
Appendix

A Implementation Details

A.1 More Information About The Continuous Environment

We provide a detailed description of the continuous environments with constrained settings:

• Blocked Half-Cheetah. The agent controls a robot that has an 18-dimensional state space and can
execute actions within a 6-dimensional action space. The reward is determined by the distance the
robot walks in each time step, along with a penalty based on the magnitude of the input action. The
game ends when a maximum time step is reached. We define two types of constraints that block
the region with X-coordinate ≤ −3 and X-coordinate ≥ 3, so robots are only allowed to move in
the area with X-coordinate between −∞ and -3 under the 1st constraint or between 3 and ∞ under
the 2nd constraint.

• Blocked Ant. The agent controls a robot that has a 113-dimensional state space and can execute
actions within an 8-dimensional action space. The rewards are determined by the distance to the
origin and a healthy bonus that encourages the robot to stay balanced. The game ends when a
maximum time step is reached. We also define two types of constraints that block the region with
X-coordinate ≤ −3 and X-coordinate ≥ 3, so robots are only allowed to move in the part with
X-coordinate between −∞ and -3 under the 1st constraint or between 3 and ∞ under the 2nd

constraint.

• Blocked Walker. The agent controls a robot that has an 18-dimensional state space and can execute
actions within a 6-dimensional action space. The reward is determined by the distance the robot
walks in each time step, along with a penalty based on the magnitude of the input action. The game
ends when the robot loses its balance or reaches a maximum time step. We define two types of
constraints that block the region with X-coordinate ≤ −0.1 and X-coordinate ≥ 0.1, so robots are
only allowed to move in the area with X-coordinate between −∞ and -0.1 under the 1st constraint
or between 0.1 and ∞ under the 2nd constraint.

• Blocked Swimmer. The agent controls a robot that has a 10-dimensional state space and can execute
actions within a 2-dimensional action space. The reward is determined by the distance the robot
walks in each time step, along with a penalty based on the magnitude of the input action. The game
ends when the robot reaches a maximum time step. We define two types of constraints that block
the region with X-coordinate ≤ −0.01 and X-coordinate ≥ 0.01, so robots are only allowed to
move in the area with X-coordinate between −∞ and -0.01 under the 1st constraint or between
0.01 and ∞ under the 2nd constraint.

Figure A.1: Four robots: Ant, half-cheetah, swimmer, and walker.
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A.2 Hyper-Parameters

In the MuJoCo environments, we set 1) the batch size of ME-PPO-Lag [1] to 64, 2) the size of the
hidden layer to 64, and 3) the number of hidden layers for the policy function, the value function,
and the cost function to 3. We decide on other parameters, including the learning rate of both the
policy models and mixture constraint models, by following some previous work [2]. The random
seeds of MuJoCo environments are 123, 321, and 666. In the Gridworld environments, we set 1)
the size of the hidden layer to 64, and 2) the number of hidden layers for the cost function to 3. We
determine other parameters, including the learning rate of constraint models, by following [1]. The
random seeds of Gridworld environments are 123, 321, and 666.

A.3 Experiment Equipment

We run the experiments by utilizing multiple kinds of GPUs, including RTX 3060 with 12 GB
memory and RTX 3090 with 24 GB memory. We used machines with 12 GB of memory for training
the MMICRL models. Given the aforementioned resources, running one seed in the Gridworld
environments and the MuJoCo environments takes 1-2 hours and 24-48 hours respectively.

B Proof of Proposition 4.1

Let’s consider an optimization problem in the form of:

minimize − α1H(π(τ)) + α2H(π(τ |z)) (1)

subject to
∫

π(τ |z)fz(τ)dτ =
1

N

∑
τ∈Dz

fz(τ) (2)∫
π(τ |z)dτ = 1 (3)∫
π(τ |z) log ϕω(τ |z)dτ ≥ ϵ (4)

The Lagrange function can be written as:

L[p(τ), λ0, λ1, λ2)]

=α1

∫
π(τ) log π(τ)dτ − α2

∫
π(τ |z) log π(τ |z)dτ + λ0

[ ∫
π(τ |z)fz(τ)dτ − f̃z

]
+

λ1

[ ∫
π(τ |z)dτ − 1

]
− λ2

[ ∫
π(τ |z) log ϕω(τ |z)dτ − ϵ

]
since H(π(τ)) =

∑
z p(z)H(π(τ |z)), we can further derive:

H(π(r|z)) = Ez∼p(z),(r)∼π(r|z)(− log(π(r|z)) (5)

= −Ez∼p(z),(r)∼π(r|z) log

(
p(z|r)π(r)

p(z)

)
(6)

= −Ez∼p(z),(r)∼π(r|z) log(p(z|r))− Ez∼p(z),r∼π(r|z) log(π(r)) + Ez∼p(z) log(p(z))
(7)

= −Ez∼p(z),r∼π(r|z) log(p(z|r)) +H(π(r))−H(z) (8)

H(π(τ)) = H(π(τ |z)) + Ez∼p(z),τ∼π(τ |z)

[
log(p(z|τ))

]
+H(z) (9)
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Substitute it back in the Lagrange function, we get:

L[p(τ), λ0, λ1, λ2)]

=(α1 − α2)

∫
π(τ |z) log π(τ |z)dτ + α1Ez∼p(z),τ∼π(τ |z)

[
log(p(z|τ))

]
+ α1H(z) + λ0

[ ∫
π(τ |z)fz(τ)dτ − f̃z

]
+

λ1

[ ∫
π(τ |z)dτ − 1

]
− λ2

[ ∫
π(τ |z) log ϕω(τ |z)dτ − ϵ

]
The Lagrange dual function is:

g(λ0, λ1, λ2) = inf
π(τ)

L[π(τ |z), λ0, λ1, λ2)]

= inf
π(τ |z)

∫ [
π(τ |z)

(
(α1 − α2) log π(τ |z) + α1Ez∼p(z)[log(p(z|τ))] + λ0f(τ)z + λ1 − λ2 log ϕω(τ |z)

)]
dτ

− λ0f̃z − λ1 + λ2ϵ+ α1H(z)

The minimum arrives when:
(α1 − α2) log π(τ |z) + α1Ez∼p(z)[log(p(z|τ))] + λ0f(τ)z + λ1 − λ2 log ϕω(τ |z) = 0 (10)

Equivalently:

π(τ |z) = exp

[−α1Ez∼p(z)[log(p(z|τ))]− 1− λ0f(τ)− λ1 + λ2 log ϕω(τ |z)
α1 − α2

]
(11)

=
exp

[
−α1Ez∼p(z)[log(p(z|τ))]−λ0f(τ)

α1−α2

]
ϕ(τ |z)

λ2
α1−α2

ZMc

C More Experimental Results

C.1 Complementary Results In The Discrete Environment

After analyzing Table C.1 and Figure C.1, it is evident that the B2CL, MEICRL, and InfoGAIL-ICRL
methods exhibit unsatisfactory performance. These methods demonstrate a low effective cumulative
reward across most environments, accompanied by a high constraint violation rate. Although
MMICRL-LD shows a notable improvement, its performance remains mediocre in environments
involving three types of agents. In contrast, the MMICRL algorithm consistently achieves good
performance across all settings.

C.2 Complementary Results In The Continuous Environment

Table C.2 presents the mean±std results of all algorithms in Mujoco. We calculated the average for all
results and marked those with high values. Figure C.2 depicts the distribution of x-coordinate values
among states visited by agents of diverse types across all algorithms in the Blocked Ant, Blocked
Half-Cheetah, Blocked Swimmer, and Blocked Walker environments.

C.3 Complementary Results In The Robust Test

Figure C.3, Figure C.4, Figure C.5 and Figure C.6 display the complete test results of all algorithms
in both discrete and continuous environments, providing a comprehensive depiction of the robustness
of the MMICRL algorithm. It demonstrates the algorithm’s capacity to infer and restore incorrect
types of data, highlighting its exceptional adaptability and resilience.
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Table C.1: Evaluating performance in Gridworld. We employ "/" to separate the results for various
agent types. We present the mean±std results calculated over 20 runs for each random seed.

Method Setting 1 Setting 2 Setting 3 Setting 4
Feasible Cumulative Rewards

B2CL 0.24± 0.40/0.55± 0.20 0.61± 0.05 / 0.26± 0.17 0.42± 0.16/0.12± 0.21 0.01± 0.15 /0.28± 0.17/−0.20± 0.02
MEICRL 0.46± 0.18/0.43± 0.20 / 0.36± 0.15 / 0.54± 0.06 0.38± 0.18 / 0.45± 0.16 0.05± 0.06/0.53± 0.06/−0.16± 0.03

InfoGAIL-ICRL 0.19± 0.17/− 0.29± 0.11 −0.09± 0.05 / −0.12± 0.04 0.61± 0.24/0.62± 0.23 −0.32± 0.03 /0.13± 0.10/−0.54± 0.35
MMICRL-LD 0.57± 0.17/0.32± 0.18 0.61± 0.08/0.69± 0.10 0.73± 0.06 / 0.31± 0.21 0.01± 0.13 /0.51± 0.08 /0.33± 0.07

MMICRL 0.69± 0.14/0.53± 0.11 0.67± 0.09 /0.68± 0.10 0.65± 0.13/0.51± 0.12 0.67± 0.10 /0.54± 0.10 /0.39± 0.03

Constraint Violation Rate
B2CL 66%± 24%/33%± 24% 0%± 0% /49%± 21% 33%± 24%/67%± 24% 67%± 24%/33%± 24%/100%± 0%

MEICRL 30%± 21% / 33%± 24% 35%± 19%/8%± 6% 33%± 24%/25%± 17% 100%± 0%/0%± 0%/100%± 0%
InfoGAIL-ICRL 0%± 0%/0%± 0% 91%± 5%/91%± 6% 25%± 18%/33%± 23% 0%± 0%/47%± 16%/0%± 0%
MMICRL-LD 20%± 14%/40%± 19% 0%± 0%/9%± 6% 0%± 0%/33%± 24% 67%± 18%/0%± 0%/14%± 10%

MMICRL 0%± 0%/0%± 0% 0%± 0%/3%± 2% 10%± 7%/4%± 3% 0%± 0%/0%± 0%/0%± 0%

Desitination Reaching Rate
B2CL 100%± 0% / 100%± 0% 67%± 15% / 100%± 0% 100%± 0% / 100%± 0% 100%± 0% / 100%± 0% / 100%± 0%

MEICRL 100%± 0% / 100%± 0% 100%± 0% / 100%± 0% 100%± 0% / 100%± 0% 100%± 0% / 100%± 0% / 100%± 0%
InfoGAIL-ICRL 33%± 47% / 0%± 0% 33%± 47% / 0%± 0% 100%± 0% / 100%± 0% 0%± 0% / 100± 0% / 33%± 47%
MMICRL-LD 100%± 0% / 100%± 0% 100%± 0% / 100%± 0% 100%± 0% / 100%± 0% 67%± 47% / 100%± 0% / 100%± 0%

MMICRL 100%± 0% / 100%± 0% 100%± 0% / 100%± 0% 100%± 0% / 100%± 0% 100%± 0% / 100%± 0% / 100%± 0%

Figure C.1: The feasible cumulative rewards (left two columns of the first three rows and second-to-
last row) and constraint violation rate (right two columns of the first three rows and last row). We
denote the results for different agents with z_0, z_1, and z_2. From top to bottom, the environments
are four Gridworld settings.
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Figure C.2: The above four environments are Blocked Ant, Blocked Half-Cheetah, Blocked Swimmer,
and Blocked Walker in order from left to right. The first row showcases the expert demonstration,
followed by the results of B2CL, MEICRL, InfoGAIL-ICRL, MMICRL-LD, and MMICRL algo-
rithms. The Blue and orange areas respectively represent the activity trajectories of two types of
agents. B2CL and MEICRL can recover only one constraint, so we utilize only one color.
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Table C.2: MuJoCo testing performance. We report the average feasible rewards and the constraint
violation rate in 100 runs.

Method Blocked Half-Cheetah Blocked Ant Blocked Swimmer Blocked Walker
Feasible Cumulative Rewards

B2CL 50.29±0.75 / 2120.05±1460.02 13322.35±4764.12 / 3112.40±2195.42 328.30±217.74 / 0.74±0.20 21.90±0.88 / 78.84±0.0
MEICRL 48.54±0.61 / 3451.08±1698.80 17983.07±2681.16 / 3307.97±2340.16 201.07±256.70 / 0.83±0.36 26.07±3.02 / 73.28±0.0

InfoGAIL-ICRL 222.44±184.39 / 132.50±65.88 372.78±830.08 / 111.33±679.35 23.79±19.93 / 0.79±0.24 21.45±2.16 / 1579.31±156.02
MMICRL-LD 4315.32±1513.39 / 2555.59±925.74 18158.37±756.88/ 22099.84±824.30 265.93±240.60 / 609.83±208.30 901.54±544.32 / 511.82±244.21

MMICRL 6120.68±257.35 / 3064.62±591.24 21285.86±1671.92 / 21694.22±889.63 407.10±358.78 / 648.11±182.50 897.93±476.37 / 1527.49±529.65
Constraint Violation Rate

B2CL 100%±0% / 67%±24% 33%±24% / 67±24% 62%±12% / 100%±0% 100%±0% / 100%±0%
MEICRL 100%±0% / 50%±25% 0%±0% / 67±24% 79%±14% / 100%±0% 100%±0% / 100%±0%

InfoGAIL-ICRL 25%±16% / 93%±5% 34%±18% / 37%±19% 73%±12% / 100%±0% 100%±0% / 0%±0%
MMICRL-LD 33%±24% / 34%±24% 0%±0% / 0%±0% 71%±16% / 34%±23% 52%±25% / 50%±25%

MMICRL 0%±0% / 0%±0% 0%±0% / 0%±0% 55%±23% / 28%±19% 31%±22% / 25%±22%

Figure C.3: The feasible cumulative rewards (left two columns) and constraint violation rate (right
two columns). We denote the results for different agents with z_0 and z_1. From top to bottom, the
environments are Blocked Antwall, Blocked Half-Cheetah, Blocked Walker, and Blocked Swimmer.

Figure C.4: From left to right, the four environments are Blocked Ant, Blocked Half-Cheetah,
Blocked Swimmer, and Blocked Walker.
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Figure C.5: The feasible cumulative rewards (left two columns of the first three rows and second-to-
last row) and constraint violation rate (right two columns of the first three rows and last row). We
denote the results for different agents with z_0, z_1, and z_2.

Figure C.6: The recovered trajectories for the 4 settings (from top to bottom) in the robust test.
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D Supplementary Experiment

D.1 Impact of probing vectors

In this experiment, our objective was to investigate the impact of the number of probing vectors in
Blocked Half-Cheetah. We maintained all other parameters constant and solely manipulated the
number of probing vectors. Figure D.2 demonstrates that there is no discernible effect when the
number of probing vectors is below 10. However, a notable effect is observed when the number is
increased to 30. The experimental results indicate that we can enhance the algorithm’s effectiveness
within a specific range by identifying more feature points to differentiate different types of agents.
These findings highlight the significance of finding an optimal balance in the number of probing
vectors for improved performance.

D.2 Contrastive Experiments for Optimizing Objectives

Figure D.1: The effect of removing H[π(τ |z)] factor in both
discrete and continuous environments.

This experiment serves to highlight
the importance of H[π(τ |z)] in the
optimization objective, as outlined in
Equation 8 of the main text. By inte-
grating H[π(τ |z)], we can effectively
regulate the variance of the policy dis-
tribution, specifically for a particular
type of agent. Consequently, we can
acquire trajectories that pertain to di-
verse agent types. Figure D.1 vividly
illustrates the consequences of remov-
ing H[π(τ |z)] within the Blocked
Half-Cheetah environment and Grid-
world setting2. Without it, we are confined to generating trajectories exclusively for one agent
type, thereby restricting our ability to discern and accommodate constrained types. To enhance the
performance of the MMICRL algorithm, striking a delicate equilibrium between this factor and the
maximum entropy policy optimization becomes important.

Figure D.2: The number of probing vectors is 1, 5, 10, and 30 from left to right.

D.3 Robustness Tests for Agent Types

In this small experiment, we want to observe the importance of Setting an Upper Bound on the
Number of Agent Types. In Figure D.3, the number of agent types (hyper-parameters) in MMICRL
is larger than the number of actual agent types. Despite this discrepancy, our algorithm continues to
exhibit satisfactory performance. In Figure D.4, the number of agent types (hyper-parameters) in
MMICRL is smaller than the actual number of agent types. The inference constraint error occurs for
one specific agent type, and repeated experiments have failed to recover the correct outcome. Table
D.1 provides the specifical result.

D.4 Experiments with a Larger Variety of Agent Types

To test the generalization of MMICRL, we set the number of agent types to 4. Figure D.5 and Table
D.1 present the good performance of MMICRL.
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Figure D.3: The ground truth (left) has two types
of agents while MMICRL (right) set the agent
types to three (i.e., |Z| = 3 is an upper bound).

Figure D.4: The ground truth (left) has three
types of agents while MMICRL (right) set the
agent types to three (i.e., |Z| = 3 is smaller than
the real number).

Figure D.5: The ground truth (left) has two types
of agents while MMICRL (right) set the agent
types to three (i.e., |Z| = 3 is an upper bound).

Table D.1: Supplementary Result
Experiment setting Feasible Cumulative Rewards Constraint Violation Rate
2 GT and 3 preset 0.54 0%
3 GT and 2 preset 0.25 33%
4 GT and 4 preset 0.7 0%
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