

and ∫
Y

sup
θ∈T

∣∣∣∣log(kh(θ, y)

p(y)

)∣∣∣∣ p(y)ν(dy) <∞ . (18)

(i) We start by proving (17). First note that for all θ, θ′ ∈ T and for all y ∈ Y we can write

kh(θ, y)

kh(θ′, y)
= e

−∥y−θ∥2+∥y−θ′∥2

2h2 = e
2<y,θ−θ′>−∥θ∥2+∥θ′∥2

2h2

⩽ e
2|<y,θ−θ′>|+∥θ∥2+∥θ′∥2

2h2 ⩽ e
∥y∥∥θ−θ′∥+r2

h2 .

from which we deduce that for all θ, θ′ ∈ T and for all y ∈ Y,

kh(θ, y)

kh(θ′, y)
⩽ e

∥y∥2r+r2

h2 (19)
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and that∫
Y

sup
θ∈T

k(θ, y)× sup
θ′∈T

(
k(θ′, y)

p(y)

)α−1

ν(dy) ⩽
∫
Y

k(θ, y)e
∥y∥2r+r2

h2 sup
θ′∈T

(
k(θ′, y)

p(y)

)α−1

ν(dy).

Additionally, Jensen’s inequality applied to the concave function u 7→ u1−α implies∫
Y

k(θ, y)e
∥y∥2r+r2

h2 sup
θ′∈T

(
k(θ′, y)

p(y)

)α−1

ν(dy) ⩽

(∫
Y

k(θ, y)e
∥y∥2r+r2

(1−α)h2 sup
θ′∈T

p(y)

k(θ′, y)
ν(dy)

)1−α

⩽

(∫
Y

sup
θ,θ′∈T

kh(θ, y)

kh(θ′, y)
e

∥y∥2r+r2

(1−α)h2 p(y)ν(dy)

)1−α

Now using (19), we can deduce∫
Y

sup
θ,θ′∈T

kh(θ, y)

kh(θ′, y)
e

∥y∥2r+r2

(1−α)h2 p(y)ν(dy) ⩽
∫
Y

e
∥y∥2r+r2

h2 (1+ 1
1−α )p(y)ν(dy) <∞ ,

which yields the desired result.

(ii) We now prove (18). For all y ∈ Y and all θ ∈ T, we have

e− supθ∈T
∥y−θ∥2

2h2 ⩽ (2πh2)d/2kh(θ, y) ⩽ 1

e−maxi∈{1,2}
∥y−θ⋆i ∥2

2 ⩽ c−1(2π)d/2p(y) ⩽ 1

and we can deduce for all y ∈ Y and all θ ∈ T∣∣∣∣log(kh(θ, y)

p(y)

)∣∣∣∣ ⩽ sup
θ∈T

∥y − θ∥2

2h2
+ max

i∈{1,2}

∥y − θ⋆i ∥2

2
+ d| log h|+ | log c|

⩽
(∥y∥+ r)2

2

[
1

h2
+ 1

]
+ d| log h|+ | log c| . (20)

Since we have ∫
Y

(
(∥y∥+ r)2

2

[
1

h2
+ 1

]
+ d| log h|+ | log c|

)
p(y)ν(dy) <∞

we deduce that (18) holds.

B.2 Proof of Theorem 2

We start with some preliminary results. Let ζ, ζ ′ ∈ M1(T). Recall that we say that ζRζ ′ if and only
if ζK = ζ ′K and that M1,ζ(T) denotes the set of probability measures dominated by ζ.
Lemma 3. Assume (A1). Let M be a convex subset of M1(T) and let ζ1, ζ2 ∈ M1(T) be such that

Ψα(ζ1) = Ψα(ζ2) = inf
ζ∈M

Ψα(ζ).

Then, we have ζ1Rζ2.

Proof. For all y ∈ Y, set uy = ζ1k(y)/p(y) and vy = ζ2k(y)/p(y). Then, for all y ∈ Y and for all
t ∈ (0, 1), fα(tuy + (1− t)vy) ⩽ tfα(uy) + (1− t)fα(vy) by convexity of fα and we obtain

Ψα(tζ1 + (1− t)ζ2) ⩽ tΨα(ζ1) + (1− t)Ψα(ζ2) = inf
ζ∈M

Ψα(ζ) . (21)

Furthermore, tζ1 + (1− t)ζ2 ∈ M which implies that we have equality in (21).

Consequently, for all t ∈ (0, 1) :∫
Y

[tfα(uy) + (1− t)fα(vy)− fα(tuy + (1− t)vy)]︸ ︷︷ ︸
⩾0

p(y)ν(dy) = 0 .

Now using that fα is strictly convex, we deduce that for p-almost all y ∈ Y, ζ1k(y) = ζ2k(y) that is
ζ1Rζ2.
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Lemma 4. Assume (A1). Let α ∈ R \ {1}, let κ be such that (α− 1)κ ⩾ 0 and let µ⋆ ∈ M1(T) be
a fixed point of Iα. Then,

Ψα(µ
⋆) = inf

ζ∈M1,µ⋆ (T)
Ψα(ζ) . (22)

Furthermore, for all ζ ∈ M1,µ⋆(T), Ψα(µ
⋆) = Ψα(ζ) implies that µ⋆Rζ.

Proof. Let ζ ∈ M1,µ⋆(T) be such that Ψα(ζ) ⩽ Ψα(µ
⋆). We have that

ζ (bµ⋆,α − µ⋆(bµ⋆,α)) ⩽ Ψα(ζ)−Ψα(µ
⋆) ⩽ 0 . (23)

Furthermore, since µ⋆ is a fixed point of Iα, Γ(bµ⋆,α+κ), hence |bµ⋆,α+κ+1/(α−1)| is µ⋆-almost
all constant. In addition, bµ⋆,α+κ+1/(α−1) is of constant sign by assumption on κ. Since ζ ⪯ µ⋆,
we thus deduce that

ζ (bµ⋆,α − µ⋆(bµ⋆,α)) = 0 .

Combining this result with (23) yields Ψα(ζ) = Ψα(µ
⋆) and we recover (22).

Finally, assume there exists ζ ∈ M1,µ⋆(T) such that Ψα(µ
⋆) = Ψα(ζ). Then, since M1,µ⋆(T) is a

convex set, we have by Lemma 3 that µ⋆Rζ.

We now move on to the proof of Theorem 2.

Proof of Theorem 2. For convenience, we define the notation Ψα,Θ(λ) := Ψα (µλ,Θ) for all λ ∈ SJ .
In this proof, we will use the equivalence relationR defined by: ζRζ ′ if and only if ζK = ζ ′K and
we write M1,ζ(T) the set of probability measures dominated by ζ.

(i) Any possible limit of convergent subsequence of (λn)n∈N⋆ is a fixed point of Imixt
α .

First note that by (A3), we have that |Ψα,Θ(λ)| <∞ and that (13) is satisfied for all µλ,Θ such that
λ ∈ SJ . This means that the sequence (λn)n∈N⋆ defined by (8) is well-defined, that the sequence
(Ψα,Θ(λn))n∈N⋆ is lower-bounded and that Ψα,Θ(λn) is finite for all n ∈ N⋆. As (Ψα,Θ(λn))n∈N⋆

is nonincreasing by Theorem 4-(i), it converges in R and in particular we have

lim
n→∞

Ψα,Θ ◦ Imixt
α (λn)−Ψα,Θ(λn) = 0 .

Let (λφ(n))n∈N⋆ be a convergent subsequence of (λn)n∈N⋆ and denote by λ̄ its limit. Since the
function λ 7→ Ψα,Θ◦Imixt

α (λ)−Ψα,Θ(λ) is continuous we obtain that Ψα,Θ◦Imixt
α (λ̄) = Ψα,Θ(λ̄)

and hence by Theorem 4-(ii), λ̄ is a fixed point of Imixt
α .

(ii) The set F =
{
λ ∈ SJ : λ = Imixt

α (λ)
}

of fixed points of Imixt
α is finite.

For any subset R ⊂ {1, . . . , J}, define

SJ,R = {λ ∈ SJ : ∀i ∈ Rc, λi = 0,∀j ∈ Rc, λj ̸= 0} ,

S̃J,R = {λ ∈ SJ : ∀i ∈ Rc, λi = 0} ,

and write
F =

⋃
R⊂{1,...,J}

(SJ,R ∩ F ) .

In order to show that F is finite, we prove by contradiction that for any R ⊂ {1, . . . , J}, SJ,R ∩ F
contains at most one element. Assume indeed the existence of two distinct elements λ ̸= λ′

belonging to SJ,R ∩ F . Since M1,µλ,Θ
(T) = M1,µλ′,Θ

(T) =
{
µλ′′,Θ : λ′′ ∈ S̃J,R

}
, Lemma 4

implies that
Ψα,Θ(λ) = inf

λ′′∈S̃J,R

Ψα,Θ

(
λ′′) = Ψα,Θ(λ

′) .

Applying again Lemma 4, we get µλ,ΘRµλ′,Θ, that is, µλ,ΘK = µλ′,ΘK. This means that∑J
j=1(λj − λ′

j)K(θj , ·) is the null measure, which in turns implies the identity λ = λ′ since the
family of measures {K(θ1, ·), . . . ,K(θJ , ·)} is assumed to be linearly independent.

5



(iii) Conclusion.

According to Lemma 3 applied to the convex subset of measures M = SJ , the function Ψα,Θ attains
its global infimum at a unique λ⋆ ∈ SJ . The uniqueness of λ⋆ actually follows from the fact that, as
shown above, µλ,ΘRµλ′,Θ if and only if λ = λ′. Then, by Theorem 4-(i) and by definition of λ⋆

Ψα,Θ ◦ Imixt
α (λ⋆) ⩽ Ψα,Θ(λ⋆) = inf

λ′∈SJ

Ψα,Θ(λ
′) ⩽ Ψα,Θ ◦ Imixt

α (λ⋆) ,

and hence, Ψα,Θ ◦Imixt
α (λ⋆) = Ψα,Θ(λ⋆), showing that λ⋆ ∈ F by Theorem 4-(ii). Since by (ii), F

is finite, there exists L ⩾ 1 such that F =
{
λℓ : 1 ⩽ ℓ ⩽ L

}
, where for i ̸= j, λi ̸= λj . Without

any loss of generality, we set λ1 = λ⋆ to simplify the notation.

We now introduce a sequence (Wℓ)1⩽ℓ⩽L of disjoint open neighborhoods of (λℓ)1⩽ℓ⩽L such that
for any ℓ ∈ {1, . . . , L},

Imixt
α (Wℓ) ∩

⋃
j ̸=ℓ

Wj

 = ∅ (24)

This is possible since Imixt
α (λℓ) = λℓ and λ 7→ Imixt

α (λ) is continuous.

By (i) , the set F contains all the possible limits of any subsequence of (λn)n∈N⋆ . As a consequence,
there exists N > 0 such that for all n ⩾ N , λn ∈

⋃
1⩽ℓ⩽L Wℓ. Combining with (24), there exists

ℓ ∈ {1, . . . , L} such that for all n ⩾ N , λn ∈ Wℓ. Therefore λℓ is the only possible limit of any
convergent subsequence of (λn)n∈N⋆ and as a consequence, limn→∞ λn = λℓ.

Thus, the sequence (µλn,Θ)n∈N⋆ weakly converges to µλℓ,Θ as n → ∞ and Theorem 1 can be

applied. Since λ1 ∈ S+J , we have M1,µλ1,Θ
(T) =

{
µλ′,Θ : λ′ ∈ SJ

}
and Theorem 1-(iii) then

shows that µλℓ,Θ is the global arginf of Ψα over all
{
µλ′,Θ : λ′ ∈ SJ

}
. Therefore, ℓ = 1, i.e.,

λℓ = λ1 = λ⋆ and
Ψα,Θ(λ⋆) = inf

λ′∈SJ

Ψα,Θ(λ
′) .

B.3 The Power Descent for mixture models: practical version

The algorithm below provides one possible approximated version of the Power Descent algorithm.
We also refer to Appendix A.3 for details regarding why the case α < 1 is crucial when we work
with approximated versions of the Power Descent algorithm.
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Algorithm 1: Practical version of the Power Descent for mixture models
Input: p: measurable positive function, K: Markov transition kernel, α: α-divergence

hyperparameter (must be different from 1), κ: hyperparameter that is such that (α− 1)κ ⩾ 0,
M : number of samples, Θ = {θ1, . . . , θJ} ⊂ T: parameter set, Γ(v) = [(α− 1)v + 1]

η
1−α :

function in the (α,Γ)-descent, η ∈ (0, 1]: learning rate, N : total number of iterations.
Output: Optimised weights λ.
Set λ = [λ1,1, . . . , λJ,1].
for n = 1 . . . N do

Sampling step : Draw independently M samples Y1, . . . , YM from µλ,Θk.

Expectation step : Compute Bλ = (bj)1⩽j⩽J where for all j = 1 . . . J

bj =
1

M(α− 1)

M∑
m=1

k(θj , Ym)

µλ,Θk(Ym)

(
µλ,Θk(Ym)

p(Ym)

)α−1

− 1

α− 1

and deduce Wλ = (λjΓ(bj + κ))1⩽j⩽J and wλ =
∑J

j=1 λjΓ(bj + κ).

Iteration step : Set

λ ← 1

wλ
Wλ

C

C.1 Proof of Proposition 1

We first state (D1), which summarises the necessary convergence and differentiability assumptions
needed in the proof of Proposition 1.

(D1) For some ε > 0: for all α ∈ [1− ε, 1) or α ∈ (1, 1 + ε],

(i) there exists a function N : Y → (0,+∞) satisfying:
∫
Y
N(y)ν(dy) <∞ and

sup
θ∈T

k(θ, ·)× sup
θ′∈T

(
k(θ′, ·)
p(·)

)α−1

< N(·) ;

(ii) there exists a function M : Y → (0,+∞) satisfying:
∫
Y
M(y)ν(dy) <∞ and

sup
θ∈T

k(θ, ·)× sup
θ′∈T

∣∣∣∣log(k(θ′, ·)
p(·)

)∣∣∣∣× sup
θ′′∈T

(
k(θ′′, ·)
p(·)

)α−1

< M(·) ;

(iii) for all y ∈ Y, we have
∫
Y

inf
θ∈T

k(θ, y)× inf
θ′∈T

(
k(θ′,y)
p(y)

)α−1

ν(dy) > 0.

Note that Assumption (D1)-(iii) is only required when α > 1 to ensure that the quantity [(α −
1)(bµ,α + κ) + 1]

η
1−α is bounded from above. This assumption could also be replaced by the

assumption that κ is such that (α− 1)κ > 0.

Proof of Proposition 1. For all θ ∈ T, the Dominated Convergence Theorem and (D1)-(i) yield

lim
α→1

(α− 1)(bµ,α(θ) + κ) + 1 = lim
α→1

∫
Y

k(θ, y)

(
µk(y)

p(y)

)α−1

ν(dy) + 0 = 1 .
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Then, using (D1)-(ii) we have that for all θ ∈ T,

lim
α→1

[(α− 1)(bµ,α(θ) + κ) + 1]
η

1−α = exp

(
lim
α→1
−η log [(α− 1)(bµ,α(θ) + κ) + 1]

α− 1

)

= exp

 lim
α→1
−η

∫
Y
k(θ, y)

(
µk(y)
p(y)

)α−1

log
(

µk(y)
p(y)

)
ν(dy) + κ∫

Y
k(θ, y)

(
µk(y)
p(y)

)α−1

ν(dy) + (α− 1)κ


= exp

[
−η
∫
Y

k(θ, y) log

(
µk(y)

p(y)

)
ν(dy)

]
exp (−ηκ)

In addition, by the Dominated Convergence Theorem (and (D1)-(iii) when α > 1), we have

lim
α→1

µ
(
[(α− 1)(bµ,α + κ) + 1]

η
1−α

)
= µ

(
exp

[
−η
∫
Y

k(·, y) log
(
µk(y)

p(y)

)
ν(dy)

])
exp (−ηκ) .

Thus,

lim
α→1

[Iα(µ)](h) =
∫
T

µ(dθ)h(θ)e−η
∫
Y
k(θ,y) log(µk(y)

p(y) )ν(dy)

µ
(
e−η

∫
Y
k(·,y) log(µk(y)

p(y) )ν(dy)
) = [I1(µ)](h) .

C.2 Derivation of the update formula for the Rényi Descent

For all α ∈ R \ {0, 1} and κ such that (α− 1)κ ⩾ 0, we are interested applying the Entropic Mirror
Descent algorithm to the following objective function

ΨAR
α (µ; p) :=

1

α(α− 1)
log

(∫
Y

µk(y)αp(y)1−αν(dy) + (α− 1)κ

)
,

where we will drop the dependency in p in the following for convenience.

Lemma 5. Assume (A1). The gradient of ΨAR
α (µ) is given by θ 7→ bµ,α(θ)+1/(α−1)

(α−1)(µ(bµ,α)+κ)+1 .

Proof. Let ε > 0 be small and let µ, µ′ ∈ M1(T). Then,

ΨAR
α (µ+ εµ′) =

1

α(α− 1)
log

(∫
Y

[(µ+ εµ′)k(y)]αp(y)1−αν(dy) + (α− 1)κ

)
=

1

α(α− 1)
log

(∫
Y

µk(y)α
[
1 + αε

µ′k(y)

µk(y)

]
p(y)1−αν(dy) + (α− 1)κ+ o(ε)

)
where we used that (1 + u)α = 1 + αu+ o(u) as u→ 0. Thus,

ΨAR
α (µ+ εµ′) = ΨAR

α (µ) +
1

α(α− 1)
log

1 + αε

∫
Y
µ′k(y)

(
µk(y)
p(y)

)α−1

ν(dy)∫
Y
µk(y)αp(y)1−αν(dy) + (α− 1)κ

+ o(ε)


= ΨAR

α (µ) + ε
1

α− 1

∫
Y
µ′k(y)

(
µk(y)
p(y)

)α−1

ν(dy)∫
Y
µk(y)αp(y)1−αν(dy) + (α− 1)κ

+ o(ε)

= ΨAR
α (µ) + ε

∫
T

µ′(dθ)
1

α− 1

bµ,α(θ) + 1/(α− 1)

µ(bµ,α) + κ+ 1/(α− 1)
+ o(ε)

using that log(1 + u) = u+ o(u) as u→ 0.

Consequently, the iterative update formula for the Entropic Mirror Descent applied to the objective
function ΨAR

α is given by

µn+1(dθ) = µn(dθ)
e
− η

α−1

bµn,α(θ)

µn(bµn,α)+κ+1/(α−1)

µn(e
− η

α−1

bµn,α
µn(bµn,α)+κ+1/(α−1) )

, n ∈ N⋆ .

8



C.3 Proof of Theorem 3

As we shall see, the proof can be adapted from the proof of [1, Theorem 2]. For all µ ∈ M1(T), we
will use the notation

IAR
α (µ)(dθ) =

µ(dθ) exp
[
−η bµ,α(θ)

(α−1)(µ(bµ,α)+κ)+1

]
µ
(
exp

[
−η bµ,α

(α−1)(µn(bµ,α)+κ)+1

])
to designate the one-step transition of the Rényi Descent algorithm. Note in passing that for all
κ′ ∈ R, this definition can also be rewritten under the form

IAR
α (µ)(dθ) =

µ(dθ) exp
[
−η bµ,α(θ)

(α−1)(µ(bµ,α)+κ)+1 + κ′
]

µ
(
exp

[
−η bµ,α

(α−1)(µn(bµ,α)+κ)+1 + κ′
]) .

We also define

L = η2 sup
v∈DomAR

α

e−ηv

Lα,1 = inf
v∈DomAR

α

{1− η(α− 1)(v − κ′)} × η inf
v∈DomAR

α

e−ηv (25)

Lα,2 = η−1 sup
θ∈T,µ∈M1(T)

[(α− 1)(bµ,α(θ) + κ) + 1]

Lα,3 = sup
v∈DomAR

α

eηv .

C.3.1 Recalling [1, Lemma 5]

Let (ζ, µ) be a couple of probability measures where ζ is dominated by µ which we denote by ζ ⪯ µ
and define

Aα :=

∫
Y

ν(dy)

∫
T

µ(dθ)k(θ, y)f ′
α

(
g(θ)µk(y)

p(y)

)
[1− g(θ)] , (26)

where g is the density of ζ w.r.t µ, i.e. ζ(dθ) = µ(dθ)g(θ). We recall [1, Lemma 5] in Lemma 6
below.

Lemma 6. [1, Lemma 5] Assume (A1). Then, for all µ, ζ ∈ M1(T) such that ζ ⪯ µ and Ψα(µ) <∞,
we have

Aα ⩽ Ψα(µ)−Ψα(ζ) . (27)

Moreover, equality holds in (27) if and only if ζ = µ.

C.3.2 Adaptation of [1, Theorem 1]

Lemma 7. Assume (A1) and (A4). Let α ∈ R \ {1}, let κ be such that (α − 1)κ ⩾ 0 and let
µ ∈ M1(T) be such that

0 < µ

{
exp

(
−η bµ,α + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1

)}
<∞ (28)

holds and Ψα(µ) <∞. Then, the two following assertions hold.

(i) We have Ψα ◦ IAR
α (µ) ⩽ Ψα(µ).

(ii) We have Ψα ◦ IAR
α (µ) = Ψα(µ) if and only if µ = IAR

α (µ).
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Proof. The proof builds on the proof of [1, Theorem 1] in the particular case α ∈ R \ {1}. Indeed, in
this case,

Aα =

∫
Y

ν(dy)

∫
T

µ(dθ)k(θ, y)
1

α− 1

[(
g(θ)µk(y)

p(y)

)α−1

− 1

]
[1− g(θ)]

=

∫
Y

ν(dy)

∫
T

µ(dθ)k(θ, y)
1

α− 1

(
µk(y)

p(y)

)α−1

g(θ)α−1 [1− g(θ)]

=

∫
T

µ(dθ)

[
bµ,α(θ) +

1

α− 1

]
g(θ)α−1 [1− g(θ)] .

so that

Aα = [(α− 1)(µ(bµ,α) + κ) + 1]×
∫
T

µ(dθ)
bµ,α(θ) +

1
α−1

(α− 1)(µ(bµ,α) + κ) + 1
g(θ)α−1 [1− g(θ)]

where (α− 1)(µ(bµ,α) + κ) + 1 > 0 under (A1). Set

g = Γ̃ ◦
(

bµ,α + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1

)
where for all v ∈ DomAR

α ,

Γ̃(v) =
e−ηv

µ
{
exp

(
−η bµ,α+1/(α−1)

(α−1)(µ(bµ,α)+κ)+1 − ηκ′
)} .

Finally, let us consider the probability space (T, T , µ) and let V be the random variable

V (θ) =
bµ,α(θ) + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1
+ κ′ .

Then, we have E[1− Γ̃(V )] = 0 and we can write

Aα = [(α− 1)(µ(bµ,α) + κ) + 1]× E[(V − κ′)Γ̃α−1(V )(1− Γ̃(V ))]

= [(α− 1)(µ(bµ,α) + κ) + 1]× Cov((V − κ′)Γ̃α−1(V ), 1− Γ̃(V )) . (29)

Under (A4) with α ∈ R \ {1}, v 7→ (v − κ′)Γ̃α−1(v) and v 7→ 1− Γ̃(v) are increasing on DomAR
α

which implies Cov(V Γ̃α−1(V ), 1− Γ̃(V )) ⩾ 0 and thus Aα ⩾ 0 since (α− 1)(µ(bµ,α) + κ) + 1 >
0.

C.3.3 Adaptation of [1, Lemma 6]

Consider the probability space (T, T , µ) and denote by Varµ the associated variance operator.
Lemma 8. Assume (A1) and (A4). Let α ∈ R \ {1}, let κ be such that (α − 1)κ > 0, and let
µ ∈ M1(T) be such that (28) holds and Ψα(µ) <∞. Then,

(α− 1)κLα,1

2
Varµ

(
bµ,α + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1

)
⩽ Ψα(µ)−Ψα ◦ IAR

α (µ) , (30)

where
Lα,1 := inf

v∈DomAR
α

{1− η(α− 1)(v − κ′)} × inf
v∈DomAR

α

ηe−ηv .

Proof. The proof of Lemma 8 builds on the proof of [1, Lemma 6], which can be found in the
supplementary material of [1]. Using (29) combined with the fact that under (A1), (α− 1)(µ(bµ,α) +
κ) + 1 > (α− 1)κ > 0

Aα = [(α− 1)(µ(bµ,α) + κ) + 1]× Cov((V − κ′)Γ̃α−1(V ), 1− Γ̃(V ))

> (α− 1)κ× Cov((V − κ′)Γ̃α−1(V ), 1− Γ̃(V ))

10



Furthermore,

Cov((V − κ′)Γ̃α−1(V ), 1− Γ̃(V ))

=
1

2
E
[
((U − κ′)Γ̃α−1(U)− (V − κ′)Γ̃α−1(V ))(−Γ̃(U) + Γ̃(V ))

]
=

1

2
E

[
(U − κ′)Γ̃α−1(U)− (V − κ′)Γ̃α−1(V )

U − V

−Γ̃(U) + Γ̃(V )

U − V
(U − V )2

]

⩾
Lα,1

2
Varµ

(
bµ,α + 1/(α− 1)

(α− 1)(µ(bµ,α) + κ) + 1

)
and we thus obtain (30).

C.3.4 Adaptation of the proof of [1, Theorem 2] to obtain Theorem 3

Proof of Theorem 3. The proof of Theorem 3 builds on the proof of [1, Theorem 2], which can be
found in the supplementary material of [1]. We prove the assertions successively.

(i) The proof of (i) simply consists in verifying that we can apply Lemma 7. For all µ ∈ M1(T), (28)
with µ = µn holds for all n ∈ N⋆ by assumption on |B|∞,α and since at each step n ∈ N⋆, Lemma 7
combined with Ψα(µn) <∞ implies that Ψα(µn+1) ⩽ Ψα(µn) <∞, we obtain by induction that
(Ψα(µn))n∈N⋆ is non-increasing.

(ii) Let n ∈ N⋆, set ∆n = Ψα(µn)−Ψα(µ
⋆) and for all θ ∈ T, Vn(θ) =

bµn,α(θ)+ 1
α−1

(α−1)(µn(bµn,α)+κ)+1+κ′,
such that dµn+1 ∝ e−ηVndµn.

We first show that

∆n ⩽ Lα,2

[∫
T

log

(
dµn+1

dµn

)
dµ⋆ +

L

2
Varµn

(Vn)Lα,3

]
. (31)

The convexity of fα implies that

∆n ⩽
∫
T

bµn,α(dµn − dµ⋆) (32)

=

∫
T

(
bµn,α +

1

α− 1

)
(dµn − dµ⋆)

=
(α− 1)(µn(bµn,α) + κ) + 1

η

∫
T

(µn(ηVn)− ηVn)dµ
⋆ . (33)

Then, noting that

−ηVn = logµn

(
e−ηVn

)
+ log

(
dµn+1

dµn

)
we deduce

∆n ⩽ Lα,2

∫
T

[
µn(ηVn) + log µn

(
e−ηVn

)
+ log

(
dµn+1

dµn

)]
dµ⋆ . (34)

Since v 7→ e−ηv is L-smooth on DomAR
α , for all θ ∈ T and for all n ∈ N⋆ we can write

e−ηVn(θ) ⩽ e−ηµn(Vn) + ηe−ηµn(Vn)(Vn(θ)− µn(Vn)) +
L

2
(Vn(θ)− µn(Vn))

2

which in turn implies

µn(e
−ηVn) ⩽ e−ηµn(Vn) +

L

2
Varµn

(Vn) .

Finally, we obtain

logµn(e
−ηVn) ⩽ log e−ηµn(Vn) + log

(
1 +

L

2

Varµn
(Vn)

e−ηµn(Vn)

)
.
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Using that log(1 + u) ⩽ u when u ⩾ 0 and by definition of Lα,3, we deduce

logµn(e
−ηVn) ⩽ −ηµn(Vn) +

L

2
Varµn(Vn)Lα,3 ,

which combined with (34) implies (31). To conclude, we apply Lemma 8 to g = dµn+1

dµn
and

combining with (31), we obtain

∆n ⩽ Lα,2

[∫
T

log

(
dµn+1

dµn

)
dµ⋆ +

LLα,3

Lα,1(α− 1)κ
(∆n −∆n+1)

]
,

where by assumption Lα,1, Lα,2 and Lα,3 > 0. As the r.h.s involves two telescopic sums, we deduce

1

N

N∑
n=1

Ψα(µn)−Ψα(µ
⋆) ⩽

Lα,2

N

[
KL(µ⋆||µ1)−KL(µ⋆||µN+1) + L

Lα,3

Lα,1(α− 1)κ
(∆1 −∆N+1)

]
and we recover (12) using (i), that KL(µ⋆||µN+1) ⩾ 0 and that ∆N+1 ⩾ 0.

D

D.1 The Rényi Descent for mixture models: practical version

The algorithm below provides one possible approximated version of the Rényi Descent algorithm.

Algorithm 2: Practical version of the Rényi Descent for mixture models
Input: p: measurable positive function, K: Markov transition kernel, α: α-divergence

hyperparameter (must be different from 1), κ: hyperparameter that is such that (α− 1)κ ⩾ 0
M : number of samples, Θ = {θ1, . . . , θJ} ⊂ T: parameter set, Γ(v) = e−ηv with learning rate
η > 0, N : total number of iterations.

Output: Optimised weights λ.
Set λ = [λ1,1, . . . , λJ,1].
for n = 1 . . . N do

Sampling step : Draw independently M samples Y1, . . . , YM from µλ,Θk.

Expectation step : Compute Bλ = (b′j)1⩽j⩽J where for all j = 1 . . . J

bj =
1

M(α− 1)

M∑
m=1

k(θj , Ym)

µλ,Θk(Ym)

(
µλ,Θk(Ym)

p(Ym)

)α−1

− 1

α− 1

and for all j = 1 . . . J

b′j =
bj

(α− 1)(
∑J

ℓ=1 bℓ + κ) + 1

and deduce Wλ = (λjΓ(b
′
j + κ′))1⩽j⩽J and wλ =

∑J
j=1 λjΓ(b

′
j + κ′).

Iteration step : Set

λ ← 1

wλ
Wλ

12



D.2 Plots in dimension d < 16

We present here plots comparing the Power Descent, the Rényi Descent and the Entropic Mirror
Descent applied to Ψα in a low-dimensional setting (i.e. d < 16) and using the same Exploration
step as in Figure 1.

Figure 3: Plotted is the average Variational Rényi bound for the Power Descent (PD), the Rényi
Descent (RD) and the Entropic Mirror Descent applied to Ψα (EMD) in dimension d = {4, 6, 8, 10}
computed over 50 replicates with η0 = 0.3 and α = 0.5 and M ∈ {100, 200}.

• In dimension d = 4, the performances are similar for the Entropic Mirror Descent applied
to Ψα, the Power Descent and the Rényi Descent.
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• In dimension d = 6, the Entropic Mirror Descent applied to Ψα outperforms the Rényi
Descent but is slower than the Power Descent.

• In dimension d = 8, 10, the Entropic Mirror Descent applied to Ψα is still able to learn, but
at a much slower rate compared to the Rényi Descent and the Power Descent.

These plots notably show that the Entropic Mirror Descent applied to Ψα, which is very well-
supported algorithm theoretically, does work in practice in small dimensions and might even outper-
form the Rényi Descent (e.g. when d = 6).

D.3 Alternative Exploration steps in Algorithm 2

We present here two possible alternative choices of Exploration steps in Algorithm 2, beyond the first
one we have made in Section 5 and that is based on [1]. Our goal here is not to discriminate between
all of them, but to illustrate the generality of the approach.

D.3.1 Gradient Descent

One could use a Gradient Descent approach to optimise the mixture components parameters
{θ1,t+1, . . . , θJ,t+1} in the spirit of Rényi’s α-divergence gradient-based methods (e.g [5, 6]) or
α-divergence gradient-based methods (e.g [7, 8]).

D.3.2 The particular case α ∈ [0, 1)

For the specific case α ∈ [0, 1) and following [9], another possibility would be to set at time t ⩽ T :
for all j = 1 . . . J

θj,t+1 = argmaxθj∈T

∫
Y

γt
j,α(y) log(k(θj , y))ν(dy) (35)

where for all y ∈ Y,

γt
j,α(y) = k(θj,t, y)

(
µλ,Θk(y)

p(y)

)α−1

.

Indeed, [9] showed that the above update formulas for {θ1,t+1, . . . , θJ,t+1} ensure a systematic
decrease in the α-divergence and they notably explained how these update formulas could even
outperform typical Rényi’s α / α-divergence gradient-based approaches (we refer to [9] for details).

Furthermore, in the particular case of d-dimensional Gaussian density kernels with k(θj,t, y) =
N (y;mj,t,Σj,t) and where θj,t = (mj,t,Σj,t) ∈ T denotes the mean and covariance matrix of the
j-th Gaussian component density, they obtained that the maximisation procedure (35) amounts to
setting

∀j = 1 . . . J, mj,t+1 =

∫
Y
γt
j,α(y)y ν(dy)∫

Y
γt
j,α(y)ν(dy)

Σj,t+1 =

∫
Y
γt
j,α(y)(y −mj,t+1)(y −mj,t+1)

T ν(dy)∫
Y
γt
j,α(y)ν(dy)

.

These update formulas can then always be made feasible by resorting to Monte Carlo approximations
and can be used as a valid Exploration step. If we were to focus on solely updating the means
(mj,t+1)1⩽j⩽J , we could for example consider the Exploration step given by:

∀j = 1 . . . J, θj,t+1 = mj,t+1 =

∑M
m=1 γ̂

(t)
j (Y ′

m;λ) · Y ′
m∑M

m=1 γ̂
(t)
j (Y ′

m;λ)

where the M samples (Y ′
m)1⩽m⩽M have been drawn independently from the proposal µλ,Θk and

where we have set

γ̂
(t)
j (y;λ) =

k(θj,t, y)

µλ,Θk(y)

(
µλ,Θk(y)

p(y)

)α−1

.
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Figure 4: Plotted is the average Variational Rényi bound for the Power Descent (PD) and the Rényi
Descent (RD) in dimension d = 16 computed over 100 replicates with η0 = 0.3 and α = 0.5 and an
increasing number of samples M .

We ran Algorithm 2over 100 replicates for this choice of Exploration step with M ∈ {100, 500} (and
keeping the same target p, initial sampler q0, and hyperparameters N = 20, T = 10, η = η0/

√
N

with η0 = 0.3, α = 0.5, J = 100, κ = 0 and d = 16 as those chosen in Section 5). The results when
using the Power and the Rényi Descent as Exploitation steps can be visualised in the figure below.

We then observe a similar behavior for the Power and the Rényi Descent, which illustrates the
closeness between both algorithms, irrespective of the choice of the Exploration step.
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