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Table 3: The best hyperparameter configurations achieved for each dataset using the GIN model.

Dataset NUM LAYERS PRE NUM LAYERS DIM INNER DROPOUT BASE LR

BZR 1 2 32 0.0 1e�3

COX2 2 2 128 0.0 1e�2

DD 2 2 128 0.5 1e�3

ENZYMES 2 1 128 0.5 1e�3

MUTAG 2 1 128 0.0 1e�2

NCI1 1 2 128 0.0 1e�3

NCI109 2 2 128 0.0 1e�3

PROTEINS 1 2 128 0.5 1e�3

PTC 1 2 128 0.0 1e�3

A TRAINING DETAILS

In this section, we provide detailed information regarding the experimental setup used to obtain
the results. We begin by describing the hyperparameters that were cross-validated for the GNN
graph-level classifier on GIN. The optimal configuration obtained for each dataset was then used to
train the rest of the models. We also present the additional hyperparameters that were cross-validated
for the other models apart from GIN. All the fixed hyperparameters can be found in the GitHub
repository at https://github.com/XXXX/XXXX. For all the experiments, we trained the
models using a seed of 42 and report the mean and standard deviation over 5 different dataset splits.
We run the models based on reinforcement learning, i.e., SUGAR (https://github.com/
RingBDStack/SUGAR) and GCIP, for 1000 epochs and the rest of the models for 500 epochs. The
experiments were conducted on a single CPU with 10GB RAM.

GIN Hyperparameters The following hyperparameters were cross-validated with the correspond-
ing values:

• NUM LAYERS PRE: Number of layers of the MLP used prior to the GNN. Cross-validated
values: [1, 2].

• NUM LAYERS: Number of layers of the GNN. Cross-validated values: [1, 2].
• DIM INNER: Number of neurons in each (graph) neural network layer. Cross-validated

values: [32, 128].
• DROPOUT: Probability of applying dropout. Cross-validated values: [0.0, 0.5].
• BASE LR: Base learning rate used for training. Cross-validated values: {1e�2, 1e�3, 1e�4}.

Table 3 presents the best configuration obtained for each dataset, which was subsequently used to
train the remaining models.

TopK Hyperparameters The following hyperparameter was cross-validated with the correspond-
ing values:

• RATIO: Percentage of nodes to retain. Cross-validated values:
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

RNDN Hyperparameters The following hyperparameter was cross-validated with the correspond-
ing values:

• RATIO: Percentage of nodes to retain. Cross-validated values:
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

RNDE Hyperparameters The following hyperparameter was cross-validated with the correspond-
ing values:
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Table 4: The best hyperparameter configurations achieved for each dataset using the GCIP model for
node (left) and edge (right) removal. d represents the maximum desired node/edge ratio.

Dataset GCIPN GCIPE

� d SPLITS BASE LR 2 � d SPLITS BASE LR 2

BZR 0.50 0.30 [0.5, 0.4, 0.1] 1e-4 0.50 0.30 [0.6, 0.3, 0.1] 1e-4

COX2 0.50 0.30 [0.6, 0.3, 0.1] 1e-4 0.00 0.25 [0.5, 0.4, 0.1] 1e-4

DD 0.00 0.95 [0.6, 0.3, 0.1] 1e-4 0.50 0.30 [0.6, 0.3, 0.1] 1e-4

ENZYMES 1.00 0.30 [0.5, 0.4, 0.1] 1e-4 0.50 0.30 [0.5, 0.4, 0.1] 1e-3

MUTAG 0.50 0.75 [0.5, 0.4, 0.1] 1e-3 1.00 0.30 [0.6, 0.3, 0.1] 5e-3

NCI1 0.50 0.30 [0.6, 0.3, 0.1] 1e-4 0.00 0.50 [0.5, 0.4, 0.1] 1e-4

NCI109 0.00 0.75 [0.6, 0.3, 0.1] 1e-4 0.25 0.30 [0.6, 0.3, 0.1] 1e-4

PROTEINS 1.00 0.30 [0.5, 0.4, 0.1] 5e-3 0.75 0.30 [0.6, 0.3, 0.1] 5e-3

PTC 0.00 0.50 [0.5, 0.4, 0.1] 1e-4 0.00 0.95 [0.6, 0.3, 0.1] 1e-3

• RATIO: Percentage of edges to retain. Cross-validated values:
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

DiffPool Hyperparameters The following hyperparameters were cross-validated with the corre-
sponding values:

• ADDITIONAL LOSSES: Whether or not to include the additional loss proposed in Ying et al.
(2018). Cross-validated values: {True, False}.

• BASE LR: Base learning rate used for training. Cross-validated values: {1e�2, 1e�3, 1e�4}.

SUGAR Hyperparameters The following hyperparameters were cross validated with the corre-
sponding values:

• NEGATIVE SAMPLING RATIO: This hyperparameter was cross validated for the self-
supervised MI Module and it controlled the amount of negative subgraphs being sampled
for contrastive learning. Cross-validated values {1, 2, 3, 4, 5}

• BETA: This hyperparameter acted as coefficient for the self supervised module in SUGAR.
Cross-validated values {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}

GCIP Hyperparameters The following hyperparameters were cross-validated with the correspond-
ing values. The same values were cross-validated for both GCIPN and GCIPE.Table 4 presents the
best configuration obtained for each dataset for both GCIPN and GCIPE.

• BASE LR 2: Base learning rate used for the outer optimization, which corresponds to the
reinforcement learning component. Cross-validated values: {1e�3, 1e�4}.

• SPLITS: The split percentages used for training, validation, and test sets. The test size was
kept fixed, while the training and validation sizes were varied. These splits were used for
training the base graph classifier and the reinforcement learning component, respectively.
Cross-validated values: {[0.5, 0.4, 0.1], [0.6, 0.3, 0.1]}.

A.1 EVOLUTION OVER EPOCHS

We present (in Figure 5) the evolution of several metrics during the training of the nine datasets
discussed in Section 5. Specifically, we analyze the accuracies, PPO rewards, node/edge ratio.
Upon observing the trends across all metrics, we find a consistent and stable evolution throughout the
epochs, providing compelling evidence for the effectiveness of the bi-level optimization approach.
However, it is important to note that three datasets (NCI1, NCI109, and PTC) do not achieve
convergence by epoch 1000. This suggests that extending the training duration may further improve
the performance of our proposed method GCIP. Nevertheless, to ensure a fair comparison, we did not
pursue this approach.
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Dataset: BZR COX2 DD ENZYMES MUTAG NCI1 NCI109 PROTEINS PTC

Policy: edge node
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Figure 5: Evolution of different metrics during training for the nine datasets under study.
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B GCIP TRAINING PROCEDURE

In this section we include a description of the training procedure of GCIP, summarized in Algorithm 1.

Algorithm 1 Training of GCIP.

1: Input: Training Dtr and validation Dval sets; Initial graph classifier parameters ✓ and policy
parameters �; Empty buffer B; Learning rates ↵ and �; Number of PPO updates K

2: while not convergence do
3: for y,G 2 Dtr do . Get a (batch of) sample(s) from the training set
4: a ⇠ ⇡�(a|G) . Sample the nodes/edges to be removed using the policy
5: Gs  G . Get the subgraph
6: ŷs = f✓(Gs) . Get the prediction
7: ✓  ✓ � ↵r✓Lperf(✓,�) . Update the parameters of the graph classifier
8: end for
9: for y,G 2 Dval do . Get a (batch of) sample(s) from the validation set

10: Gs  ⇡� . Use the ⇡ to sample a sparse graph
11: ŷs = f(Gs) . Get the prediction of the sparse graph
12: Add tuple {y,G, ŷ,Gs} to the buffer B
13: end for
14: Compute rewards and prepare mini-batches from buffer B for PPO updates
15: for i = 1, 2, ..., K do . Update PPO K times
16: {y,G, ŷ,Gs, r} ⇠ B . Sample a batch of tuples from the buffer
17: Compute advantage estimates Â
18: � �� �r�Lspa(✓,�) . Update policy by maximizing Equation (1)
19: end for
20: Check for convergence, update convergence flag
21: end while
22: Output: Optimal policy parameters � and graph classifier parameters ✓

C COMPLETE RESULTS ON ABLATION STUDY

In this section, we provide a complete ablation study on � and desired node/edge ratio d for all the
datasets namely BZR, COX2, DD, ENZYMES, MUTAG, NCI1, NCI109, PROTEINS and PTC.

C.1 ABLATION STUDY ON �

Here we analyze the results of how the parameter � affects the sparsity and performance of GCIPE
and GCIPN, on all datasets. Results are shown in Figure 6 for GCIPN and Figure 7 for GCIPE.
We can observe that the � is able to control sparsity in nodes and edges without dropping the accuracy.
In general, lower values of � result in sparser graphs. The effect is really clear for most datasets like
NCI1, with the node ratio in Figure 6 ranging from approximately 0.5 to 0.15, and the edge ratio in
Figure 7 ranging from approximately 0.8 to 0.4. However, for other datasets like DD, the differences
are much smaller, with the node ratio in Figure 6 ranging from approximately 0.48 to 0.4, and the
edge ratio in Figure 7 ranging from approximately 0.58 to 0.5.

C.2 ABLATION STUDY ON MAXIMUM DESIRED RATIO d

Here we analyze the results of how the parameter d affects the sparsity and performance of GCIPE
and GCIPN, on all datasets. Results are shown in Figure 8 for GCIPN and Figure 9 for GCIPE.
Similar to the results shown in Figure 6 and Figure 7, we can observe that the parameter d is able
to control sparsity in nodes and edges without dropping the accuracy, extensively. Some datasets,
such as DD, exhibit more subtle differences. However, in general, lower values of d clearly lead to
sparser graphs. This is evident in datasets like NCI1, NCI109, and PTC, where the graph becomes
significantly sparser as d decreases.
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(a) BZR (b) COX2 (c) DD

(d) ENZYMES (e) MUTAG (f) NCI1

(g) NCI109 (h) PROTEINS (i) PTC

Figure 6: Ablation study on � for GCIPN, controlling the importance given to performance or sparsity.
The brown solid rectangle on the accuracy axis represents the baseline GIN (baseline) accuracy.
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(a) BZR (b) COX2 (c) DD

(d) ENZYMES (e) MUTAG (f) NCI1

(g) NCI109 (h) PROTEINS (i) PTC

Figure 7: Ablation study on � for GCIPE, controlling the importance given to performance or sparsity.
The brown solid rectangle on the accuracy axis represents the baseline GIN (baseline) accuracy.
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(a) BZR (b) COX2 (c) DD

(d) ENZYMES (e) MUTAG (f) NCI1

(g) NCI109 (h) PROTEINS (i) PTC

Figure 8: Ablation study on d for GCIPN, controlling the importance given to performance or sparsity.
The brown solid rectangle on the accuracy axis represents the baseline GIN (baseline) accuracy.
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(a) BZR (b) COX2 (c) DD

(d) ENZYMES (e) MUTAG (f) NCI1

(g) NCI109 (h) PROTEINS (i) PTC

Figure 9: Ablation study on d for GCIPE, controlling the importance given to performance or sparsity.
The brown solid rectangle on the accuracy axis represents the baseline GIN (baseline) accuracy.

21



Under review as a conference paper at ICLR 2024

Table 5: Test set accuracy results. We show the mean over 5 independent runs and the standard
deviation as the subindex. The last row includes the average ranking of the model across datasets.
Best performing models on average are indicated in bold.

Dataset Full Models Sparse Models
GIN GCN GCIPGIN-N GCIPGIN-E GCIPGCN-N GCIPGCN-E

BZR 81.95 2.78 85.37 2.44 79.90 4.29 82.39 5.07 79.02 3.22 79.54 8.85

COX2 84.58 4.56 78.75 4.52 75.49 6.33 83.59 2.82 77.81 5.03 79.05 3.48

DD 73.11 2.45 76.97 2.19 75.51 1.86 74.40 2.12 68.35 2.75 70.02 3.92

ENZYMES 72.33 4.35 72.67 5.48 63.70 3.89 49.53 5.29 50.88 6.88 56.02 7.60

MUTAG 86.00 4.18 79.00 7.42 74.63 2.12 74.32 6.34 69.89 4.91 71.59 6.08

NCI1 82.04 1.26 82.29 1.05 73.66 2.74 73.51 1.02 68.48 2.03 69.69 1.47

NCI109 81.59 1.91 79.90 1.79 71.88 3.94 72.48 2.78 64.74 2.71 66.93 2.10

PROTEINS 72.86 4.22 71.19 2.30 73.49 7.27 73.50 5.03 69.18 3.39 70.23 3.09

PTC 59.44 8.91 55.00 3.62 52.92 8.67 66.06 4.31 61.14 9.79 60.00 10.41

Accuracy rank 2.33 2.33 3.67 2.89 5.33 4.44

Table 6: Test set accuracy results. We show the mean over 5 independent runs and the standard
deviation as the subindex. The last row includes the average ranking of the model across datasets.
Best performing models on average are indicated in bold.

Dataset Sparse Models
RandomNode RandomEdge GCIPN GCIPE

BZR 64.39 5.62 71.71 2.09 79.90 4.29 82.39 5.07
COX2 70.42 8.51 78.75 9.40 75.49 6.33 83.59 2.82
DD 39.66 7.64 41.68 3.71 75.51 1.86 74.40 2.12

ENZYMES 27.67 6.30 29.00 7.23 63.70 3.89 49.53 5.29

MUTAG 75.00 7.07 69.00 17.57 74.63 2.12 74.32 6.34

NCI1 70.07 2.31 70.36 3.83 73.66 2.74 73.51 1.02

NCI109 68.12 1.70 67.63 2.15 71.88 3.94 72.48 2.78
PROTEINS 71.01 5.13 71.19 3.55 73.49 7.27 73.50 5.03
PTC - - 52.92 8.67 66.06 4.31

Accuracy rank 3.50 3.12 1.78 1.56

C.3 COMPARISON WITH DIFFERENT BASE ARCHITECTURE

Here, we analyze the results of how switching the base model affects the performance. Table 5
summarizes the results for two base architectures GCN and GIN. It can be observed that even when
the base architecture changes our models GCIPN and GCIPE achieve considerable accuracy compared
to the respective baseline.

C.4 COMPARISON WITH RANDOM SPARSER GRAPHS

In this section we compare GCIP with a baseline sparsity approach: we obtain a sparser graph by
randomly removing a fixed ratio of nodes or edges of each graph in the dataset. We denote the
resulting approaches RandomNode and RandomEdge respectively. We cross-validate the ratio of
nodes and edges kept and we used GIN as the base model.
Table 6 shows the accuracy results, and Table 7 shows the results of sparsity. In Table 6, we can
observe that GCIPN and GCIPE perform much better in accuracy compared to the RandomNode and
RandomEdge models. Additionally, in Table 7, we show that GCIPN achieves the highest Node and
Edge rank.
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Table 7: Node/Edge ratio (shown in %) for the graphs in the test set for Sparse models on 9 different
datasets. Numbers in parentheses indicate the ranking of the model for each dataset. The last two
rows indicate the average ranking of the models across datasets in terms of node and edge sparsity,
respectively. Best performing models on average are indicated in bold.
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Table 8: The table below shows the average training time along with the standard deviation of each
model on each dataset for one epoch with a batch size of one.

Dataset Full Models Sparse Models
GIN DiffPool SUGAR TopKhard GCIPN GCIPE

BZR 2.64 0.18 4.23 0.12 - 3.44 0.27 186.96 61.70 121.94 2.00

COX2 3.07 0.15 4.83 0.17 - 10.00 2.70 411.93 85.97 203.93 1.86

DD 6.13 0.13 - - 33.31 4.90 1848.21 1.12 1857.59 1.13

ENZYMES 2.40 0.04 6.26 0.31 132.86 3.77 6.08 0.30 233.78 6.65 287.95 2.20

MUTAG 1.09 0.03 1.63 0.04 47.82 3.45 1.71 0.19 24.97 1.55 22.94 0.30

NCI1 15.44 0.19 41.74 3.03 1143.85 45.27 48.05 8.12 1596.95 107.83 1826.41 51.06

NCI109 16.68 1.15 43.73 0.44 1195.10 47.42 43.46 3.09 1533.59 15.51 1756.84 37.12

PROTEINS 5.80 0.23 11.79 1.19 511.21 22.63 13.58 2.58 484.97 14.74 505.89 2.70

PTC 1.68 0.16 3.00 0.07 95.78 1.47 3.28 0.18 64.60 1.23 67.19 0.32

D TIME COMPLEXITY

Here, we analyze the training and inference times of all models on each dataset. We run each model
on every dataset for a single epoch, utilizing a batch size of one. To ensure statistical significance and
reliability in our measurements, we repeat each experiment ten times. This repetition enables us to
calculate the average training and inference times accurately. Such a meticulous approach guarantees
robust and precise performance assessment for our models across the diverse set of datasets under
examination.
Table 8 and Table 9 show the complete results for the training and inferences times, respectively. If
we focus on Table 8, we observe the models that only rely on a single forward pass are considerably
faster than the models that rely on a reinforcement learning-based approach. Still, we observe that
GCIP achieves comparable speed as SUGAR, and sometimes it is faster, e.g., with PTC or MUTAG.
In terms of inference time, in Table 9, we can observe that even tho GCIP is still slower than the Full
Models, it is considerably faster than SUGAR.

Table 9: The table below shows the average inference time along with the standard deviation of each
model on each dataset.

Dataset Full Models Sparse Models
GIN DiffPool SUGAR TopKhard GCIPN GCIPE

BZR 0.0025 0.0001 0.1447 0.0048 - 0.0045 0.0003 0.0540 0.0257 0.0425 0.0011

COX2 0.0026 0.0001 0.1550 0.0093 - 0.0062 0.0008 0.1031 0.0349 0.0526 0.0014

DD 0.0028 0.0004 - - 0.0085 0.0006 0.2262 0.0842 0.1206 0.0016

ENZYMES 0.0024 0.0000 0.1992 0.0080 0.1399 0.0094 0.0063 0.0007 0.0496 0.0014 0.0625 0.0019

MUTAG 0.0029 0.0001 0.0596 0.0034 0.0135 0.0036 0.0065 0.0017 0.0448 0.0056 0.0415 0.0012

NCI1 0.0022 0.0001 1.3756 0.1246 1.0187 0.1040 0.0058 0.0004 0.0530 0.0026 0.1301 0.0602

NCI109 0.0023 0.0001 1.3685 0.0988 0.9477 0.0132 0.0055 0.0002 0.0500 0.0006 0.0563 0.0009

PROTEINS 0.0025 0.0001 0.3835 0.0619 3.9375 0.0347 0.0058 0.0007 0.0437 0.0016 0.0439 0.0008

PTC 0.0028 0.0001 0.1076 0.0050 0.0398 0.0099 0.0058 0.0005 0.0395 0.0013 0.0418 0.0005
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